• Stars
    star
    4,474
  • Rank 9,548 (Top 0.2 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 1 year ago
  • Updated 4 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Robust recipes to align language models with human and AI preferences

πŸ€— Models & Datasets | πŸ“ƒ Technical Report

The Alignment Handbook

Robust recipes to align language models with human and AI preferences.

What is this?

Just one year ago, chatbots were out of fashion and most people hadn't heard about techniques like Reinforcement Learning from Human Feedback (RLHF) to align language models with human preferences. Then, OpenAI broke the internet with ChatGPT and Meta followed suit by releasing the Llama series of language models which enabled the ML community to build their very own capable chatbots. This has led to a rich ecosystem of datasets and models that have mostly focused on teaching language models to follow instructions through supervised fine-tuning (SFT).

However, we know from the InstructGPT and Llama2 papers that significant gains in helpfulness and safety can be had by augmenting SFT with human (or AI) preferences. At the same time, aligning language models to a set of preferences is a fairly novel idea and there are few public resources available on how to train these models, what data to collect, and what metrics to measure for best downstream performance.

The Alignment Handbook aims to fill that gap by providing the community with a series of robust training recipes that span the whole pipeline.

News πŸ—žοΈ

  • November 10, 2023: We release all the training code to replicate Zephyr-7b-Ξ² πŸͺ! We also release No Robots, a brand new dataset of 10,000 instructions and demonstrations written entirely by skilled human annotators.

Links πŸ”—

How to navigate this project 🧭

This project is simple by design and mostly consists of:

  • scripts to train and evaluate chat models. Each script supports distributed training of the full model weights with DeepSpeed ZeRO-3, or LoRA/QLoRA for parameter-efficient fine-tuning.
  • recipes to reproduce models like Zephyr 7B. Each recipe takes the form of a YAML file which contains all the parameters associated with a single training run.

We are also working on a series of guides to explain how methods like direct preference optimization (DPO) work, along with lessons learned from gathering human preferences in practice. To get started, we recommend the following:

  1. Follow the installation instructions to set up your environment etc.
  2. Replicate Zephyr-7b-Ξ² by following the recipe instructions.

If you would like to train chat models on your own datasets, we recommend following the dataset formatting instructions here.

Contents

The initial release of the handbook will focus on the following techniques:

  • Supervised fine-tuning: teach language models to follow instructions and tips on how to collect and curate your own training dataset.
  • Reward modeling: teach language models to distinguish model responses according to human or AI preferences.
  • Rejection sampling: a simple, but powerful technique to boost the performance of your SFT model.
  • Direct preference optimisation (DPO): a powerful and promising alternative to PPO.

Installation instructions

To run the code in this project, first, create a Python virtual environment using e.g. Conda:

conda create -n handbook python=3.10 && conda activate handbook

Next, install PyTorch v2.1.0 - the precise version is important for reproducibility! Since this is hardware-dependent, we direct you to the PyTorch Installation Page.

You can then install the remaining package dependencies as follows:

git clone https://github.com/huggingface/alignment-handbook.git
cd ./alignment-handbook/
python -m pip install .

You will also need Flash Attention 2 installed, which can be done by running:

Note If your machine has less than 96GB of RAM and many CPU cores, reduce the MAX_JOBS., e.g. MAX_JOBS=4 pip install flash-attn --no-build-isolation

python -m pip install flash-attn --no-build-isolation

Next, log into your Hugging Face account as follows:

huggingface-cli login

Finally, install Git LFS so that you can push models to the Hugging Face Hub:

sudo apt-get install git-lfs

You can now check out the scripts and recipes directories for instructions on how to train some models πŸͺ!

Project structure

β”œβ”€β”€ LICENSE
β”œβ”€β”€ Makefile                    <- Makefile with commands like `make style`
β”œβ”€β”€ README.md                   <- The top-level README for developers using this project
β”œβ”€β”€ chapters                    <- Educational content to render on hf.co/learn
β”œβ”€β”€ recipes                     <- Recipe configs, accelerate configs, slurm scripts
β”œβ”€β”€ scripts                     <- Scripts to train and evaluate chat models
β”œβ”€β”€ setup.cfg                   <- Installation config (mostly used for configuring code quality & tests)
β”œβ”€β”€ setup.py                    <- Makes project pip installable (pip install -e .) so `alignment` can be imported
β”œβ”€β”€ src                         <- Source code for use in this project
└── tests                       <- Unit tests

Citation

If you find the content of this repo useful in your work, please cite it as follows:

@misc{alignment_handbook2023,
  author = {Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Alexander M. Rush and Thomas Wolf},
  title = {The Alignment Handbook},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/huggingface/alignment-handbook}}
}

More Repositories

1

transformers

πŸ€— Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.
Python
133,705
star
2

pytorch-image-models

PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, NFNet, Vision Transformer (ViT), MobileNet-V3/V2, RegNet, DPN, CSPNet, Swin Transformer, MaxViT, CoAtNet, ConvNeXt, and more
Python
28,073
star
3

diffusers

πŸ€— Diffusers: State-of-the-art diffusion models for image and audio generation in PyTorch and FLAX.
Python
25,619
star
4

datasets

πŸ€— The largest hub of ready-to-use datasets for ML models with fast, easy-to-use and efficient data manipulation tools
Python
17,530
star
5

peft

πŸ€— PEFT: State-of-the-art Parameter-Efficient Fine-Tuning.
Python
15,663
star
6

candle

Minimalist ML framework for Rust
Rust
15,011
star
7

trl

Train transformer language models with reinforcement learning.
Python
9,850
star
8

text-generation-inference

Large Language Model Text Generation Inference
Python
8,939
star
9

tokenizers

πŸ’₯ Fast State-of-the-Art Tokenizers optimized for Research and Production
Rust
8,885
star
10

accelerate

πŸš€ A simple way to launch, train, and use PyTorch models on almost any device and distributed configuration, automatic mixed precision (including fp8), and easy-to-configure FSDP and DeepSpeed support
Python
7,854
star
11

chat-ui

Open source codebase powering the HuggingChat app
TypeScript
7,113
star
12

lerobot

πŸ€— LeRobot: Making AI for Robotics more accessible with end-to-end learning
Python
6,522
star
13

parler-tts

Inference and training library for high-quality TTS models.
Python
4,027
star
14

autotrain-advanced

πŸ€— AutoTrain Advanced
Python
3,925
star
15

deep-rl-class

This repo contains the syllabus of the Hugging Face Deep Reinforcement Learning Course.
MDX
3,680
star
16

diffusion-models-class

Materials for the Hugging Face Diffusion Models Course
Jupyter Notebook
3,508
star
17

notebooks

Notebooks using the Hugging Face libraries πŸ€—
Jupyter Notebook
3,492
star
18

distil-whisper

Distilled variant of Whisper for speech recognition. 6x faster, 50% smaller, within 1% word error rate.
Python
3,455
star
19

neuralcoref

✨Fast Coreference Resolution in spaCy with Neural Networks
C
2,842
star
20

safetensors

Simple, safe way to store and distribute tensors
Python
2,754
star
21

text-embeddings-inference

A blazing fast inference solution for text embeddings models
Rust
2,746
star
22

knockknock

πŸšͺ✊Knock Knock: Get notified when your training ends with only two additional lines of code
Python
2,682
star
23

speech-to-speech

Speech To Speech: an effort for an open-sourced and modular GPT4-o
Python
2,540
star
24

swift-coreml-diffusers

Swift app demonstrating Core ML Stable Diffusion
Swift
2,506
star
25

optimum

πŸš€ Accelerate training and inference of πŸ€— Transformers and πŸ€— Diffusers with easy to use hardware optimization tools
Python
2,469
star
26

blog

Public repo for HF blog posts
Jupyter Notebook
2,303
star
27

setfit

Efficient few-shot learning with Sentence Transformers
Jupyter Notebook
2,142
star
28

course

The Hugging Face course on Transformers
MDX
2,005
star
29

awesome-papers

Papers & presentation materials from Hugging Face's internal science day
1,996
star
30

datatrove

Freeing data processing from scripting madness by providing a set of platform-agnostic customizable pipeline processing blocks.
Python
1,909
star
31

evaluate

πŸ€— Evaluate: A library for easily evaluating machine learning models and datasets.
Python
1,825
star
32

cookbook

Open-source AI cookbook
Jupyter Notebook
1,660
star
33

transfer-learning-conv-ai

πŸ¦„ State-of-the-Art Conversational AI with Transfer Learning
Python
1,654
star
34

swift-coreml-transformers

Swift Core ML 3 implementations of GPT-2, DistilGPT-2, BERT, and DistilBERT for Question answering. Other Transformers coming soon!
Swift
1,543
star
35

pytorch-openai-transformer-lm

πŸ₯A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI
Python
1,464
star
36

huggingface.js

Utilities to use the Hugging Face Hub API
TypeScript
1,368
star
37

Mongoku

πŸ”₯The Web-scale GUI for MongoDB
TypeScript
1,313
star
38

huggingface_hub

All the open source things related to the Hugging Face Hub.
Python
1,311
star
39

gsplat.js

JavaScript Gaussian Splatting library.
TypeScript
1,302
star
40

llm-vscode

LLM powered development for VSCode
TypeScript
1,206
star
41

hmtl

🌊HMTL: Hierarchical Multi-Task Learning - A State-of-the-Art neural network model for several NLP tasks based on PyTorch and AllenNLP
Python
1,185
star
42

nanotron

Minimalistic large language model 3D-parallelism training
Python
1,071
star
43

pytorch-pretrained-BigGAN

πŸ¦‹A PyTorch implementation of BigGAN with pretrained weights and conversion scripts.
Python
986
star
44

optimum-nvidia

Python
888
star
45

torchMoji

πŸ˜‡A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc
Python
880
star
46

awesome-huggingface

πŸ€— A list of wonderful open-source projects & applications integrated with Hugging Face libraries.
853
star
47

optimum-quanto

A pytorch quantization backend for optimum
Python
738
star
48

llm.nvim

LLM powered development for Neovim
Lua
728
star
49

naacl_transfer_learning_tutorial

Repository of code for the tutorial on Transfer Learning in NLP held at NAACL 2019 in Minneapolis, MN, USA
Python
718
star
50

dataset-viewer

Backend that powers the dataset viewer on Hugging Face dataset pages through a public API.
Python
689
star
51

swift-transformers

Swift Package to implement a transformers-like API in Swift
Swift
647
star
52

exporters

Export Hugging Face models to Core ML and TensorFlow Lite
Python
587
star
53

llm-ls

LSP server leveraging LLMs for code completion (and more?)
Rust
586
star
54

ratchet

A cross-platform browser ML framework.
Rust
574
star
55

transformers-bloom-inference

Fast Inference Solutions for BLOOM
Python
557
star
56

lighteval

LightEval is a lightweight LLM evaluation suite that Hugging Face has been using internally with the recently released LLM data processing library datatrove and LLM training library nanotron.
Python
554
star
57

pytorch_block_sparse

Fast Block Sparse Matrices for Pytorch
C++
523
star
58

node-question-answering

Fast and production-ready question answering in Node.js
TypeScript
459
star
59

large_language_model_training_playbook

An open collection of implementation tips, tricks and resources for training large language models
Python
452
star
60

swift-chat

Mac app to demonstrate swift-transformers
Swift
444
star
61

llm_training_handbook

An open collection of methodologies to help with successful training of large language models.
Python
437
star
62

text-clustering

Easily embed, cluster and semantically label text datasets
Python
422
star
63

cosmopedia

Python
416
star
64

optimum-intel

πŸ€— Optimum Intel: Accelerate inference with Intel optimization tools
Jupyter Notebook
393
star
65

controlnet_aux

Python
386
star
66

community-events

Place where folks can contribute to πŸ€— community events
Jupyter Notebook
368
star
67

tflite-android-transformers

DistilBERT / GPT-2 for on-device inference thanks to TensorFlow Lite with Android demo apps
Java
368
star
68

nn_pruning

Prune a model while finetuning or training.
Jupyter Notebook
360
star
69

speechbox

Python
341
star
70

100-times-faster-nlp

πŸš€100 Times Faster Natural Language Processing in Python - iPython notebook
HTML
325
star
71

education-toolkit

Educational materials for universities
Jupyter Notebook
324
star
72

transformers.js-examples

A collection of πŸ€— Transformers.js demos and example applications
JavaScript
323
star
73

open-muse

Open reproduction of MUSE for fast text2image generation.
Python
320
star
74

local-gemma

Gemma 2 optimized for your local machine.
Python
317
star
75

unity-api

C#
313
star
76

audio-transformers-course

The Hugging Face Course on Transformers for Audio
MDX
308
star
77

datablations

Scaling Data-Constrained Language Models
Jupyter Notebook
305
star
78

hf_transfer

Rust
287
star
79

dataspeech

Python
262
star
80

huggingface-llama-recipes

Jupyter Notebook
259
star
81

optimum-benchmark

πŸ‹οΈ A unified multi-backend utility for benchmarking Transformers, Timm, PEFT, Diffusers and Sentence-Transformers with full support of Optimum's hardware optimizations & quantization schemes.
Python
245
star
82

diarizers

Python
238
star
83

hub-docs

Docs of the Hugging Face Hub
221
star
84

llm-swarm

Manage scalable open LLM inference endpoints in Slurm clusters
Python
216
star
85

sam2-studio

Swift
196
star
86

optimum-neuron

Easy, fast and very cheap training and inference on AWS Trainium and Inferentia chips.
Jupyter Notebook
193
star
87

data-is-better-together

Let's build better datasets, together!
Jupyter Notebook
192
star
88

instruction-tuned-sd

Code for instruction-tuning Stable Diffusion.
Python
189
star
89

simulate

🎒 Creating and sharing simulation environments for embodied and synthetic data research
Python
185
star
90

OBELICS

Code used for the creation of OBELICS, an open, massive and curated collection of interleaved image-text web documents, containing 141M documents, 115B text tokens and 353M images.
Python
184
star
91

diffusion-fast

Faster generation with text-to-image diffusion models.
Python
179
star
92

olm-datasets

Pipeline for pulling and processing online language model pretraining data from the web
Python
173
star
93

api-inference-community

Python
161
star
94

jat

General multi-task deep RL Agent
Python
154
star
95

workshops

Materials for workshops on the Hugging Face ecosystem
Jupyter Notebook
148
star
96

coreml-examples

Swift Core ML Examples
Jupyter Notebook
147
star
97

optimum-habana

Easy and lightning fast training of πŸ€— Transformers on Habana Gaudi processor (HPU)
Python
147
star
98

chug

Minimal sharded dataset loaders, decoders, and utils for multi-modal document, image, and text datasets.
Python
140
star
99

sharp-transformers

A Unity plugin for using Transformers models in Unity.
C#
139
star
100

hf-hub

Rust client for the huggingface hub aiming for minimal subset of features over `huggingface-hub` python package
Rust
132
star