• Stars
    star
    1,657
  • Rank 27,675 (Top 0.6 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created about 1 year ago
  • Updated about 1 month ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Freeing data processing from scripting madness by providing a set of platform-agnostic customizable pipeline processing blocks.

DataTrove

DataTrove is a library to process, filter and deduplicate text data at a very large scale. It provides a set of prebuilt commonly used processing blocks with a framework to easily add custom functionality.

DataTrove processing pipelines are platform-agnostic, running out of the box locally or on a slurm cluster. Its (relatively) low memory usage and multiple step design makes it ideal for large workloads, such as to process an LLM's training data.

Local, remote and other file systems are supported through fsspec.

Table of contents

Installation

pip install datatrove[FLAVOUR]

Available flavours (combine them with , i.e. [processing,s3]):

  • all installs everything: pip install datatrove[all]
  • io dependencies to read warc/arc/wet files and arrow/parquet formats: pip install datatrove[io]
  • processing dependencies for text extraction, filtering and tokenization: pip install datatrove[processing]
  • s3 s3 support: pip install datatrove[s3]
  • cli for command line tools: pip install datatrove[cli]

Quickstart examples

You can check the following examples:

Pipeline

DataTrove Document

Each pipeline block processes data in the datatrove Document format:

  • text the actual text content for each sample
  • id a unique id (string) for this sample
  • metadata a dictionary where any additional info may be stored

Types of pipeline blocks

Each pipeline block takes a generator of Document as input and returns another generator of Document.

  • readers read data from different formats and yield Document
  • writers save Document to disk/cloud in different formats
  • extractors extract text content from raw formats (such as webpage html)
  • filters filter out (remove) some Documents based on specific rules/criteria
  • stats blocks to collect statistics on the dataset
  • tokens blocks to tokenize data or count tokens
  • dedup blocks for deduplication

Full pipeline

A pipeline is defined as a list of pipeline blocks. As an example, the following pipeline would read data from disk, randomly filter (remove) some documents and write them back to disk:

from datatrove.pipeline.readers import CSVReader
from datatrove.pipeline.filters import SamplerFilter
from datatrove.pipeline.writers import JsonlWriter

pipeline = [
    CSVReader(
        data_folder="/my/input/path"
    ),
    SamplerFilter(rate=0.5),
    JsonlWriter(
        output_folder="/my/output/path"
    )
]

Executors

Pipelines are platform-agnostic, which means that the same pipeline can smoothly run on different execution environments without any changes to its steps. Each environment has its own PipelineExecutor. Some options common to all executors:

  • pipeline a list consisting of the pipeline steps that should be run
  • logging_dir a datafolder where log files, statistics and more should be saved. Do not reuse folders for different pipelines/jobs as this will overwrite your stats, logs and completions.
  • skip_completed (bool, True by default) datatrove keeps track of completed tasks so that when you relaunch a job they can be skipped. Set this to False to disable this behaviour

Call an executor's run method to execute its pipeline.

Tip

Datatrove keeps track of which tasks successfully completed by creating a marker (an empty file) in the ${logging_dir}/completions folder. Once the job finishes, if some of its tasks have failed, you can simply relaunch the exact same executor and datatrove will check and only run the tasks that were not previously completed.

Caution

If you relaunch a pipeline because some tasks failed, do not change the total number of tasks as this will affect the distribution of input files/sharding.

LocalPipelineExecutor

This executor will launch a pipeline on a local machine. Options:

  • tasks total number of tasks to run
  • workers how many tasks to run simultaneously. If -1, no limit. Anything > 1 will use multiprocessing to execute the tasks.
  • start_method method to use to spawn a multiprocessing Pool. Ignored if workers is 1
Example executor
from datatrove.executor import LocalPipelineExecutor
executor = LocalPipelineExecutor(
    pipeline=[
        ...
    ],
    logging_dir="logs/",
    tasks=10,
    workers=5
)
executor.run()
Multi-node parallelism

You can have different nodes/machines process different parts of the total tasks by using the local_tasks and local_rank_offset. For each node/instance/machine, launch with the following options:

  • tasks the total tasks to be executed (across all machines). This value must be the same on each machine or the input file distribution may overlap! Example: 500
  • local_tasks how many tasks of the total will be executed on this particular machine. Note that you can use different values for each machine. Example: 100
  • local_rank_offset the rank of the first task to be executed on this machine. If this is the 3rd machine where you are launching a job, and the 2 previous machines each ran 250 and 150 jobs, this would be 400 for the current machine.

To get final merged stats you will have to invoke the merge_stats script manually on a path containing the stats from all machines.

SlurmPipelineExecutor

This executor will launch a pipeline on a slurm cluster, using slurm job arrays to group and manage tasks. Options:

  • tasks total number of tasks to run. required
  • time slurm time limit string. required
  • partition slurm partition. required
  • workers how many tasks to run simultaneously. If -1, no limit. Slurm will run workers tasks at a time. (default: -1)
  • job_name slurm job name (default: "data_processing)
  • depends another SlurmPipelineExecutor instance, which will be a dependency of this pipeline (current pipeline will only start executing after the depended on pipeline successfully completes)
  • sbatch_args dictionary with any other arguments you would like to pass to sbatch
  • slurm_logs_folder where to save the slurm log files. If using a local path for logging_dir, they will be saved on logging_dir/slurm_logs. If not, they will be saved as a subdir of the current directory.
Other options
  • cpus_per_task how many cpus to give each task (default: 1)
  • qos slurm qos (default: "normal")
  • mem_per_cpu_gb memory per cpu, in GB (default: 2)
  • env_command custom command to activate a python environment, if needed
  • condaenv conda environment to activate
  • venv_path path to a python environment to activate
  • max_array_size the MaxArraySize value in $ scontrol show config. If number of tasks exceeds this number, it will split into multiple array jobs (default: 1001)
  • max_array_launch_parallel if we need multiple jobs due to max_array_size, whether to launch them all in one go (parallel) or sequentially (default: False)
  • stagger_max_array_jobs when max_array_launch_parallel is True, this determines how many seconds to wait between launching each of the parallel jobs (default: 0)
  • run_on_dependency_fail start executing when a job we depend on finishes even if it has failed (default: False)
  • randomize_start randomize the start of each task in a job in a ~3 min window. Useful when heavily hitting an s3 bucket for example. (default: False)
Example executor
from datatrove.executor import SlurmPipelineExecutor
executor1 = SlurmPipelineExecutor(
    pipeline=[
        ...
    ],
    job_name="my_cool_job1",
    logging_dir="logs/job1",
    tasks=500,
    workers=100,  # omit to run all at once
    time="10:00:00",  # 10 hours
    partition="hopper-cpu"
)
executor2 = SlurmPipelineExecutor(
    pipeline=[
        ...
    ],
    job_name="my_cool_job2",
    logging_dir="logs/job2",
    tasks=1,
    time="5:00:00",  # 5 hours
    partition="hopper-cpu",
    depends=executor1  # this pipeline will only be launched after executor1 successfully completes
)
# executor1.run()
executor2.run() # this will actually launch executor1, as it is a dependency, so no need to launch it explicitly

Logging

For a pipeline with logging_dir mylogspath/exp1, the following folder structure would be created:

See folder structure
└── mylogspath/exp1
    │── executor.json ⟡ json dump of the executor options and pipeline steps
    │── launch_script.slurm ⟡ the slurm config created and used to launch this job (if running on slurm)
    │── executor.pik ⟡ the slurm config created and used to launch this job (if running on slurm)
    │── ranks_to_run.json ⟡ list of tasks that are being run
    │── logs/
    β”‚   └──[task_00000.log, task_00001.log, task_00002.log, ...] ⟡ individual logging files for each task
    │── completions/
    β”‚   └──[00004, 00007, 00204, ...] ⟡ empty files marking a task as completed. Using when relaunching/resuming a job (only unfinished tasks will be run)
    │── stats/
    β”‚   └──[00000.json, 00001.json, 00002.json, ...] ⟡ individual stats for each task (number of samples processed, filtered, removed, etc)
    └── stats.json ⟡ global stats from all tasks

DataFolder / paths

Datatrove supports a wide variety of input/output sources through fsspec.

There are a few ways to provide a path to a datatrove block (for input_folder, logging_dir, data_folder and so on arguments):

  • str: the simplest way is to pass a single string. Example: /home/user/mydir, s3://mybucket/myinputdata, hf://datasets/allenai/c4/en/

  • (str, fsspec filesystem instance): a string path and a fully initialized filesystem object. Example: ("s3://mybucket/myinputdata", S3FileSystem(client_kwargs={"endpoint_url": endpoint_uri}))

  • (str, dict): a string path and a dictionary with options to initialize a fs. Example (equivalent to the previous line): ("s3://mybucket/myinputdata", {"client_kwargs": {"endpoint_url": endpoint_uri}})

  • DataFolder: you can initialize a DataFolder object directly and pass it as an argument

Under the hood these argument combinations are parsed by get_datafolder.

Practical guides

Reading data

Usually, pipelines will start with a Reader block. Most readers take a data_folder argument β€” a path to a folder containing the data to be read.

These files will be distributed across each task. If you have N tasks, task with rank i (0-based) will process files i, i+N, i+2N, i+3N,....

Internally, each reader reads data and converts it into a dictionary before creating a Document object.

Some options common to most readers:

  • text_key the dictionary key containing the text content for each sample. Default: text
  • id_key the dictionary key containing the id for each sample. Default: id
  • default_metadata a dictionary for any default metadata values you would like to add (such as their source, for example)
  • recursive whether to look for files recursively in data_folder's subdirectories
  • glob_pattern use this field to match specific files. For instance, glob_pattern="*/warc/*.warc.gz" will match files with a .warc.gz file extension on the warc/ folder of each of the data_folder's subdirectories
  • adapter this function takes the raw dictionary obtained from the reader and returns a dictionary with Document's field names. You may overwrite this function (_default_adapter) if you would like.
  • limit read only a certain number of samples. Useful for testing/debugging

Extracting text

You can use extractors to extract text content from raw html. The most commonly used extractor in datatrove is Trafilatura, which uses the trafilatura library.

Filtering data

Filters are some of the most important blocks of any data processing pipeline. Datatrove's filter blocks take a Document and return a boolean (True to keep a document, False to remove it). Removed samples do not continue to the next pipeline stage. You can also save the removed samples to disk by passing a Writer to the excluded_writer parameter.

Saving data

Once you are done processing your data you will probably want to save it somewhere. For this you can use a writer. Writers require an output_folder (the path where data should be saved). You can choose the compression to use (default: gzip) and the filename to save each file as. For the output_filename, a template is applied using the following arguments:

  • ${rank} replaced with the current task's rank. Note that if this tag isn't present, different tasks may try to write to the same location
  • ${id} replaced with the sample id
  • metadata: any other ${tag} will be replaced with the corresponding document.metadata['tag'] value

An example to separate samples by language based on their lang metadata field:

JsonlWriter(
    f"{MAIN_OUTPUT_PATH}/non_english/",
    output_filename="${language}/" + DUMP + "/${rank}.jsonl.gz",  # folder structure: language/dump/file
)

Deduplicating data

For deduplication check the examples minhash_deduplication.py, sentence_deduplication.py and exact_substrings.py.

Custom blocks

Simple data

You can pass an iterable of Document directly as a pipeline block like so:

from datatrove.data import Document
from datatrove.pipeline.filters import SamplerFilter
from datatrove.pipeline.writers import JsonlWriter

pipeline = [
    [
        Document(text="some data", id="0"),
        Document(text="some more data", id="1"),
        Document(text="even more data", id="2"),
    ],
    SamplerFilter(rate=0.5),
    JsonlWriter(
        output_folder="/my/output/path"
    )
]

Do note, however, that this iterable will not be sharded (if you launch more than 1 task they will all get the full iterable). This is usually useful for small workloads/testing.

Custom function

For simple processing you can simply pass in a custom function with the following signature:

from datatrove.data import DocumentsPipeline

def uppercase_everything(data: DocumentsPipeline, rank: int = 0, world_size: int = 1) -> DocumentsPipeline:
    """
        `data` is a generator of Document. You must also return a generator of Document (yield)
        You can optionally use `rank` and `world_size` for sharding
    """
    for document in data:
        document.text = document.text.upper()
        yield document

pipeline = [
    ...,
    uppercase_everything,
    ...
]

Tip

You might have some pickling issues due to the imports. If this happens, simply move whatever imports you need inside the function body.

Custom block

You can also define a full block inheriting from PipelineStep or one of its subclasses:

from datatrove.pipeline.base import PipelineStep
from datatrove.data import DocumentsPipeline
from datatrove.io import DataFolderLike, get_datafolder


class UppercaserBlock(PipelineStep):
    def __init__(self, some_folder: DataFolderLike, some_param: int = 5):
        super().__init__()
        # you can take whatever parameters you need and save them here
        self.some_param = some_param
        # to load datafolders use get_datafolder()
        self.some_folder = get_datafolder(some_folder)

    def run(self, data: DocumentsPipeline, rank: int = 0, world_size: int = 1) -> DocumentsPipeline:
        # you could also load data from the `some_folder`:
        for filepath in self.some_folder.get_shard(rank, world_size): # it also accepts a glob pattern, among other things
            with self.some_folder.open(filepath, "rt") as f:
                # do something
                ...
                yield doc

        #
        # OR process data from previous blocks (`data`)
        #

        for doc in data:
            with self.track_time():
                # you can wrap the main processing code in `track_time` to know how much each document took to process
                nr_uppercase_letters = sum(map(lambda c: c.isupper(), doc.text))
                # you can also keep track of stats per document using stat_update
                self.stat_update("og_upper_letters", value=nr_uppercase_letters)
                doc.text = doc.text.upper()
            # make sure you keep the yield outside the track_time block, or it will affect the time calculation
            yield doc

        #
        # OR save data to disk
        #

        with self.some_folder.open("myoutput", "wt") as f:
            for doc in data:
                f.write(doc...)
pipeline = [
    ...,
    UppercaserBlock("somepath"),
    ...
]

You could also inherit from BaseExtractor, BaseFilter, BaseReader/BaseDiskReader, or DiskWriter.

Contributing

git clone [email protected]:huggingface/datatrove.git && cd datatrove
pip install -e ".[dev]"

Install pre-commit code style hooks:

pre-commit install

Run the tests:

pytest -sv ./tests/

Citation

@misc{penedo2024datatrove,
  author = {Penedo, Guilherme and Cappelli, Alessandro and Wolf, Thomas and Sasko, Mario},
  title = {DataTrove: large scale data processing},
  year = {2024},
  publisher = {GitHub},
  journal = {GitHub repository},
  url = {https://github.com/huggingface/datatrove}
}

More Repositories

1

transformers

πŸ€— Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.
Python
129,666
star
2

pytorch-image-models

PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, NFNet, Vision Transformer (ViT), MobileNet-V3/V2, RegNet, DPN, CSPNet, Swin Transformer, MaxViT, CoAtNet, ConvNeXt, and more
Python
28,073
star
3

diffusers

πŸ€— Diffusers: State-of-the-art diffusion models for image and audio generation in PyTorch and FLAX.
Python
24,200
star
4

datasets

πŸ€— The largest hub of ready-to-use datasets for ML models with fast, easy-to-use and efficient data manipulation tools
Python
17,530
star
5

peft

πŸ€— PEFT: State-of-the-art Parameter-Efficient Fine-Tuning.
Python
14,585
star
6

candle

Minimalist ML framework for Rust
Rust
14,110
star
7

tokenizers

πŸ’₯ Fast State-of-the-Art Tokenizers optimized for Research and Production
Rust
8,645
star
8

trl

Train transformer language models with reinforcement learning.
Python
8,483
star
9

text-generation-inference

Large Language Model Text Generation Inference
Python
8,458
star
10

accelerate

πŸš€ A simple way to launch, train, and use PyTorch models on almost any device and distributed configuration, automatic mixed precision (including fp8), and easy-to-configure FSDP and DeepSpeed support
Python
7,306
star
11

chat-ui

Open source codebase powering the HuggingChat app
TypeScript
6,584
star
12

lerobot

πŸ€— LeRobot: End-to-end Learning for Real-World Robotics in Pytorch
Python
4,284
star
13

alignment-handbook

Robust recipes to align language models with human and AI preferences
Python
4,118
star
14

deep-rl-class

This repo contains the syllabus of the Hugging Face Deep Reinforcement Learning Course.
MDX
3,680
star
15

notebooks

Notebooks using the Hugging Face libraries πŸ€—
Jupyter Notebook
3,329
star
16

distil-whisper

Distilled variant of Whisper for speech recognition. 6x faster, 50% smaller, within 1% word error rate.
Python
3,286
star
17

autotrain-advanced

πŸ€— AutoTrain Advanced
Python
3,283
star
18

diffusion-models-class

Materials for the Hugging Face Diffusion Models Course
Jupyter Notebook
3,280
star
19

neuralcoref

✨Fast Coreference Resolution in spaCy with Neural Networks
C
2,819
star
20

parler-tts

Inference and training library for high-quality TTS models.
Python
2,735
star
21

knockknock

πŸšͺ✊Knock Knock: Get notified when your training ends with only two additional lines of code
Python
2,682
star
22

safetensors

Simple, safe way to store and distribute tensors
Python
2,572
star
23

swift-coreml-diffusers

Swift app demonstrating Core ML Stable Diffusion
Swift
2,406
star
24

optimum

πŸš€ Accelerate training and inference of πŸ€— Transformers and πŸ€— Diffusers with easy to use hardware optimization tools
Python
2,290
star
25

text-embeddings-inference

A blazing fast inference solution for text embeddings models
Rust
2,201
star
26

blog

Public repo for HF blog posts
Jupyter Notebook
2,136
star
27

setfit

Efficient few-shot learning with Sentence Transformers
Jupyter Notebook
2,060
star
28

course

The Hugging Face course on Transformers
MDX
2,005
star
29

awesome-papers

Papers & presentation materials from Hugging Face's internal science day
1,996
star
30

evaluate

πŸ€— Evaluate: A library for easily evaluating machine learning models and datasets.
Python
1,825
star
31

transfer-learning-conv-ai

πŸ¦„ State-of-the-Art Conversational AI with Transfer Learning
Python
1,654
star
32

swift-coreml-transformers

Swift Core ML 3 implementations of GPT-2, DistilGPT-2, BERT, and DistilBERT for Question answering. Other Transformers coming soon!
Swift
1,543
star
33

pytorch-openai-transformer-lm

πŸ₯A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI
Python
1,464
star
34

cookbook

Open-source AI cookbook
Jupyter Notebook
1,416
star
35

huggingface_hub

All the open source things related to the Hugging Face Hub.
Python
1,311
star
36

Mongoku

πŸ”₯The Web-scale GUI for MongoDB
TypeScript
1,300
star
37

huggingface.js

Utilities to use the Hugging Face Hub API
TypeScript
1,277
star
38

gsplat.js

JavaScript Gaussian Splatting library.
TypeScript
1,233
star
39

hmtl

🌊HMTL: Hierarchical Multi-Task Learning - A State-of-the-Art neural network model for several NLP tasks based on PyTorch and AllenNLP
Python
1,185
star
40

llm-vscode

LLM powered development for VSCode
TypeScript
1,160
star
41

pytorch-pretrained-BigGAN

πŸ¦‹A PyTorch implementation of BigGAN with pretrained weights and conversion scripts.
Python
986
star
42

nanotron

Minimalistic large language model 3D-parallelism training
Python
897
star
43

torchMoji

πŸ˜‡A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc
Python
880
star
44

optimum-nvidia

Python
839
star
45

awesome-huggingface

πŸ€— A list of wonderful open-source projects & applications integrated with Hugging Face libraries.
821
star
46

naacl_transfer_learning_tutorial

Repository of code for the tutorial on Transfer Learning in NLP held at NAACL 2019 in Minneapolis, MN, USA
Python
718
star
47

dataset-viewer

Lightweight web API for visualizing and exploring any dataset - computer vision, speech, text, and tabular - stored on the Hugging Face Hub
Python
640
star
48

optimum-quanto

A pytorch quantization backend for optimum
Python
620
star
49

llm.nvim

LLM powered development for Neovim
Lua
607
star
50

exporters

Export Hugging Face models to Core ML and TensorFlow Lite
Python
559
star
51

transformers-bloom-inference

Fast Inference Solutions for BLOOM
Python
551
star
52

swift-transformers

Swift Package to implement a transformers-like API in Swift
Swift
530
star
53

pytorch_block_sparse

Fast Block Sparse Matrices for Pytorch
C++
523
star
54

llm-ls

LSP server leveraging LLMs for code completion (and more?)
Rust
513
star
55

node-question-answering

Fast and production-ready question answering in Node.js
TypeScript
459
star
56

lighteval

LightEval is a lightweight LLM evaluation suite that Hugging Face has been using internally with the recently released LLM data processing library datatrove and LLM training library nanotron.
Python
442
star
57

large_language_model_training_playbook

An open collection of implementation tips, tricks and resources for training large language models
Python
441
star
58

ratchet

A cross-platform browser ML framework.
Rust
424
star
59

llm_training_handbook

An open collection of methodologies to help with successful training of large language models.
Python
416
star
60

swift-chat

Mac app to demonstrate swift-transformers
Swift
392
star
61

tflite-android-transformers

DistilBERT / GPT-2 for on-device inference thanks to TensorFlow Lite with Android demo apps
Java
368
star
62

community-events

Place where folks can contribute to πŸ€— community events
Jupyter Notebook
368
star
63

text-clustering

Easily embed, cluster and semantically label text datasets
Python
367
star
64

optimum-intel

πŸ€— Optimum Intel: Accelerate inference with Intel optimization tools
Jupyter Notebook
361
star
65

nn_pruning

Prune a model while finetuning or training.
Jupyter Notebook
360
star
66

controlnet_aux

Python
352
star
67

speechbox

Python
339
star
68

100-times-faster-nlp

πŸš€100 Times Faster Natural Language Processing in Python - iPython notebook
HTML
325
star
69

education-toolkit

Educational materials for universities
Jupyter Notebook
320
star
70

unity-api

C#
302
star
71

datablations

Scaling Data-Constrained Language Models
Jupyter Notebook
296
star
72

open-muse

Open reproduction of MUSE for fast text2image generation.
Python
293
star
73

cosmopedia

Python
285
star
74

audio-transformers-course

The Hugging Face Course on Transformers for Audio
MDX
279
star
75

hf_transfer

Rust
242
star
76

hub-docs

Docs of the Hugging Face Hub
221
star
77

optimum-benchmark

πŸ‹οΈ A unified multi-backend utility for benchmarking Transformers, Timm, PEFT, Diffusers and Sentence-Transformers with full support of Optimum's hardware optimizations & quantization schemes.
Python
217
star
78

dataspeech

Python
207
star
79

diarizers

Python
206
star
80

simulate

🎒 Creating and sharing simulation environments for embodied and synthetic data research
Python
185
star
81

instruction-tuned-sd

Code for instruction-tuning Stable Diffusion.
Python
181
star
82

optimum-neuron

Easy, fast and very cheap training and inference on AWS Trainium and Inferentia chips.
Jupyter Notebook
176
star
83

llm-swarm

Manage scalable open LLM inference endpoints in Slurm clusters
Python
176
star
84

OBELICS

Code used for the creation of OBELICS, an open, massive and curated collection of interleaved image-text web documents, containing 141M documents, 115B text tokens and 353M images.
Python
170
star
85

olm-datasets

Pipeline for pulling and processing online language model pretraining data from the web
Python
170
star
86

data-is-better-together

Let's build better datasets, together!
Jupyter Notebook
162
star
87

diffusion-fast

Faster generation with text-to-image diffusion models.
Python
157
star
88

workshops

Materials for workshops on the Hugging Face ecosystem
Jupyter Notebook
146
star
89

api-inference-community

Python
145
star
90

jat

Distributed online training of a general multi-task Deep RL Agent
Python
136
star
91

chug

Minimal sharded dataset loaders, decoders, and utils for multi-modal document, image, and text datasets.
Python
136
star
92

optimum-habana

Easy and lightning fast training of πŸ€— Transformers on Habana Gaudi processor (HPU)
Python
132
star
93

sharp-transformers

A Unity plugin for using Transformers models in Unity.
C#
129
star
94

hf-hub

Rust client for the huggingface hub aiming for minimal subset of features over `huggingface-hub` python package
Rust
109
star
95

competitions

Python
104
star
96

frp

FRP Fork
Go
102
star
97

coreml-examples

Swift Core ML Examples
Swift
98
star
98

olm-training

Repo for training MLMs, CLMs, or T5-type models on the OLM pretraining data, but it should work with any hugging face text dataset.
Python
92
star
99

fuego

[WIP] A πŸ”₯ interface for running code in the cloud
Python
85
star
100

tune

Python
83
star