• Stars
    star
    179
  • Rank 214,039 (Top 5 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created 12 months ago
  • Updated 6 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Faster generation with text-to-image diffusion models.

Diffusion, fast

Repository for the blog post: Accelerating Generative AI Part III: Diffusion, Fast. You can find a run down of the techniques on the 🤗 Diffusers website too.


Summary of the optimizations:

  • Running with the bfloat16 precision
  • scaled_dot_product_attention (SPDA)
  • torch.compile
  • Combining q,k,v projections for attention computation
  • Dynamic int8 quantization

These techniques are fairly generalizable to other pipelines too, as we show below.

Table of contents:

Setup 🛠️

We rely on pure PyTorch for the optimizations. You can refer to the Dockerfile to get the complete development environment setup.

For hardware, we used an 80GB 400W A100 GPU with its memory clock set to the maximum rate (1593 in our case).

Running a benchmarking experiment 🏎️

run_benchmark.py is the main script for benchmarking the different optimization techniques. After an experiment has been done, you should expect to see two files:

  • A .csv file with all the benchmarking numbers.
  • A .jpeg image file corresponding to the experiment.

Refer to the experiment-scripts/run_sd.sh for some reference experiment commands.

Notes on running PixArt-Alpha experiments:

  • Use the run_experiment_pixart.py for this.
  • Uninstall the current installation of diffusers and re-install it again like so: pip install git+https://github.com/huggingface/diffusers@fuse-projections-pixart.
  • Refer to the experiment-scripts/run_pixart.sh script for some reference experiment commands.

(Support for PixArt-Alpha is experimental.)

You can use the prepare_results.py script to generate a consolidated CSV file and a plot to visualize the results from it. This is best used after you have run a couple of benchmarking experiments already and have their corresponding CSV files.

To run the script, you need the following dependencies:

  • pandas
  • matplotlib
  • seaborn

Improvements, progressively 📈 📊

Baseline
from diffusers import StableDiffusionXLPipeline

# Load the pipeline in full-precision and place its model components on CUDA.
pipe = StableDiffusionXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0"
).to("cuda")

# Run the attention ops without efficiency.
pipe.unet.set_default_attn_processor()
pipe.vae.set_default_attn_processor()

prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
image = pipe(prompt, num_inference_steps=30).images[0]

With this, we're at:

Bfloat16
from diffusers import StableDiffusionXLPipeline
import torch

pipe = StableDiffusionXLPipeline.from_pretrained(
	"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16
).to("cuda")

# Run the attention ops without efficiency.
pipe.unet.set_default_attn_processor()
pipe.vae.set_default_attn_processor()

prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
image = pipe(prompt, num_inference_steps=30).images[0]

💡 We later ran the experiments in float16 and found out that the recent versions of torchao do not incur numerical problems from float16.

scaled_dot_product_attention
from diffusers import StableDiffusionXLPipeline
import torch

pipe = StableDiffusionXLPipeline.from_pretrained(
	"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16
).to("cuda")

prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
image = pipe(prompt, num_inference_steps=30).images[0]
torch.compile

First, configure some compiler flags:

from diffusers import StableDiffusionXLPipeline
import torch

# Set the following compiler flags to make things go brrr.
torch._inductor.config.conv_1x1_as_mm = True
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.epilogue_fusion = False
torch._inductor.config.coordinate_descent_check_all_directions = True

Then load the pipeline:

pipe = StableDiffusionXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16
).to("cuda")

Compile and perform inference:

# Compile the UNet and VAE.
pipe.unet.to(memory_format=torch.channels_last)
pipe.vae.to(memory_format=torch.channels_last)
pipe.unet = torch.compile(pipe.unet, mode="max-autotune", fullgraph=True)
pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True)

prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"

# First call to `pipe` will be slow, subsequent ones will be faster.
image = pipe(prompt, num_inference_steps=30).images[0]
Combining attention projection matrices
from diffusers import StableDiffusionXLPipeline
import torch

# Configure the compiler flags.
torch._inductor.config.conv_1x1_as_mm = True
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.epilogue_fusion = False
torch._inductor.config.coordinate_descent_check_all_directions = True

pipe = StableDiffusionXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16
).to("cuda")

# Combine attention projection matrices.
pipe.fuse_qkv_projections()

# Compile the UNet and VAE.
pipe.unet.to(memory_format=torch.channels_last)
pipe.vae.to(memory_format=torch.channels_last)
pipe.unet = torch.compile(pipe.unet, mode="max-autotune", fullgraph=True)
pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True)

prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"

# First call to `pipe` will be slow, subsequent ones will be faster.
image = pipe(prompt, num_inference_steps=30).images[0]
Dynamic quantization

Start by setting the compiler flags (this time, we have two new):

from diffusers import StableDiffusionXLPipeline
import torch

from torchao.quantization import apply_dynamic_quant, swap_conv2d_1x1_to_linear

# Compiler flags. There are two new.
torch._inductor.config.conv_1x1_as_mm = True
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.epilogue_fusion = False
torch._inductor.config.coordinate_descent_check_all_directions = True
torch._inductor.config.force_fuse_int_mm_with_mul = True
torch._inductor.config.use_mixed_mm = True

Then write the filtering functions to apply dynamic quantization:

def dynamic_quant_filter_fn(mod, *args):
    return (
        isinstance(mod, torch.nn.Linear)
        and mod.in_features > 16
        and (mod.in_features, mod.out_features)
        not in [
            (1280, 640),
            (1920, 1280),
            (1920, 640),
            (2048, 1280),
            (2048, 2560),
            (2560, 1280),
            (256, 128),
            (2816, 1280),
            (320, 640),
            (512, 1536),
            (512, 256),
            (512, 512),
            (640, 1280),
            (640, 1920),
            (640, 320),
            (640, 5120),
            (640, 640),
            (960, 320),
            (960, 640),
        ]
    )


def conv_filter_fn(mod, *args):
    return (
        isinstance(mod, torch.nn.Conv2d) and mod.kernel_size == (1, 1) and 128 in [mod.in_channels, mod.out_channels]
    )

Then we're rwady for inference:

pipe = StableDiffusionXLPipeline.from_pretrained(
	"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16
).to("cuda")

# Combine attention projection matrices.
pipe.fuse_qkv_projections()

# Change the memory layout.
pipe.unet.to(memory_format=torch.channels_last)
pipe.vae.to(memory_format=torch.channels_last)

# Swap the pointwise convs with linears.
swap_conv2d_1x1_to_linear(pipe.unet, conv_filter_fn)
swap_conv2d_1x1_to_linear(pipe.vae, conv_filter_fn)

# Apply dynamic quantization.
apply_dynamic_quant(pipe.unet, dynamic_quant_filter_fn)
apply_dynamic_quant(pipe.vae, dynamic_quant_filter_fn)

# Compile.
pipe.unet = torch.compile(pipe.unet, mode="max-autotune", fullgraph=True)
pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True)

prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
image = pipe(prompt, num_inference_steps=30).images[0]

Results from other pipelines 🌋

SSD-1B
SD v1-5
Pixart-Alpha

More Repositories

1

transformers

🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.
Python
133,705
star
2

pytorch-image-models

PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, NFNet, Vision Transformer (ViT), MobileNet-V3/V2, RegNet, DPN, CSPNet, Swin Transformer, MaxViT, CoAtNet, ConvNeXt, and more
Python
28,073
star
3

diffusers

🤗 Diffusers: State-of-the-art diffusion models for image and audio generation in PyTorch and FLAX.
Python
25,619
star
4

datasets

🤗 The largest hub of ready-to-use datasets for ML models with fast, easy-to-use and efficient data manipulation tools
Python
17,530
star
5

peft

🤗 PEFT: State-of-the-art Parameter-Efficient Fine-Tuning.
Python
15,663
star
6

candle

Minimalist ML framework for Rust
Rust
15,011
star
7

trl

Train transformer language models with reinforcement learning.
Python
9,850
star
8

text-generation-inference

Large Language Model Text Generation Inference
Python
8,939
star
9

tokenizers

💥 Fast State-of-the-Art Tokenizers optimized for Research and Production
Rust
8,885
star
10

accelerate

🚀 A simple way to launch, train, and use PyTorch models on almost any device and distributed configuration, automatic mixed precision (including fp8), and easy-to-configure FSDP and DeepSpeed support
Python
7,854
star
11

chat-ui

Open source codebase powering the HuggingChat app
TypeScript
7,113
star
12

lerobot

🤗 LeRobot: Making AI for Robotics more accessible with end-to-end learning
Python
6,522
star
13

alignment-handbook

Robust recipes to align language models with human and AI preferences
Python
4,474
star
14

parler-tts

Inference and training library for high-quality TTS models.
Python
4,027
star
15

autotrain-advanced

🤗 AutoTrain Advanced
Python
3,925
star
16

deep-rl-class

This repo contains the syllabus of the Hugging Face Deep Reinforcement Learning Course.
MDX
3,680
star
17

diffusion-models-class

Materials for the Hugging Face Diffusion Models Course
Jupyter Notebook
3,508
star
18

notebooks

Notebooks using the Hugging Face libraries 🤗
Jupyter Notebook
3,492
star
19

distil-whisper

Distilled variant of Whisper for speech recognition. 6x faster, 50% smaller, within 1% word error rate.
Python
3,455
star
20

neuralcoref

✨Fast Coreference Resolution in spaCy with Neural Networks
C
2,842
star
21

safetensors

Simple, safe way to store and distribute tensors
Python
2,754
star
22

text-embeddings-inference

A blazing fast inference solution for text embeddings models
Rust
2,746
star
23

knockknock

🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code
Python
2,682
star
24

speech-to-speech

Speech To Speech: an effort for an open-sourced and modular GPT4-o
Python
2,540
star
25

swift-coreml-diffusers

Swift app demonstrating Core ML Stable Diffusion
Swift
2,506
star
26

optimum

🚀 Accelerate training and inference of 🤗 Transformers and 🤗 Diffusers with easy to use hardware optimization tools
Python
2,469
star
27

blog

Public repo for HF blog posts
Jupyter Notebook
2,303
star
28

setfit

Efficient few-shot learning with Sentence Transformers
Jupyter Notebook
2,142
star
29

course

The Hugging Face course on Transformers
MDX
2,005
star
30

awesome-papers

Papers & presentation materials from Hugging Face's internal science day
1,996
star
31

datatrove

Freeing data processing from scripting madness by providing a set of platform-agnostic customizable pipeline processing blocks.
Python
1,909
star
32

evaluate

🤗 Evaluate: A library for easily evaluating machine learning models and datasets.
Python
1,825
star
33

cookbook

Open-source AI cookbook
Jupyter Notebook
1,660
star
34

transfer-learning-conv-ai

🦄 State-of-the-Art Conversational AI with Transfer Learning
Python
1,654
star
35

swift-coreml-transformers

Swift Core ML 3 implementations of GPT-2, DistilGPT-2, BERT, and DistilBERT for Question answering. Other Transformers coming soon!
Swift
1,543
star
36

pytorch-openai-transformer-lm

🐥A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI
Python
1,464
star
37

huggingface.js

Utilities to use the Hugging Face Hub API
TypeScript
1,368
star
38

Mongoku

🔥The Web-scale GUI for MongoDB
TypeScript
1,313
star
39

huggingface_hub

All the open source things related to the Hugging Face Hub.
Python
1,311
star
40

gsplat.js

JavaScript Gaussian Splatting library.
TypeScript
1,302
star
41

llm-vscode

LLM powered development for VSCode
TypeScript
1,206
star
42

hmtl

🌊HMTL: Hierarchical Multi-Task Learning - A State-of-the-Art neural network model for several NLP tasks based on PyTorch and AllenNLP
Python
1,185
star
43

nanotron

Minimalistic large language model 3D-parallelism training
Python
1,071
star
44

pytorch-pretrained-BigGAN

🦋A PyTorch implementation of BigGAN with pretrained weights and conversion scripts.
Python
986
star
45

optimum-nvidia

Python
888
star
46

torchMoji

😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc
Python
880
star
47

awesome-huggingface

🤗 A list of wonderful open-source projects & applications integrated with Hugging Face libraries.
853
star
48

optimum-quanto

A pytorch quantization backend for optimum
Python
738
star
49

llm.nvim

LLM powered development for Neovim
Lua
728
star
50

naacl_transfer_learning_tutorial

Repository of code for the tutorial on Transfer Learning in NLP held at NAACL 2019 in Minneapolis, MN, USA
Python
718
star
51

dataset-viewer

Backend that powers the dataset viewer on Hugging Face dataset pages through a public API.
Python
689
star
52

swift-transformers

Swift Package to implement a transformers-like API in Swift
Swift
647
star
53

exporters

Export Hugging Face models to Core ML and TensorFlow Lite
Python
587
star
54

llm-ls

LSP server leveraging LLMs for code completion (and more?)
Rust
586
star
55

ratchet

A cross-platform browser ML framework.
Rust
574
star
56

transformers-bloom-inference

Fast Inference Solutions for BLOOM
Python
557
star
57

lighteval

LightEval is a lightweight LLM evaluation suite that Hugging Face has been using internally with the recently released LLM data processing library datatrove and LLM training library nanotron.
Python
554
star
58

pytorch_block_sparse

Fast Block Sparse Matrices for Pytorch
C++
523
star
59

node-question-answering

Fast and production-ready question answering in Node.js
TypeScript
459
star
60

large_language_model_training_playbook

An open collection of implementation tips, tricks and resources for training large language models
Python
452
star
61

swift-chat

Mac app to demonstrate swift-transformers
Swift
444
star
62

llm_training_handbook

An open collection of methodologies to help with successful training of large language models.
Python
437
star
63

text-clustering

Easily embed, cluster and semantically label text datasets
Python
422
star
64

cosmopedia

Python
416
star
65

optimum-intel

🤗 Optimum Intel: Accelerate inference with Intel optimization tools
Jupyter Notebook
393
star
66

controlnet_aux

Python
386
star
67

community-events

Place where folks can contribute to 🤗 community events
Jupyter Notebook
368
star
68

tflite-android-transformers

DistilBERT / GPT-2 for on-device inference thanks to TensorFlow Lite with Android demo apps
Java
368
star
69

nn_pruning

Prune a model while finetuning or training.
Jupyter Notebook
360
star
70

speechbox

Python
341
star
71

100-times-faster-nlp

🚀100 Times Faster Natural Language Processing in Python - iPython notebook
HTML
325
star
72

education-toolkit

Educational materials for universities
Jupyter Notebook
324
star
73

transformers.js-examples

A collection of 🤗 Transformers.js demos and example applications
JavaScript
323
star
74

open-muse

Open reproduction of MUSE for fast text2image generation.
Python
320
star
75

local-gemma

Gemma 2 optimized for your local machine.
Python
317
star
76

unity-api

C#
313
star
77

audio-transformers-course

The Hugging Face Course on Transformers for Audio
MDX
308
star
78

datablations

Scaling Data-Constrained Language Models
Jupyter Notebook
305
star
79

hf_transfer

Rust
287
star
80

dataspeech

Python
262
star
81

huggingface-llama-recipes

Jupyter Notebook
259
star
82

optimum-benchmark

🏋️ A unified multi-backend utility for benchmarking Transformers, Timm, PEFT, Diffusers and Sentence-Transformers with full support of Optimum's hardware optimizations & quantization schemes.
Python
245
star
83

diarizers

Python
238
star
84

hub-docs

Docs of the Hugging Face Hub
221
star
85

llm-swarm

Manage scalable open LLM inference endpoints in Slurm clusters
Python
216
star
86

sam2-studio

Swift
196
star
87

optimum-neuron

Easy, fast and very cheap training and inference on AWS Trainium and Inferentia chips.
Jupyter Notebook
193
star
88

data-is-better-together

Let's build better datasets, together!
Jupyter Notebook
192
star
89

instruction-tuned-sd

Code for instruction-tuning Stable Diffusion.
Python
189
star
90

simulate

🎢 Creating and sharing simulation environments for embodied and synthetic data research
Python
185
star
91

OBELICS

Code used for the creation of OBELICS, an open, massive and curated collection of interleaved image-text web documents, containing 141M documents, 115B text tokens and 353M images.
Python
184
star
92

olm-datasets

Pipeline for pulling and processing online language model pretraining data from the web
Python
173
star
93

api-inference-community

Python
161
star
94

jat

General multi-task deep RL Agent
Python
154
star
95

workshops

Materials for workshops on the Hugging Face ecosystem
Jupyter Notebook
148
star
96

coreml-examples

Swift Core ML Examples
Jupyter Notebook
147
star
97

optimum-habana

Easy and lightning fast training of 🤗 Transformers on Habana Gaudi processor (HPU)
Python
147
star
98

chug

Minimal sharded dataset loaders, decoders, and utils for multi-modal document, image, and text datasets.
Python
140
star
99

sharp-transformers

A Unity plugin for using Transformers models in Unity.
C#
139
star
100

hf-hub

Rust client for the huggingface hub aiming for minimal subset of features over `huggingface-hub` python package
Rust
132
star