• Stars
    star
    7,008
  • Rank 5,342 (Top 0.2 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 3 years ago
  • Updated 16 days ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

๐Ÿš€ A simple way to launch, train, and use PyTorch models on almost any device and distributed configuration, automatic mixed precision (including fp8), and easy-to-configure FSDP and DeepSpeed support



License Documentation GitHub release Contributor Covenant

Run your *raw* PyTorch training script on any kind of device

Easy to integrate

๐Ÿค— Accelerate was created for PyTorch users who like to write the training loop of PyTorch models but are reluctant to write and maintain the boilerplate code needed to use multi-GPUs/TPU/fp16.

๐Ÿค— Accelerate abstracts exactly and only the boilerplate code related to multi-GPUs/TPU/fp16 and leaves the rest of your code unchanged.

Here is an example:

  import torch
  import torch.nn.functional as F
  from datasets import load_dataset
+ from accelerate import Accelerator

+ accelerator = Accelerator()
- device = 'cpu'
+ device = accelerator.device

  model = torch.nn.Transformer().to(device)
  optimizer = torch.optim.Adam(model.parameters())

  dataset = load_dataset('my_dataset')
  data = torch.utils.data.DataLoader(dataset, shuffle=True)

+ model, optimizer, data = accelerator.prepare(model, optimizer, data)

  model.train()
  for epoch in range(10):
      for source, targets in data:
          source = source.to(device)
          targets = targets.to(device)

          optimizer.zero_grad()

          output = model(source)
          loss = F.cross_entropy(output, targets)

-         loss.backward()
+         accelerator.backward(loss)

          optimizer.step()

As you can see in this example, by adding 5-lines to any standard PyTorch training script you can now run on any kind of single or distributed node setting (single CPU, single GPU, multi-GPUs and TPUs) as well as with or without mixed precision (fp8, fp16, bf16).

In particular, the same code can then be run without modification on your local machine for debugging or your training environment.

๐Ÿค— Accelerate even handles the device placement for you (which requires a few more changes to your code, but is safer in general), so you can even simplify your training loop further:

  import torch
  import torch.nn.functional as F
  from datasets import load_dataset
+ from accelerate import Accelerator

- device = 'cpu'
+ accelerator = Accelerator()

- model = torch.nn.Transformer().to(device)
+ model = torch.nn.Transformer()
  optimizer = torch.optim.Adam(model.parameters())

  dataset = load_dataset('my_dataset')
  data = torch.utils.data.DataLoader(dataset, shuffle=True)

+ model, optimizer, data = accelerator.prepare(model, optimizer, data)

  model.train()
  for epoch in range(10):
      for source, targets in data:
-         source = source.to(device)
-         targets = targets.to(device)

          optimizer.zero_grad()

          output = model(source)
          loss = F.cross_entropy(output, targets)

-         loss.backward()
+         accelerator.backward(loss)

          optimizer.step()

Want to learn more? Check out the documentation or have a look at our examples.

Launching script

๐Ÿค— Accelerate also provides an optional CLI tool that allows you to quickly configure and test your training environment before launching the scripts. No need to remember how to use torch.distributed.run or to write a specific launcher for TPU training! On your machine(s) just run:

accelerate config

and answer the questions asked. This will generate a config file that will be used automatically to properly set the default options when doing

accelerate launch my_script.py --args_to_my_script

For instance, here is how you would run the GLUE example on the MRPC task (from the root of the repo):

accelerate launch examples/nlp_example.py

This CLI tool is optional, and you can still use python my_script.py or python -m torchrun my_script.py at your convenience.

You can also directly pass in the arguments you would to torchrun as arguments to accelerate launch if you wish to not run accelerate config.

For example, here is how to launch on two GPUs:

accelerate launch --multi_gpu --num_processes 2 examples/nlp_example.py

To learn more, check the CLI documentation available here.

Launching multi-CPU run using MPI

๐Ÿค— Here is another way to launch multi-CPU run using MPI. You can learn how to install Open MPI on this page. You can use Intel MPI or MVAPICH as well. Once you have MPI setup on your cluster, just run:

mpirun -np 2 python examples/nlp_example.py

Launching training using DeepSpeed

๐Ÿค— Accelerate supports training on single/multiple GPUs using DeepSpeed. To use it, you don't need to change anything in your training code; you can set everything using just accelerate config. However, if you desire to tweak your DeepSpeed related args from your Python script, we provide you the DeepSpeedPlugin.

from accelerate import Accelerator, DeepSpeedPlugin

# deepspeed needs to know your gradient accumulation steps beforehand, so don't forget to pass it
# Remember you still need to do gradient accumulation by yourself, just like you would have done without deepspeed
deepspeed_plugin = DeepSpeedPlugin(zero_stage=2, gradient_accumulation_steps=2)
accelerator = Accelerator(mixed_precision='fp16', deepspeed_plugin=deepspeed_plugin)

# How to save your ๐Ÿค— Transformer?
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(save_dir, save_function=accelerator.save, state_dict=accelerator.get_state_dict(model))

Note: DeepSpeed support is experimental for now. In case you get into some problem, please open an issue.

Launching your training from a notebook

๐Ÿค— Accelerate also provides a notebook_launcher function you can use in a notebook to launch a distributed training. This is especially useful for Colab or Kaggle notebooks with a TPU backend. Just define your training loop in a training_function then in your last cell, add:

from accelerate import notebook_launcher

notebook_launcher(training_function)

An example can be found in this notebook. Open In Colab

Why should I use ๐Ÿค— Accelerate?

You should use ๐Ÿค— Accelerate when you want to easily run your training scripts in a distributed environment without having to renounce full control over your training loop. This is not a high-level framework above PyTorch, just a thin wrapper so you don't have to learn a new library. In fact, the whole API of ๐Ÿค— Accelerate is in one class, the Accelerator object.

Why shouldn't I use ๐Ÿค— Accelerate?

You shouldn't use ๐Ÿค— Accelerate if you don't want to write a training loop yourself. There are plenty of high-level libraries above PyTorch that will offer you that, ๐Ÿค— Accelerate is not one of them.

Frameworks using ๐Ÿค— Accelerate

If you like the simplicity of ๐Ÿค— Accelerate but would prefer a higher-level abstraction around its capabilities, some frameworks and libraries that are built on top of ๐Ÿค— Accelerate are listed below:

  • Animus is a minimalistic framework to run machine learning experiments. Animus highlights common "breakpoints" in ML experiments and provides a unified interface for them within IExperiment.
  • Catalyst is a PyTorch framework for Deep Learning Research and Development. It focuses on reproducibility, rapid experimentation, and codebase reuse so you can create something new rather than write yet another train loop. Catalyst provides a Runner to connect all parts of the experiment: hardware backend, data transformations, model training, and inference logic.
  • fastai is a PyTorch framework for Deep Learning that simplifies training fast and accurate neural nets using modern best practices. fastai provides a Learner to handle the training, fine-tuning, and inference of deep learning algorithms.
  • Finetuner is a service that enables models to create higher-quality embeddings for semantic search, visual similarity search, cross-modal text<->image search, recommendation systems, clustering, duplication detection, anomaly detection, or other uses.
  • InvokeAI is a creative engine for Stable Diffusion models, offering industry-leading WebUI, terminal usage support, and serves as the foundation for many commercial products.
  • Kornia is a differentiable library that allows classical computer vision to be integrated into deep learning models. Kornia provides a Trainer with the specific purpose to train and fine-tune the supported deep learning algorithms within the library.
  • Open Assistant is a chat-based assistant that understands tasks, can interact with their party systems, and retrieve information dynamically to do so.
  • pytorch-accelerated is a lightweight training library, with a streamlined feature set centered around a general-purpose Trainer, that places a huge emphasis on simplicity and transparency; enabling users to understand exactly what is going on under the hood, but without having to write and maintain the boilerplate themselves!
  • Stable Diffusion web UI is an open-source browser-based easy-to-use interface based on the Gradio library for Stable Diffusion.
  • torchkeras is a simple tool for training pytorch model just in a keras style, a dynamic and beautiful plot is provided in notebook to monitor your loss or metric.
  • transformers as a tool for helping train state-of-the-art machine learning models in PyTorch, Tensorflow, and JAX. (Accelerate is the backend for the PyTorch side).

Installation

This repository is tested on Python 3.8+ and PyTorch 1.10.0+

You should install ๐Ÿค— Accelerate in a virtual environment. If you're unfamiliar with Python virtual environments, check out the user guide.

First, create a virtual environment with the version of Python you're going to use and activate it.

Then, you will need to install PyTorch: refer to the official installation page regarding the specific install command for your platform. Then ๐Ÿค— Accelerate can be installed using pip as follows:

pip install accelerate

Supported integrations

  • CPU only
  • multi-CPU on one node (machine)
  • multi-CPU on several nodes (machines)
  • single GPU
  • multi-GPU on one node (machine)
  • multi-GPU on several nodes (machines)
  • TPU
  • FP16/BFloat16 mixed precision
  • FP8 mixed precision with Transformer Engine
  • DeepSpeed support (Experimental)
  • PyTorch Fully Sharded Data Parallel (FSDP) support (Experimental)
  • Megatron-LM support (Experimental)

Citing ๐Ÿค— Accelerate

If you use ๐Ÿค— Accelerate in your publication, please cite it by using the following BibTeX entry.

@Misc{accelerate,
  title =        {Accelerate: Training and inference at scale made simple, efficient and adaptable.},
  author =       {Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller, Sourab Mangrulkar},
  howpublished = {\url{https://github.com/huggingface/accelerate}},
  year =         {2022}
}

More Repositories

1

transformers

๐Ÿค— Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.
Python
125,891
star
2

pytorch-image-models

PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, NFNet, Vision Transformer (ViT), MobileNet-V3/V2, RegNet, DPN, CSPNet, Swin Transformer, MaxViT, CoAtNet, ConvNeXt, and more
Python
28,073
star
3

diffusers

๐Ÿค— Diffusers: State-of-the-art diffusion models for image and audio generation in PyTorch and FLAX.
Python
22,776
star
4

datasets

๐Ÿค— The largest hub of ready-to-use datasets for ML models with fast, easy-to-use and efficient data manipulation tools
Python
17,530
star
5

peft

๐Ÿค— PEFT: State-of-the-art Parameter-Efficient Fine-Tuning.
Python
14,007
star
6

candle

Minimalist ML framework for Rust
Rust
12,686
star
7

tokenizers

๐Ÿ’ฅ Fast State-of-the-Art Tokenizers optimized for Research and Production
Rust
8,286
star
8

trl

Train transformer language models with reinforcement learning.
Python
8,181
star
9

text-generation-inference

Large Language Model Text Generation Inference
Python
7,240
star
10

chat-ui

Open source codebase powering the HuggingChat app
TypeScript
6,369
star
11

deep-rl-class

This repo contains the syllabus of the Hugging Face Deep Reinforcement Learning Course.
MDX
3,541
star
12

alignment-handbook

Robust recipes to align language models with human and AI preferences
Python
3,485
star
13

autotrain-advanced

๐Ÿค— AutoTrain Advanced
Python
3,283
star
14

diffusion-models-class

Materials for the Hugging Face Diffusion Models Course
Jupyter Notebook
3,126
star
15

notebooks

Notebooks using the Hugging Face libraries ๐Ÿค—
Jupyter Notebook
3,114
star
16

distil-whisper

Distilled variant of Whisper for speech recognition. 6x faster, 50% smaller, within 1% word error rate.
Python
2,964
star
17

neuralcoref

โœจFast Coreference Resolution in spaCy with Neural Networks
C
2,806
star
18

knockknock

๐ŸšชโœŠKnock Knock: Get notified when your training ends with only two additional lines of code
Python
2,682
star
19

swift-coreml-diffusers

Swift app demonstrating Core ML Stable Diffusion
Swift
2,377
star
20

safetensors

Simple, safe way to store and distribute tensors
Python
2,347
star
21

optimum

๐Ÿš€ Accelerate training and inference of ๐Ÿค— Transformers and ๐Ÿค— Diffusers with easy to use hardware optimization tools
Python
2,086
star
22

awesome-papers

Papers & presentation materials from Hugging Face's internal science day
1,996
star
23

blog

Public repo for HF blog posts
Jupyter Notebook
1,962
star
24

setfit

Efficient few-shot learning with Sentence Transformers
Jupyter Notebook
1,912
star
25

text-embeddings-inference

A blazing fast inference solution for text embeddings models
Rust
1,845
star
26

course

The Hugging Face course on Transformers
MDX
1,832
star
27

evaluate

๐Ÿค— Evaluate: A library for easily evaluating machine learning models and datasets.
Python
1,825
star
28

transfer-learning-conv-ai

๐Ÿฆ„ State-of-the-Art Conversational AI with Transfer Learning
Python
1,654
star
29

swift-coreml-transformers

Swift Core ML 3 implementations of GPT-2, DistilGPT-2, BERT, and DistilBERT for Question answering. Other Transformers coming soon!
Swift
1,543
star
30

pytorch-openai-transformer-lm

๐ŸฅA PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI
Python
1,464
star
31

cookbook

Open-source AI cookbook
Jupyter Notebook
1,357
star
32

huggingface_hub

All the open source things related to the Hugging Face Hub.
Python
1,311
star
33

Mongoku

๐Ÿ”ฅThe Web-scale GUI for MongoDB
TypeScript
1,289
star
34

huggingface.js

Utilities to use the Hugging Face Hub API
TypeScript
1,193
star
35

hmtl

๐ŸŒŠHMTL: Hierarchical Multi-Task Learning - A State-of-the-Art neural network model for several NLP tasks based on PyTorch and AllenNLP
Python
1,185
star
36

gsplat.js

JavaScript Gaussian Splatting library.
TypeScript
1,114
star
37

llm-vscode

LLM powered development for VSCode
TypeScript
1,060
star
38

datatrove

Freeing data processing from scripting madness by providing a set of platform-agnostic customizable pipeline processing blocks.
Python
1,033
star
39

pytorch-pretrained-BigGAN

๐Ÿฆ‹A PyTorch implementation of BigGAN with pretrained weights and conversion scripts.
Python
986
star
40

torchMoji

๐Ÿ˜‡A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc
Python
880
star
41

nanotron

Minimalistic large language model 3D-parallelism training
Python
810
star
42

naacl_transfer_learning_tutorial

Repository of code for the tutorial on Transfer Learning in NLP held at NAACL 2019 in Minneapolis, MN, USA
Python
718
star
43

awesome-huggingface

๐Ÿค— A list of wonderful open-source projects & applications integrated with Hugging Face libraries.
698
star
44

optimum-nvidia

Python
680
star
45

dataset-viewer

Lightweight web API for visualizing and exploring any dataset - computer vision, speech, text, and tabular - stored on the Hugging Face Hub
Python
614
star
46

transformers-bloom-inference

Fast Inference Solutions for BLOOM
Python
546
star
47

exporters

Export Hugging Face models to Core ML and TensorFlow Lite
Python
540
star
48

pytorch_block_sparse

Fast Block Sparse Matrices for Pytorch
C++
523
star
49

llm.nvim

LLM powered development for Neovim
Lua
507
star
50

swift-transformers

Swift Package to implement a transformers-like API in Swift
Swift
482
star
51

node-question-answering

Fast and production-ready question answering in Node.js
TypeScript
459
star
52

large_language_model_training_playbook

An open collection of implementation tips, tricks and resources for training large language models
Python
431
star
53

llm-ls

LSP server leveraging LLMs for code completion (and more?)
Rust
416
star
54

llm_training_handbook

An open collection of methodologies to help with successful training of large language models.
Python
385
star
55

swift-chat

Mac app to demonstrate swift-transformers
Swift
375
star
56

tflite-android-transformers

DistilBERT / GPT-2 for on-device inference thanks to TensorFlow Lite with Android demo apps
Java
368
star
57

community-events

Place where folks can contribute to ๐Ÿค— community events
Jupyter Notebook
368
star
58

nn_pruning

Prune a model while finetuning or training.
Jupyter Notebook
360
star
59

text-clustering

Easily embed, cluster and semantically label text datasets
Python
335
star
60

speechbox

Python
328
star
61

100-times-faster-nlp

๐Ÿš€100 Times Faster Natural Language Processing in Python - iPython notebook
HTML
325
star
62

education-toolkit

Educational materials for universities
Jupyter Notebook
307
star
63

controlnet_aux

Python
306
star
64

optimum-intel

๐Ÿค— Optimum Intel: Accelerate inference with Intel optimization tools
Jupyter Notebook
295
star
65

datablations

Scaling Data-Constrained Language Models
Jupyter Notebook
293
star
66

unity-api

C#
284
star
67

open-muse

Open reproduction of MUSE for fast text2image generation.
Python
284
star
68

audio-transformers-course

The Hugging Face Course on Transformers for Audio
MDX
247
star
69

hub-docs

Docs of the Hugging Face Hub
221
star
70

lighteval

LightEval is a lightweight LLM evaluation suite that Hugging Face has been using internally with the recently released LLM data processing library datatrove and LLM training library nanotron.
Python
208
star
71

quanto

A pytorch Quantization Toolkit
Python
201
star
72

simulate

๐ŸŽข Creating and sharing simulation environments for embodied and synthetic data research
Python
185
star
73

ratchet

A cross-platform browser ML framework.
Rust
184
star
74

optimum-benchmark

A unified multi-backend utility for benchmarking Transformers, Timm, Diffusers and Sentence-Transformers with full support of Optimum's hardware optimizations & quantization schemes.
Python
183
star
75

hf_transfer

Rust
181
star
76

olm-datasets

Pipeline for pulling and processing online language model pretraining data from the web
Python
169
star
77

instruction-tuned-sd

Code for instruction-tuning Stable Diffusion.
Python
167
star
78

optimum-neuron

Easy, fast and very cheap training and inference on AWS Trainium and Inferentia chips.
Jupyter Notebook
163
star
79

llm-swarm

Manage scalable open LLM inference endpoints in Slurm clusters
Python
156
star
80

OBELICS

Code used for the creation of OBELICS, an open, massive and curated collection of interleaved image-text web documents, containing 141M documents, 115B text tokens and 353M images.
Python
147
star
81

workshops

Materials for workshops on the Hugging Face ecosystem
Jupyter Notebook
146
star
82

cosmopedia

Python
138
star
83

api-inference-community

Python
131
star
84

diffusion-fast

Faster generation with text-to-image diffusion models.
Python
127
star
85

diarizers

Python
106
star
86

optimum-habana

Easy and lightning fast training of ๐Ÿค— Transformers on Habana Gaudi processor (HPU)
Python
106
star
87

sharp-transformers

A Unity plugin for using Transformers models in Unity.
C#
104
star
88

competitions

Python
101
star
89

hf-hub

Rust client for the huggingface hub aiming for minimal subset of features over `huggingface-hub` python package
Rust
93
star
90

olm-training

Repo for training MLMs, CLMs, or T5-type models on the OLM pretraining data, but it should work with any hugging face text dataset.
Python
87
star
91

fuego

[WIP] A ๐Ÿ”ฅ interface for running code in the cloud
Python
84
star
92

tune

Python
83
star
93

datasets-viewer

Viewer for the ๐Ÿค— datasets library.
Python
82
star
94

optimum-graphcore

Blazing fast training of ๐Ÿค— Transformers on Graphcore IPUs
Python
78
star
95

frp

FRP Fork
Go
73
star
96

paper-style-guide

72
star
97

block_movement_pruning

Block Sparse movement pruning
Python
70
star
98

amused

Python
68
star
99

doc-builder

The package used to build the documentation of our Hugging Face repos
Python
67
star
100

data-measurements-tool

Developing tools to automatically analyze datasets
Python
67
star