• Stars
    star
    161
  • Rank 233,470 (Top 5 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created almost 4 years ago
  • Updated 4 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

This repositories enable third-party libraries integrated with huggingface_hub to create their own docker so that the widgets on the hub can work as the transformers one do.

The hardware to run the API will be provided by Hugging Face for now.

The docker_images/common folder is intended to be a starter point for all new libs that want to be integrated.

Adding a new container from a new lib.

  1. Copy the docker_images/common folder into your library's name docker_images/example.

  2. Edit:

    • docker_images/example/requirements.txt
    • docker_images/example/app/main.py
    • docker_images/example/app/pipelines/{task_name}.py

    to implement the desired functionality. All required code is marked with IMPLEMENT_THIS markup.

  3. Remove:

    • Any pipeline files in docker_images/example/app/pipelines/ that are not used.
    • Any tests associated with deleted pipelines in docker_images/example/tests.
    • Any imports of the pipelines you deleted from docker_images/example/app/pipelines/__init__.py
  4. Feel free to customize anything required by your lib everywhere you want. The only real requirements, are to honor the HTTP endpoints, in the same fashion as the common folder for all your supported tasks.

  5. Edit example/tests/test_api.py to add TESTABLE_MODELS.

  6. Pass the test suite pytest -sv --rootdir docker_images/example/ docker_images/example/

  7. Submit your PR and enjoy !

Going the full way

Doing the first 7 steps is good enough to get started, however in the process you can anticipate some problems corrections early on. Maintainers will help you along the way if you don't feel confident to follow those steps yourself

  1. Test your creation within a docker
./manage.py docker MY_MODEL

should work and responds on port 8000. curl -X POST -d "test" http://localhost:8000 for instance if the pipeline deals with simple text.

If it doesn't work out of the box and/or docker is slow for some reason you can test locally (using your local python environment) with :

./manage.py start MY_MODEL

  1. Test your docker uses cache properly.

When doing subsequent docker launch with the same model_id, the docker should start up very fast and not redownload the whole model file. If you see the model/repo being downloaded over and over, it means the cache is not being used correctly. You can edit the docker_images/{framework}/Dockerfile and add an environment variable (by default it assumes HUGGINGFACE_HUB_CACHE), or your code directly to put the model files in the /data folder.

  1. Add a docker test.

Edit the tests/test_dockers.py file to add a new test with your new framework in it (def test_{framework}(self): for instance). As a basic you should have 1 line per task in this test function with a real working model on the hub. Those tests are relatively slow but will check automatically that correct errors are replied by your API and that the cache works properly. To run those tests your can simply do:

RUN_DOCKER_TESTS=1 pytest -sv tests/test_dockers.py::DockerImageTests::test_{framework}

Modifying files within api-inference-community/{routes,validation,..}.py.

If you ever come across a bug within api-inference-community/ package or want to update it the development process is slightly more involved.

  • First, make sure you need to change this package, each framework is very autonomous so if your code can get away by being standalone go that way first as it's much simpler.
  • If you can make the change only in api-inference-community without depending on it that's also a great option. Make sure to add the proper tests to your PR.
  • Finally, the best way to go is to develop locally using manage.py command:
  • Do the necessary modifications within api-inference-community first.
  • Install it locally in your environment with pip install -e .
  • Install your package dependencies locally.
  • Run your webserver locally: ./manage.py start --framework example --task audio-source-separation --model-id MY_MODEL
  • When everything is working, you will need to split your PR in two, 1 for the api-inference-community part. The second one will be for your package specific modifications and will only land once the api-inference-community tag has landed.
  • This workflow is still work in progress, don't hesitate to ask questions to maintainers.

Another similar command ./manage.py docker --framework example --task audio-source-separation --model-id MY_MODEL Will launch the server, but this time in a protected, controlled docker environment making sure the behavior will be exactly the one in the API.

Available tasks

  • Automatic speech recognition: Input is a file, output is a dict of understood words being said within the file
  • Text generation: Input is a text, output is a dict of generated text
  • Image recognition: Input is an image, output is a dict of generated text
  • Question answering: Input is a question + some context, output is a dict containing necessary information to locate the answer to the question within the context.
  • Audio source separation: Input is some audio, and the output is n audio files that sum up to the original audio but contain individual sources of sound (either speakers or instruments for instant).
  • Token classification: Input is some text, and the output is a list of entities mentioned in the text. Entities can be anything remarkable like locations, organisations, persons, times etc...
  • Text to speech: Input is some text, and the output is an audio file saying the text...
  • Sentence Similarity: Input is some sentence and a list of reference sentences, and the list of similarity scores.

More Repositories

1

transformers

🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.
Python
133,705
star
2

pytorch-image-models

PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, NFNet, Vision Transformer (ViT), MobileNet-V3/V2, RegNet, DPN, CSPNet, Swin Transformer, MaxViT, CoAtNet, ConvNeXt, and more
Python
28,073
star
3

diffusers

🤗 Diffusers: State-of-the-art diffusion models for image and audio generation in PyTorch and FLAX.
Python
25,619
star
4

datasets

🤗 The largest hub of ready-to-use datasets for ML models with fast, easy-to-use and efficient data manipulation tools
Python
17,530
star
5

peft

🤗 PEFT: State-of-the-art Parameter-Efficient Fine-Tuning.
Python
15,663
star
6

candle

Minimalist ML framework for Rust
Rust
15,011
star
7

trl

Train transformer language models with reinforcement learning.
Python
9,850
star
8

text-generation-inference

Large Language Model Text Generation Inference
Python
8,939
star
9

tokenizers

💥 Fast State-of-the-Art Tokenizers optimized for Research and Production
Rust
8,885
star
10

accelerate

🚀 A simple way to launch, train, and use PyTorch models on almost any device and distributed configuration, automatic mixed precision (including fp8), and easy-to-configure FSDP and DeepSpeed support
Python
7,854
star
11

chat-ui

Open source codebase powering the HuggingChat app
TypeScript
7,113
star
12

lerobot

🤗 LeRobot: Making AI for Robotics more accessible with end-to-end learning
Python
6,522
star
13

alignment-handbook

Robust recipes to align language models with human and AI preferences
Python
4,474
star
14

parler-tts

Inference and training library for high-quality TTS models.
Python
4,027
star
15

autotrain-advanced

🤗 AutoTrain Advanced
Python
3,925
star
16

deep-rl-class

This repo contains the syllabus of the Hugging Face Deep Reinforcement Learning Course.
MDX
3,680
star
17

diffusion-models-class

Materials for the Hugging Face Diffusion Models Course
Jupyter Notebook
3,508
star
18

notebooks

Notebooks using the Hugging Face libraries 🤗
Jupyter Notebook
3,492
star
19

distil-whisper

Distilled variant of Whisper for speech recognition. 6x faster, 50% smaller, within 1% word error rate.
Python
3,455
star
20

neuralcoref

✨Fast Coreference Resolution in spaCy with Neural Networks
C
2,842
star
21

safetensors

Simple, safe way to store and distribute tensors
Python
2,754
star
22

text-embeddings-inference

A blazing fast inference solution for text embeddings models
Rust
2,746
star
23

knockknock

🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code
Python
2,682
star
24

speech-to-speech

Speech To Speech: an effort for an open-sourced and modular GPT4-o
Python
2,540
star
25

swift-coreml-diffusers

Swift app demonstrating Core ML Stable Diffusion
Swift
2,506
star
26

optimum

🚀 Accelerate training and inference of 🤗 Transformers and 🤗 Diffusers with easy to use hardware optimization tools
Python
2,469
star
27

blog

Public repo for HF blog posts
Jupyter Notebook
2,303
star
28

setfit

Efficient few-shot learning with Sentence Transformers
Jupyter Notebook
2,142
star
29

course

The Hugging Face course on Transformers
MDX
2,005
star
30

awesome-papers

Papers & presentation materials from Hugging Face's internal science day
1,996
star
31

datatrove

Freeing data processing from scripting madness by providing a set of platform-agnostic customizable pipeline processing blocks.
Python
1,909
star
32

evaluate

🤗 Evaluate: A library for easily evaluating machine learning models and datasets.
Python
1,825
star
33

cookbook

Open-source AI cookbook
Jupyter Notebook
1,660
star
34

transfer-learning-conv-ai

🦄 State-of-the-Art Conversational AI with Transfer Learning
Python
1,654
star
35

swift-coreml-transformers

Swift Core ML 3 implementations of GPT-2, DistilGPT-2, BERT, and DistilBERT for Question answering. Other Transformers coming soon!
Swift
1,543
star
36

pytorch-openai-transformer-lm

🐥A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI
Python
1,464
star
37

huggingface.js

Utilities to use the Hugging Face Hub API
TypeScript
1,368
star
38

Mongoku

🔥The Web-scale GUI for MongoDB
TypeScript
1,313
star
39

huggingface_hub

All the open source things related to the Hugging Face Hub.
Python
1,311
star
40

gsplat.js

JavaScript Gaussian Splatting library.
TypeScript
1,302
star
41

llm-vscode

LLM powered development for VSCode
TypeScript
1,206
star
42

hmtl

🌊HMTL: Hierarchical Multi-Task Learning - A State-of-the-Art neural network model for several NLP tasks based on PyTorch and AllenNLP
Python
1,185
star
43

nanotron

Minimalistic large language model 3D-parallelism training
Python
1,071
star
44

pytorch-pretrained-BigGAN

🦋A PyTorch implementation of BigGAN with pretrained weights and conversion scripts.
Python
986
star
45

optimum-nvidia

Python
888
star
46

torchMoji

😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc
Python
880
star
47

awesome-huggingface

🤗 A list of wonderful open-source projects & applications integrated with Hugging Face libraries.
853
star
48

optimum-quanto

A pytorch quantization backend for optimum
Python
738
star
49

llm.nvim

LLM powered development for Neovim
Lua
728
star
50

naacl_transfer_learning_tutorial

Repository of code for the tutorial on Transfer Learning in NLP held at NAACL 2019 in Minneapolis, MN, USA
Python
718
star
51

dataset-viewer

Backend that powers the dataset viewer on Hugging Face dataset pages through a public API.
Python
689
star
52

swift-transformers

Swift Package to implement a transformers-like API in Swift
Swift
647
star
53

exporters

Export Hugging Face models to Core ML and TensorFlow Lite
Python
587
star
54

llm-ls

LSP server leveraging LLMs for code completion (and more?)
Rust
586
star
55

ratchet

A cross-platform browser ML framework.
Rust
574
star
56

transformers-bloom-inference

Fast Inference Solutions for BLOOM
Python
557
star
57

lighteval

LightEval is a lightweight LLM evaluation suite that Hugging Face has been using internally with the recently released LLM data processing library datatrove and LLM training library nanotron.
Python
554
star
58

pytorch_block_sparse

Fast Block Sparse Matrices for Pytorch
C++
523
star
59

node-question-answering

Fast and production-ready question answering in Node.js
TypeScript
459
star
60

large_language_model_training_playbook

An open collection of implementation tips, tricks and resources for training large language models
Python
452
star
61

swift-chat

Mac app to demonstrate swift-transformers
Swift
444
star
62

llm_training_handbook

An open collection of methodologies to help with successful training of large language models.
Python
437
star
63

text-clustering

Easily embed, cluster and semantically label text datasets
Python
422
star
64

cosmopedia

Python
416
star
65

optimum-intel

🤗 Optimum Intel: Accelerate inference with Intel optimization tools
Jupyter Notebook
393
star
66

controlnet_aux

Python
386
star
67

community-events

Place where folks can contribute to 🤗 community events
Jupyter Notebook
368
star
68

tflite-android-transformers

DistilBERT / GPT-2 for on-device inference thanks to TensorFlow Lite with Android demo apps
Java
368
star
69

nn_pruning

Prune a model while finetuning or training.
Jupyter Notebook
360
star
70

speechbox

Python
341
star
71

100-times-faster-nlp

🚀100 Times Faster Natural Language Processing in Python - iPython notebook
HTML
325
star
72

education-toolkit

Educational materials for universities
Jupyter Notebook
324
star
73

transformers.js-examples

A collection of 🤗 Transformers.js demos and example applications
JavaScript
323
star
74

open-muse

Open reproduction of MUSE for fast text2image generation.
Python
320
star
75

local-gemma

Gemma 2 optimized for your local machine.
Python
317
star
76

unity-api

C#
313
star
77

audio-transformers-course

The Hugging Face Course on Transformers for Audio
MDX
308
star
78

datablations

Scaling Data-Constrained Language Models
Jupyter Notebook
305
star
79

hf_transfer

Rust
287
star
80

dataspeech

Python
262
star
81

huggingface-llama-recipes

Jupyter Notebook
259
star
82

optimum-benchmark

🏋️ A unified multi-backend utility for benchmarking Transformers, Timm, PEFT, Diffusers and Sentence-Transformers with full support of Optimum's hardware optimizations & quantization schemes.
Python
245
star
83

diarizers

Python
238
star
84

hub-docs

Docs of the Hugging Face Hub
221
star
85

llm-swarm

Manage scalable open LLM inference endpoints in Slurm clusters
Python
216
star
86

sam2-studio

Swift
196
star
87

optimum-neuron

Easy, fast and very cheap training and inference on AWS Trainium and Inferentia chips.
Jupyter Notebook
193
star
88

data-is-better-together

Let's build better datasets, together!
Jupyter Notebook
192
star
89

instruction-tuned-sd

Code for instruction-tuning Stable Diffusion.
Python
189
star
90

simulate

🎢 Creating and sharing simulation environments for embodied and synthetic data research
Python
185
star
91

OBELICS

Code used for the creation of OBELICS, an open, massive and curated collection of interleaved image-text web documents, containing 141M documents, 115B text tokens and 353M images.
Python
184
star
92

diffusion-fast

Faster generation with text-to-image diffusion models.
Python
179
star
93

olm-datasets

Pipeline for pulling and processing online language model pretraining data from the web
Python
173
star
94

jat

General multi-task deep RL Agent
Python
154
star
95

workshops

Materials for workshops on the Hugging Face ecosystem
Jupyter Notebook
148
star
96

coreml-examples

Swift Core ML Examples
Jupyter Notebook
147
star
97

optimum-habana

Easy and lightning fast training of 🤗 Transformers on Habana Gaudi processor (HPU)
Python
147
star
98

chug

Minimal sharded dataset loaders, decoders, and utils for multi-modal document, image, and text datasets.
Python
140
star
99

sharp-transformers

A Unity plugin for using Transformers models in Unity.
C#
139
star
100

hf-hub

Rust client for the huggingface hub aiming for minimal subset of features over `huggingface-hub` python package
Rust
132
star