• Stars
    star
    17,530
  • Rank 1,530 (Top 0.04 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 4 years ago
  • Updated 10 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

🤗 The largest hub of ready-to-use datasets for ML models with fast, easy-to-use and efficient data manipulation tools

Hugging Face Datasets Library

Build GitHub Documentation GitHub release Number of datasets Contributor Covenant DOI

🤗 Datasets is a lightweight library providing two main features:

  • one-line dataloaders for many public datasets: one-liners to download and pre-process any of the number of datasets major public datasets (image datasets, audio datasets, text datasets in 467 languages and dialects, etc.) provided on the HuggingFace Datasets Hub. With a simple command like squad_dataset = load_dataset("squad"), get any of these datasets ready to use in a dataloader for training/evaluating a ML model (Numpy/Pandas/PyTorch/TensorFlow/JAX),
  • efficient data pre-processing: simple, fast and reproducible data pre-processing for the public datasets as well as your own local datasets in CSV, JSON, text, PNG, JPEG, WAV, MP3, Parquet, etc. With simple commands like processed_dataset = dataset.map(process_example), efficiently prepare the dataset for inspection and ML model evaluation and training.

🎓 Documentation 🕹 Colab tutorial

🔎 Find a dataset in the Hub 🌟 Share a dataset on the Hub

🤗 Datasets is designed to let the community easily add and share new datasets.

🤗 Datasets has many additional interesting features:

  • Thrive on large datasets: 🤗 Datasets naturally frees the user from RAM memory limitation, all datasets are memory-mapped using an efficient zero-serialization cost backend (Apache Arrow).
  • Smart caching: never wait for your data to process several times.
  • Lightweight and fast with a transparent and pythonic API (multi-processing/caching/memory-mapping).
  • Built-in interoperability with NumPy, pandas, PyTorch, Tensorflow 2 and JAX.
  • Native support for audio and image data
  • Enable streaming mode to save disk space and start iterating over the dataset immediately.

🤗 Datasets originated from a fork of the awesome TensorFlow Datasets and the HuggingFace team want to deeply thank the TensorFlow Datasets team for building this amazing library. More details on the differences between 🤗 Datasets and tfds can be found in the section Main differences between 🤗 Datasets and tfds.

Installation

With pip

🤗 Datasets can be installed from PyPi and has to be installed in a virtual environment (venv or conda for instance)

pip install datasets

With conda

🤗 Datasets can be installed using conda as follows:

conda install -c huggingface -c conda-forge datasets

Follow the installation pages of TensorFlow and PyTorch to see how to install them with conda.

For more details on installation, check the installation page in the documentation: https://huggingface.co/docs/datasets/installation

Installation to use with PyTorch/TensorFlow/pandas

If you plan to use 🤗 Datasets with PyTorch (1.0+), TensorFlow (2.2+) or pandas, you should also install PyTorch, TensorFlow or pandas.

For more details on using the library with NumPy, pandas, PyTorch or TensorFlow, check the quick start page in the documentation: https://huggingface.co/docs/datasets/quickstart

Usage

🤗 Datasets is made to be very simple to use - the API is centered around a single function, datasets.load_dataset(dataset_name, **kwargs), that instantiates a dataset.

This library can be used for text/image/audio/etc. datasets. Here is an example to load a text dataset:

Here is a quick example:

from datasets import load_dataset

# Print all the available datasets
from huggingface_hub import list_datasets
print([dataset.id for dataset in list_datasets()])

# Load a dataset and print the first example in the training set
squad_dataset = load_dataset('squad')
print(squad_dataset['train'][0])

# Process the dataset - add a column with the length of the context texts
dataset_with_length = squad_dataset.map(lambda x: {"length": len(x["context"])})

# Process the dataset - tokenize the context texts (using a tokenizer from the 🤗 Transformers library)
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')

tokenized_dataset = squad_dataset.map(lambda x: tokenizer(x['context']), batched=True)

If your dataset is bigger than your disk or if you don't want to wait to download the data, you can use streaming:

# If you want to use the dataset immediately and efficiently stream the data as you iterate over the dataset
image_dataset = load_dataset('cifar100', streaming=True)
for example in image_dataset["train"]:
    break

For more details on using the library, check the quick start page in the documentation: https://huggingface.co/docs/datasets/quickstart and the specific pages on:

Another introduction to 🤗 Datasets is the tutorial on Google Colab here: Open In Colab

Add a new dataset to the Hub

We have a very detailed step-by-step guide to add a new dataset to the number of datasets datasets already provided on the HuggingFace Datasets Hub.

You can find:

Main differences between 🤗 Datasets and tfds

If you are familiar with the great TensorFlow Datasets, here are the main differences between 🤗 Datasets and tfds:

  • the scripts in 🤗 Datasets are not provided within the library but are queried, downloaded/cached and dynamically loaded upon request
  • the backend serialization of 🤗 Datasets is based on Apache Arrow instead of TF Records and leverage python dataclasses for info and features with some diverging features (we mostly don't do encoding and store the raw data as much as possible in the backend serialization cache).
  • the user-facing dataset object of 🤗 Datasets is not a tf.data.Dataset but a built-in framework-agnostic dataset class with methods inspired by what we like in tf.data (like a map() method). It basically wraps a memory-mapped Arrow table cache.

Disclaimers

🤗 Datasets may run Python code defined by the dataset authors to parse certain data formats or structures. For security reasons, we ask users to:

  • check the dataset scripts they're going to run beforehand and
  • pin the revision of the repositories they use.

If you're a dataset owner and wish to update any part of it (description, citation, license, etc.), or do not want your dataset to be included in the Hugging Face Hub, please get in touch by opening a discussion or a pull request in the Community tab of the dataset page. Thanks for your contribution to the ML community!

BibTeX

If you want to cite our 🤗 Datasets library, you can use our paper:

@inproceedings{lhoest-etal-2021-datasets,
    title = "Datasets: A Community Library for Natural Language Processing",
    author = "Lhoest, Quentin  and
      Villanova del Moral, Albert  and
      Jernite, Yacine  and
      Thakur, Abhishek  and
      von Platen, Patrick  and
      Patil, Suraj  and
      Chaumond, Julien  and
      Drame, Mariama  and
      Plu, Julien  and
      Tunstall, Lewis  and
      Davison, Joe  and
      {\v{S}}a{\v{s}}ko, Mario  and
      Chhablani, Gunjan  and
      Malik, Bhavitvya  and
      Brandeis, Simon  and
      Le Scao, Teven  and
      Sanh, Victor  and
      Xu, Canwen  and
      Patry, Nicolas  and
      McMillan-Major, Angelina  and
      Schmid, Philipp  and
      Gugger, Sylvain  and
      Delangue, Cl{\'e}ment  and
      Matussi{\`e}re, Th{\'e}o  and
      Debut, Lysandre  and
      Bekman, Stas  and
      Cistac, Pierric  and
      Goehringer, Thibault  and
      Mustar, Victor  and
      Lagunas, Fran{\c{c}}ois  and
      Rush, Alexander  and
      Wolf, Thomas",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-demo.21",
    pages = "175--184",
    abstract = "The scale, variety, and quantity of publicly-available NLP datasets has grown rapidly as researchers propose new tasks, larger models, and novel benchmarks. Datasets is a community library for contemporary NLP designed to support this ecosystem. Datasets aims to standardize end-user interfaces, versioning, and documentation, while providing a lightweight front-end that behaves similarly for small datasets as for internet-scale corpora. The design of the library incorporates a distributed, community-driven approach to adding datasets and documenting usage. After a year of development, the library now includes more than 650 unique datasets, has more than 250 contributors, and has helped support a variety of novel cross-dataset research projects and shared tasks. The library is available at https://github.com/huggingface/datasets.",
    eprint={2109.02846},
    archivePrefix={arXiv},
    primaryClass={cs.CL},
}

If you need to cite a specific version of our 🤗 Datasets library for reproducibility, you can use the corresponding version Zenodo DOI from this list.

More Repositories

1

transformers

🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.
Python
130,452
star
2

pytorch-image-models

PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, NFNet, Vision Transformer (ViT), MobileNet-V3/V2, RegNet, DPN, CSPNet, Swin Transformer, MaxViT, CoAtNet, ConvNeXt, and more
Python
28,073
star
3

diffusers

🤗 Diffusers: State-of-the-art diffusion models for image and audio generation in PyTorch and FLAX.
Python
25,010
star
4

peft

🤗 PEFT: State-of-the-art Parameter-Efficient Fine-Tuning.
Python
15,663
star
5

candle

Minimalist ML framework for Rust
Rust
15,011
star
6

trl

Train transformer language models with reinforcement learning.
Python
9,193
star
7

tokenizers

💥 Fast State-of-the-Art Tokenizers optimized for Research and Production
Rust
8,787
star
8

text-generation-inference

Large Language Model Text Generation Inference
Python
8,663
star
9

accelerate

🚀 A simple way to launch, train, and use PyTorch models on almost any device and distributed configuration, automatic mixed precision (including fp8), and easy-to-configure FSDP and DeepSpeed support
Python
7,425
star
10

chat-ui

Open source codebase powering the HuggingChat app
TypeScript
7,113
star
11

lerobot

🤗 LeRobot: Making AI for Robotics more accessible with end-to-end learning
Python
6,107
star
12

alignment-handbook

Robust recipes to align language models with human and AI preferences
Python
4,416
star
13

parler-tts

Inference and training library for high-quality TTS models.
Python
4,027
star
14

deep-rl-class

This repo contains the syllabus of the Hugging Face Deep Reinforcement Learning Course.
MDX
3,680
star
15

autotrain-advanced

🤗 AutoTrain Advanced
Python
3,671
star
16

diffusion-models-class

Materials for the Hugging Face Diffusion Models Course
Jupyter Notebook
3,508
star
17

notebooks

Notebooks using the Hugging Face libraries 🤗
Jupyter Notebook
3,492
star
18

distil-whisper

Distilled variant of Whisper for speech recognition. 6x faster, 50% smaller, within 1% word error rate.
Python
3,455
star
19

neuralcoref

✨Fast Coreference Resolution in spaCy with Neural Networks
C
2,842
star
20

safetensors

Simple, safe way to store and distribute tensors
Python
2,718
star
21

knockknock

🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code
Python
2,682
star
22

speech-to-speech

Speech To Speech: an effort for an open-sourced and modular GPT4-o
Python
2,540
star
23

swift-coreml-diffusers

Swift app demonstrating Core ML Stable Diffusion
Swift
2,506
star
24

text-embeddings-inference

A blazing fast inference solution for text embeddings models
Rust
2,500
star
25

optimum

🚀 Accelerate training and inference of 🤗 Transformers and 🤗 Diffusers with easy to use hardware optimization tools
Python
2,290
star
26

blog

Public repo for HF blog posts
Jupyter Notebook
2,136
star
27

setfit

Efficient few-shot learning with Sentence Transformers
Jupyter Notebook
2,127
star
28

course

The Hugging Face course on Transformers
MDX
2,005
star
29

awesome-papers

Papers & presentation materials from Hugging Face's internal science day
1,996
star
30

datatrove

Freeing data processing from scripting madness by providing a set of platform-agnostic customizable pipeline processing blocks.
Python
1,909
star
31

evaluate

🤗 Evaluate: A library for easily evaluating machine learning models and datasets.
Python
1,825
star
32

transfer-learning-conv-ai

🦄 State-of-the-Art Conversational AI with Transfer Learning
Python
1,654
star
33

cookbook

Open-source AI cookbook
Jupyter Notebook
1,577
star
34

swift-coreml-transformers

Swift Core ML 3 implementations of GPT-2, DistilGPT-2, BERT, and DistilBERT for Question answering. Other Transformers coming soon!
Swift
1,543
star
35

pytorch-openai-transformer-lm

🐥A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI
Python
1,464
star
36

huggingface.js

Utilities to use the Hugging Face Hub API
TypeScript
1,342
star
37

huggingface_hub

All the open source things related to the Hugging Face Hub.
Python
1,311
star
38

gsplat.js

JavaScript Gaussian Splatting library.
TypeScript
1,302
star
39

Mongoku

🔥The Web-scale GUI for MongoDB
TypeScript
1,300
star
40

llm-vscode

LLM powered development for VSCode
TypeScript
1,201
star
41

hmtl

🌊HMTL: Hierarchical Multi-Task Learning - A State-of-the-Art neural network model for several NLP tasks based on PyTorch and AllenNLP
Python
1,185
star
42

nanotron

Minimalistic large language model 3D-parallelism training
Python
1,071
star
43

pytorch-pretrained-BigGAN

🦋A PyTorch implementation of BigGAN with pretrained weights and conversion scripts.
Python
986
star
44

torchMoji

😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc
Python
880
star
45

optimum-nvidia

Python
863
star
46

awesome-huggingface

🤗 A list of wonderful open-source projects & applications integrated with Hugging Face libraries.
853
star
47

optimum-quanto

A pytorch quantization backend for optimum
Python
738
star
48

naacl_transfer_learning_tutorial

Repository of code for the tutorial on Transfer Learning in NLP held at NAACL 2019 in Minneapolis, MN, USA
Python
718
star
49

llm.nvim

LLM powered development for Neovim
Lua
717
star
50

dataset-viewer

Backend that powers the dataset viewer on Hugging Face dataset pages through a public API.
Python
672
star
51

swift-transformers

Swift Package to implement a transformers-like API in Swift
Swift
621
star
52

exporters

Export Hugging Face models to Core ML and TensorFlow Lite
Python
587
star
53

llm-ls

LSP server leveraging LLMs for code completion (and more?)
Rust
579
star
54

transformers-bloom-inference

Fast Inference Solutions for BLOOM
Python
557
star
55

ratchet

A cross-platform browser ML framework.
Rust
556
star
56

lighteval

LightEval is a lightweight LLM evaluation suite that Hugging Face has been using internally with the recently released LLM data processing library datatrove and LLM training library nanotron.
Python
554
star
57

pytorch_block_sparse

Fast Block Sparse Matrices for Pytorch
C++
523
star
58

node-question-answering

Fast and production-ready question answering in Node.js
TypeScript
459
star
59

large_language_model_training_playbook

An open collection of implementation tips, tricks and resources for training large language models
Python
452
star
60

swift-chat

Mac app to demonstrate swift-transformers
Swift
444
star
61

llm_training_handbook

An open collection of methodologies to help with successful training of large language models.
Python
437
star
62

text-clustering

Easily embed, cluster and semantically label text datasets
Python
422
star
63

cosmopedia

Python
416
star
64

optimum-intel

🤗 Optimum Intel: Accelerate inference with Intel optimization tools
Jupyter Notebook
379
star
65

tflite-android-transformers

DistilBERT / GPT-2 for on-device inference thanks to TensorFlow Lite with Android demo apps
Java
368
star
66

community-events

Place where folks can contribute to 🤗 community events
Jupyter Notebook
368
star
67

controlnet_aux

Python
365
star
68

nn_pruning

Prune a model while finetuning or training.
Jupyter Notebook
360
star
69

speechbox

Python
341
star
70

100-times-faster-nlp

🚀100 Times Faster Natural Language Processing in Python - iPython notebook
HTML
325
star
71

education-toolkit

Educational materials for universities
Jupyter Notebook
324
star
72

open-muse

Open reproduction of MUSE for fast text2image generation.
Python
320
star
73

local-gemma

Gemma 2 optimized for your local machine.
Python
317
star
74

unity-api

C#
313
star
75

audio-transformers-course

The Hugging Face Course on Transformers for Audio
MDX
308
star
76

datablations

Scaling Data-Constrained Language Models
Jupyter Notebook
305
star
77

hf_transfer

Rust
280
star
78

dataspeech

Python
262
star
79

huggingface-llama-recipes

Jupyter Notebook
259
star
80

diarizers

Python
238
star
81

optimum-benchmark

🏋️ A unified multi-backend utility for benchmarking Transformers, Timm, PEFT, Diffusers and Sentence-Transformers with full support of Optimum's hardware optimizations & quantization schemes.
Python
226
star
82

hub-docs

Docs of the Hugging Face Hub
221
star
83

llm-swarm

Manage scalable open LLM inference endpoints in Slurm clusters
Python
216
star
84

data-is-better-together

Let's build better datasets, together!
Jupyter Notebook
192
star
85

optimum-neuron

Easy, fast and very cheap training and inference on AWS Trainium and Inferentia chips.
Jupyter Notebook
191
star
86

instruction-tuned-sd

Code for instruction-tuning Stable Diffusion.
Python
189
star
87

simulate

🎢 Creating and sharing simulation environments for embodied and synthetic data research
Python
185
star
88

OBELICS

Code used for the creation of OBELICS, an open, massive and curated collection of interleaved image-text web documents, containing 141M documents, 115B text tokens and 353M images.
Python
181
star
89

diffusion-fast

Faster generation with text-to-image diffusion models.
Python
179
star
90

olm-datasets

Pipeline for pulling and processing online language model pretraining data from the web
Python
170
star
91

transformers.js-examples

A collection of 🤗 Transformers.js demos and example applications
JavaScript
164
star
92

api-inference-community

Python
161
star
93

jat

General multi-task deep RL Agent
Python
154
star
94

workshops

Materials for workshops on the Hugging Face ecosystem
Jupyter Notebook
148
star
95

chug

Minimal sharded dataset loaders, decoders, and utils for multi-modal document, image, and text datasets.
Python
140
star
96

optimum-habana

Easy and lightning fast training of 🤗 Transformers on Habana Gaudi processor (HPU)
Python
140
star
97

sharp-transformers

A Unity plugin for using Transformers models in Unity.
C#
139
star
98

coreml-examples

Swift Core ML Examples
Swift
136
star
99

hf-hub

Rust client for the huggingface hub aiming for minimal subset of features over `huggingface-hub` python package
Rust
132
star
100

frp

FRP Fork
Go
116
star