• Stars
    star
    360
  • Rank 116,247 (Top 3 %)
  • Language
    Jupyter Notebook
  • License
    Apache License 2.0
  • Created over 3 years ago
  • Updated about 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Prune a model while finetuning or training.

Neural Networks Block Movement Pruning

An interactive version of this site is available here.

Movement pruning has been proved as a very efficient method to prune networks in a unstructured manner. High levels of sparsity can be reached with a minimal of accuracy loss. The resulting sparse networks can be compressed heavily, saving a lot of permanent storage space on servers or devices, and bandwidth, an important advantage for edge devices. But efficient inference with unstructured sparsity is hard. Some degree of structure is necessary to use the intrinsic parallel nature of today hardware. Block Movement Pruning work extends the original method and explore semi-structured and structured variants of Movement Pruning. You can read more about block sparsity and why it matters for performance on these blog posts.

Documentation

The documentation is here.

Installation

User installlation

You can install nn_pruning using pip as follows:

python -m pip install -U nn_pruning

Developer installation

To install the latest state of the source code, first clone the repository

git clone https://github.com/huggingface/nn_pruning.git

and then install the required dependencies:

cd nn_pruning
python -m pip install -e ".[dev]"

After the installation is completed, you can launch the test suite from the root of the repository

pytest nn_pruning

Results

Squad V1

The experiments were done first on SQuAD v1.

Two networks were tested: BERT-base, and BERT-large.

Very significant speedups were obtained with limited drop in accuracy.

Here is a selection of the networks that are obtained through the different variant method variants.

The original "large" and "base" finedtuned models were added in the table for comparison.

The "BERT version" column shows which base network was pruned. The parameter count column is relative to linear layers, which contain most of the model parameters (with the embeddings being most of the remaining parameters).

F1 difference, speedups and parameters counts are all relative to BERT-base to ease practical comparison.

Model Type method Params F1 F1 diff Speedup
#1 large - +166% 93.15 +4.65 0.35x
#2 large hybrid-filled -17% 91.03 +2.53 0.92x
#3 large hybrid-filled -40% 90.16 +1.66 1.03x
#4 base hybrid-filled -59% 88.72 +0.22 1.84x
#5 base - +0% 88.5 +0.00 1.00x
#6 base hybrid-filled -65% 88.25 -0.25 1.98x
#7 base hybrid-filled -74% 87.71 -0.79 2.44x
#8 base hybrid-filled -73% 87.23 -1.27 2.60x
#9 base hybrid-filled -74% 86.69 -1.81 2.80x
#10 base struct -86% 85.52 -2.98 3.64x

Main takeaways

  • network #2: pruned from BERT-large, it's significantly more accurate than BERT-base, but have a similar size and speed.
  • network #3: pruned from BERT-large, it is finally 40% smaller but significantly better than a BERT-base, and still as fast.

That means that starting from a larger networks is beneficial on all metrics, even absolute size, something observed in the Train Large, Then Compress paper.

  • network #4: we can shrink BERT-base by ~60%, speedup inference by 1.8x and still have a better network
  • networks #N: we can select a tradeoff between speed and accuracy, depending on the final application.
  • last network: pruned using a slightly different "structured pruning" method that gives faster networks but with a significant drop in F1.

Additional remarks

  • The parameter reduction of the BERT-large networks are actually higher compared to the original network: 40% smaller than BERT-base means actually 77% smaller than BERT-large. We kept here the comparison with BERT-base numbers as it's what matters on a practical point of view.
  • The "theoretical speedup" is a speedup of linear layers (actual number of flops), something that seems to be equivalent to the measured speedup in some papers. The speedup here is measured on a 3090 RTX, using the HuggingFace transformers library, using Pytorch cuda timing features, and so is 100% in line with real-world speedup.

Example "Hybrid filled" Network

Here are some visualizations of the pruned network #7. It is using the "Hybrid filled" method:

  • Hybrid : prune using blocks for attention and rows/columns for the two large FFNs.
  • Filled : remove empty heads and empty rows/columns of the FFNs, then re-finetune the previous network, letting the zeros in non-empty attention heads evolve and so regain some accuracy while keeping the same network speed.

You can see that the results linear layers are all actually "dense" (hover on the graph to visualize them).

Hybrid Filled Density

You can see here the pruned heads for each layer:

Hybrid Filled Head Pruning

Comparison with state of the art

If we plot the F1 of the full set of pruned networks against the speedup, we can see that we outperform fine-tuned TinyBERT and Distilbert by some margin. MobileBert seems significantly better, even with the "no OPT" version presented here, which does not contain the LayerNorm optimization used in the much faster version of MobileBERT. An interesting future work will be to add those optimizations to the pruning tools.

SQuAD v1 speedup

Even in terms of saved size, we get smaller networks for the same accuracy (except for MobileBERT, which is better on size too):

SQuAD fill rate

GLUE/MNLI

The experiments were done on BERT-base. Significant speedups were obtained, even if the results are a bit behind compared to the SQuAD results. Here is a selection of networks, with the same rules as for the SQuAd table:

Model Type method Params Accuracy Accuracy diff Speedup
#1 base - +0% 84.6 +0.00 1.00x
#2 base hybrid-filled -65% 83.71 -0.89 2.00x
#3 base hybrid-filled -74% 83.05 -1.55 2.40x
#4 base hybrid-filled -81% 82.69 -1.91 2.86x
#5 base hybrid-filled -87% 81.03 -3.57 3.44x

Comparison with state of the art

(This is WIP : Some more runs are needed to check the performance versus MobileBERT and TinyBert at same level of speed. Some better hyperparameters may help too.)

From the following graphs, we see that the speed is a bit lower compared to TinyBERT, and roughly in line with MobileBERT. In terms of sparsity, the precision is a bit lower than MobileBERT and TinyBERT. On both metrics it's better than DistilBERT by some significant margin.

MNLI v1 speedup

MNLI fill rate

Related work

pytorch_block_sparse is a CUDA Implementation of block sparse kernels for linear layer forward and backward propagation. It's not needed to run the models pruned by the nn_pruning tools, as it's not fast enough yet to be competitive with dense linear layers: just pruning heads is faster, even if those heads still contain some inner sparsity.

More Repositories

1

transformers

πŸ€— Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.
Python
129,666
star
2

pytorch-image-models

PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, NFNet, Vision Transformer (ViT), MobileNet-V3/V2, RegNet, DPN, CSPNet, Swin Transformer, MaxViT, CoAtNet, ConvNeXt, and more
Python
28,073
star
3

diffusers

πŸ€— Diffusers: State-of-the-art diffusion models for image and audio generation in PyTorch and FLAX.
Python
24,200
star
4

datasets

πŸ€— The largest hub of ready-to-use datasets for ML models with fast, easy-to-use and efficient data manipulation tools
Python
17,530
star
5

peft

πŸ€— PEFT: State-of-the-art Parameter-Efficient Fine-Tuning.
Python
14,585
star
6

candle

Minimalist ML framework for Rust
Rust
14,110
star
7

tokenizers

πŸ’₯ Fast State-of-the-Art Tokenizers optimized for Research and Production
Rust
8,645
star
8

trl

Train transformer language models with reinforcement learning.
Python
8,483
star
9

text-generation-inference

Large Language Model Text Generation Inference
Python
8,458
star
10

accelerate

πŸš€ A simple way to launch, train, and use PyTorch models on almost any device and distributed configuration, automatic mixed precision (including fp8), and easy-to-configure FSDP and DeepSpeed support
Python
7,306
star
11

chat-ui

Open source codebase powering the HuggingChat app
TypeScript
6,584
star
12

lerobot

πŸ€— LeRobot: End-to-end Learning for Real-World Robotics in Pytorch
Python
4,284
star
13

alignment-handbook

Robust recipes to align language models with human and AI preferences
Python
4,118
star
14

deep-rl-class

This repo contains the syllabus of the Hugging Face Deep Reinforcement Learning Course.
MDX
3,680
star
15

notebooks

Notebooks using the Hugging Face libraries πŸ€—
Jupyter Notebook
3,329
star
16

distil-whisper

Distilled variant of Whisper for speech recognition. 6x faster, 50% smaller, within 1% word error rate.
Python
3,286
star
17

autotrain-advanced

πŸ€— AutoTrain Advanced
Python
3,283
star
18

diffusion-models-class

Materials for the Hugging Face Diffusion Models Course
Jupyter Notebook
3,280
star
19

neuralcoref

✨Fast Coreference Resolution in spaCy with Neural Networks
C
2,819
star
20

parler-tts

Inference and training library for high-quality TTS models.
Python
2,735
star
21

knockknock

πŸšͺ✊Knock Knock: Get notified when your training ends with only two additional lines of code
Python
2,682
star
22

safetensors

Simple, safe way to store and distribute tensors
Python
2,572
star
23

swift-coreml-diffusers

Swift app demonstrating Core ML Stable Diffusion
Swift
2,406
star
24

optimum

πŸš€ Accelerate training and inference of πŸ€— Transformers and πŸ€— Diffusers with easy to use hardware optimization tools
Python
2,290
star
25

text-embeddings-inference

A blazing fast inference solution for text embeddings models
Rust
2,201
star
26

blog

Public repo for HF blog posts
Jupyter Notebook
2,136
star
27

setfit

Efficient few-shot learning with Sentence Transformers
Jupyter Notebook
2,060
star
28

course

The Hugging Face course on Transformers
MDX
2,005
star
29

awesome-papers

Papers & presentation materials from Hugging Face's internal science day
1,996
star
30

evaluate

πŸ€— Evaluate: A library for easily evaluating machine learning models and datasets.
Python
1,825
star
31

datatrove

Freeing data processing from scripting madness by providing a set of platform-agnostic customizable pipeline processing blocks.
Python
1,657
star
32

transfer-learning-conv-ai

πŸ¦„ State-of-the-Art Conversational AI with Transfer Learning
Python
1,654
star
33

swift-coreml-transformers

Swift Core ML 3 implementations of GPT-2, DistilGPT-2, BERT, and DistilBERT for Question answering. Other Transformers coming soon!
Swift
1,543
star
34

pytorch-openai-transformer-lm

πŸ₯A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI
Python
1,464
star
35

cookbook

Open-source AI cookbook
Jupyter Notebook
1,416
star
36

huggingface_hub

All the open source things related to the Hugging Face Hub.
Python
1,311
star
37

Mongoku

πŸ”₯The Web-scale GUI for MongoDB
TypeScript
1,300
star
38

huggingface.js

Utilities to use the Hugging Face Hub API
TypeScript
1,277
star
39

gsplat.js

JavaScript Gaussian Splatting library.
TypeScript
1,233
star
40

hmtl

🌊HMTL: Hierarchical Multi-Task Learning - A State-of-the-Art neural network model for several NLP tasks based on PyTorch and AllenNLP
Python
1,185
star
41

llm-vscode

LLM powered development for VSCode
TypeScript
1,160
star
42

pytorch-pretrained-BigGAN

πŸ¦‹A PyTorch implementation of BigGAN with pretrained weights and conversion scripts.
Python
986
star
43

nanotron

Minimalistic large language model 3D-parallelism training
Python
897
star
44

torchMoji

πŸ˜‡A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc
Python
880
star
45

optimum-nvidia

Python
839
star
46

awesome-huggingface

πŸ€— A list of wonderful open-source projects & applications integrated with Hugging Face libraries.
821
star
47

naacl_transfer_learning_tutorial

Repository of code for the tutorial on Transfer Learning in NLP held at NAACL 2019 in Minneapolis, MN, USA
Python
718
star
48

dataset-viewer

Lightweight web API for visualizing and exploring any dataset - computer vision, speech, text, and tabular - stored on the Hugging Face Hub
Python
640
star
49

optimum-quanto

A pytorch quantization backend for optimum
Python
620
star
50

llm.nvim

LLM powered development for Neovim
Lua
607
star
51

exporters

Export Hugging Face models to Core ML and TensorFlow Lite
Python
559
star
52

transformers-bloom-inference

Fast Inference Solutions for BLOOM
Python
551
star
53

swift-transformers

Swift Package to implement a transformers-like API in Swift
Swift
530
star
54

pytorch_block_sparse

Fast Block Sparse Matrices for Pytorch
C++
523
star
55

llm-ls

LSP server leveraging LLMs for code completion (and more?)
Rust
513
star
56

node-question-answering

Fast and production-ready question answering in Node.js
TypeScript
459
star
57

lighteval

LightEval is a lightweight LLM evaluation suite that Hugging Face has been using internally with the recently released LLM data processing library datatrove and LLM training library nanotron.
Python
442
star
58

large_language_model_training_playbook

An open collection of implementation tips, tricks and resources for training large language models
Python
441
star
59

ratchet

A cross-platform browser ML framework.
Rust
424
star
60

llm_training_handbook

An open collection of methodologies to help with successful training of large language models.
Python
416
star
61

swift-chat

Mac app to demonstrate swift-transformers
Swift
392
star
62

tflite-android-transformers

DistilBERT / GPT-2 for on-device inference thanks to TensorFlow Lite with Android demo apps
Java
368
star
63

community-events

Place where folks can contribute to πŸ€— community events
Jupyter Notebook
368
star
64

text-clustering

Easily embed, cluster and semantically label text datasets
Python
367
star
65

optimum-intel

πŸ€— Optimum Intel: Accelerate inference with Intel optimization tools
Jupyter Notebook
361
star
66

controlnet_aux

Python
352
star
67

speechbox

Python
339
star
68

100-times-faster-nlp

πŸš€100 Times Faster Natural Language Processing in Python - iPython notebook
HTML
325
star
69

education-toolkit

Educational materials for universities
Jupyter Notebook
320
star
70

unity-api

C#
302
star
71

datablations

Scaling Data-Constrained Language Models
Jupyter Notebook
296
star
72

open-muse

Open reproduction of MUSE for fast text2image generation.
Python
293
star
73

cosmopedia

Python
285
star
74

audio-transformers-course

The Hugging Face Course on Transformers for Audio
MDX
279
star
75

hf_transfer

Rust
242
star
76

hub-docs

Docs of the Hugging Face Hub
221
star
77

optimum-benchmark

πŸ‹οΈ A unified multi-backend utility for benchmarking Transformers, Timm, PEFT, Diffusers and Sentence-Transformers with full support of Optimum's hardware optimizations & quantization schemes.
Python
217
star
78

dataspeech

Python
207
star
79

diarizers

Python
206
star
80

simulate

🎒 Creating and sharing simulation environments for embodied and synthetic data research
Python
185
star
81

instruction-tuned-sd

Code for instruction-tuning Stable Diffusion.
Python
181
star
82

optimum-neuron

Easy, fast and very cheap training and inference on AWS Trainium and Inferentia chips.
Jupyter Notebook
176
star
83

llm-swarm

Manage scalable open LLM inference endpoints in Slurm clusters
Python
176
star
84

OBELICS

Code used for the creation of OBELICS, an open, massive and curated collection of interleaved image-text web documents, containing 141M documents, 115B text tokens and 353M images.
Python
170
star
85

olm-datasets

Pipeline for pulling and processing online language model pretraining data from the web
Python
170
star
86

data-is-better-together

Let's build better datasets, together!
Jupyter Notebook
162
star
87

diffusion-fast

Faster generation with text-to-image diffusion models.
Python
157
star
88

workshops

Materials for workshops on the Hugging Face ecosystem
Jupyter Notebook
146
star
89

api-inference-community

Python
145
star
90

jat

Distributed online training of a general multi-task Deep RL Agent
Python
136
star
91

chug

Minimal sharded dataset loaders, decoders, and utils for multi-modal document, image, and text datasets.
Python
136
star
92

optimum-habana

Easy and lightning fast training of πŸ€— Transformers on Habana Gaudi processor (HPU)
Python
132
star
93

sharp-transformers

A Unity plugin for using Transformers models in Unity.
C#
129
star
94

hf-hub

Rust client for the huggingface hub aiming for minimal subset of features over `huggingface-hub` python package
Rust
109
star
95

competitions

Python
104
star
96

frp

FRP Fork
Go
102
star
97

coreml-examples

Swift Core ML Examples
Swift
98
star
98

olm-training

Repo for training MLMs, CLMs, or T5-type models on the OLM pretraining data, but it should work with any hugging face text dataset.
Python
92
star
99

fuego

[WIP] A πŸ”₯ interface for running code in the cloud
Python
85
star
100

tune

Python
83
star