• Stars
    star
    1,185
  • Rank 39,443 (Top 0.8 %)
  • Language
    Python
  • License
    MIT License
  • Created almost 6 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

🌊HMTL: Hierarchical Multi-Task Learning - A State-of-the-Art neural network model for several NLP tasks based on PyTorch and AllenNLP

HMTL (Hierarchical Multi-Task Learning model)

***** New November 20th, 2018: Online web demo is available *****

We released an online demo (along with pre-trained weights) so that you can play yourself with the model. The code for the web interface is also available in the demo folder.

To download the pre-trained models, please install git lfs and do a git lfs pull. The weights of the model will be saved in the model_dumps folder.

A Hierarchical Multi-Task Approach for Learning Embeddings from Semantic Tasks
Victor SANH, Thomas WOLF, Sebastian RUDER
Accepted at AAAI 2019

HMTL Architecture

About

HMTL is a Hierarchical Multi-Task Learning model which combines a set of four carefully selected semantic tasks (namely Named Entity Recoginition, Entity Mention Detection, Relation Extraction and Coreference Resolution). The model achieves state-of-the-art results on Named Entity Recognition, Entity Mention Detection and Relation Extraction. Using SentEval, we show that as we move from the bottom to the top layers of the model, the model tend to learn more complex semantic representation.

For further details on the results, please refer to our paper.

We released the code for training, fine tuning and evaluating HMTL. We hope that this code will be useful for building your own Multi-Task models (hierarchical or not). The code is written in Python and powered by Pytorch.

Dependecies and installation

The main dependencies are:

The code works with Python 3.6. A stable version of the dependencies is listed in requirements.txt.

You can quickly setup a working environment by calling the script ./script/machine_setup.sh. It installs Python 3.6, creates a clean virtual environment, and installs all the required dependencies (listed in requirements.txt). Please adapt the script depending on your needs.

Example usage

We based our implementation on the AllenNLP library. For an introduction to this library, you should check these tutorials.

An experiment is defined in a json configuration file (see configs/*.json for examples). The configuration file mainly describes the datasets to load, the model to create along with all the hyper-parameters of the model.

Once you have set up your configuration file (and defined custom classes such DatasetReaders if needed), you can simply launch a training with the following command and arguments:

python train.py --config_file_path configs/hmtl_coref_conll.json --serialization_dir my_first_training

Once the training has started, you can simply follow the training in the terminal or open a Tensorboard (please make sure you have installed Tensorboard and its Tensorflow dependecy before):

tensorboard --logdir my_first_training/log

Evaluating the embeddings with SentEval

We used SentEval to assess the linguistic properties learned by the model. hmtl_senteval.py gives an example of how we can create an interface between SentEval and HMTL. It evaluates the linguistic properties learned by every layer of the hiearchy (shared based word embeddings and encoders).

Data

To download the pre-trained embeddings we used in HMTL, you can simply launch the script ./script/data_setup.sh.

We did not attach the datasets used to train HMTL for licensing reasons, but we invite you to collect them by yourself: OntoNotes 5.0, CoNLL2003, and ACE2005. The configuration files expect the datasets to be placed in the data/ folder.

References

Please consider citing the following paper if you find this repository useful.

@article{sanh2018hmtl,
  title={A Hierarchical Multi-task Approach for Learning Embeddings from Semantic Tasks},
  author={Sanh, Victor and Wolf, Thomas and Ruder, Sebastian},
  journal={arXiv preprint arXiv:1811.06031},
  year={2018}
}

More Repositories

1

transformers

🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.
Python
133,705
star
2

pytorch-image-models

PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, NFNet, Vision Transformer (ViT), MobileNet-V3/V2, RegNet, DPN, CSPNet, Swin Transformer, MaxViT, CoAtNet, ConvNeXt, and more
Python
28,073
star
3

diffusers

🤗 Diffusers: State-of-the-art diffusion models for image and audio generation in PyTorch and FLAX.
Python
25,619
star
4

datasets

🤗 The largest hub of ready-to-use datasets for ML models with fast, easy-to-use and efficient data manipulation tools
Python
17,530
star
5

peft

🤗 PEFT: State-of-the-art Parameter-Efficient Fine-Tuning.
Python
15,663
star
6

candle

Minimalist ML framework for Rust
Rust
15,011
star
7

trl

Train transformer language models with reinforcement learning.
Python
9,850
star
8

text-generation-inference

Large Language Model Text Generation Inference
Python
8,939
star
9

tokenizers

💥 Fast State-of-the-Art Tokenizers optimized for Research and Production
Rust
8,885
star
10

accelerate

🚀 A simple way to launch, train, and use PyTorch models on almost any device and distributed configuration, automatic mixed precision (including fp8), and easy-to-configure FSDP and DeepSpeed support
Python
7,854
star
11

chat-ui

Open source codebase powering the HuggingChat app
TypeScript
7,113
star
12

lerobot

🤗 LeRobot: Making AI for Robotics more accessible with end-to-end learning
Python
6,522
star
13

alignment-handbook

Robust recipes to align language models with human and AI preferences
Python
4,474
star
14

parler-tts

Inference and training library for high-quality TTS models.
Python
4,027
star
15

deep-rl-class

This repo contains the syllabus of the Hugging Face Deep Reinforcement Learning Course.
MDX
3,680
star
16

autotrain-advanced

🤗 AutoTrain Advanced
Python
3,671
star
17

diffusion-models-class

Materials for the Hugging Face Diffusion Models Course
Jupyter Notebook
3,508
star
18

notebooks

Notebooks using the Hugging Face libraries 🤗
Jupyter Notebook
3,492
star
19

distil-whisper

Distilled variant of Whisper for speech recognition. 6x faster, 50% smaller, within 1% word error rate.
Python
3,455
star
20

neuralcoref

✨Fast Coreference Resolution in spaCy with Neural Networks
C
2,842
star
21

safetensors

Simple, safe way to store and distribute tensors
Python
2,754
star
22

text-embeddings-inference

A blazing fast inference solution for text embeddings models
Rust
2,746
star
23

knockknock

🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code
Python
2,682
star
24

speech-to-speech

Speech To Speech: an effort for an open-sourced and modular GPT4-o
Python
2,540
star
25

swift-coreml-diffusers

Swift app demonstrating Core ML Stable Diffusion
Swift
2,506
star
26

optimum

🚀 Accelerate training and inference of 🤗 Transformers and 🤗 Diffusers with easy to use hardware optimization tools
Python
2,469
star
27

blog

Public repo for HF blog posts
Jupyter Notebook
2,303
star
28

setfit

Efficient few-shot learning with Sentence Transformers
Jupyter Notebook
2,142
star
29

course

The Hugging Face course on Transformers
MDX
2,005
star
30

awesome-papers

Papers & presentation materials from Hugging Face's internal science day
1,996
star
31

datatrove

Freeing data processing from scripting madness by providing a set of platform-agnostic customizable pipeline processing blocks.
Python
1,909
star
32

evaluate

🤗 Evaluate: A library for easily evaluating machine learning models and datasets.
Python
1,825
star
33

transfer-learning-conv-ai

🦄 State-of-the-Art Conversational AI with Transfer Learning
Python
1,654
star
34

cookbook

Open-source AI cookbook
Jupyter Notebook
1,577
star
35

swift-coreml-transformers

Swift Core ML 3 implementations of GPT-2, DistilGPT-2, BERT, and DistilBERT for Question answering. Other Transformers coming soon!
Swift
1,543
star
36

pytorch-openai-transformer-lm

🐥A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI
Python
1,464
star
37

huggingface.js

Utilities to use the Hugging Face Hub API
TypeScript
1,368
star
38

Mongoku

🔥The Web-scale GUI for MongoDB
TypeScript
1,313
star
39

huggingface_hub

All the open source things related to the Hugging Face Hub.
Python
1,311
star
40

gsplat.js

JavaScript Gaussian Splatting library.
TypeScript
1,302
star
41

llm-vscode

LLM powered development for VSCode
TypeScript
1,206
star
42

nanotron

Minimalistic large language model 3D-parallelism training
Python
1,071
star
43

pytorch-pretrained-BigGAN

🦋A PyTorch implementation of BigGAN with pretrained weights and conversion scripts.
Python
986
star
44

optimum-nvidia

Python
888
star
45

torchMoji

😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc
Python
880
star
46

awesome-huggingface

🤗 A list of wonderful open-source projects & applications integrated with Hugging Face libraries.
853
star
47

optimum-quanto

A pytorch quantization backend for optimum
Python
738
star
48

llm.nvim

LLM powered development for Neovim
Lua
728
star
49

naacl_transfer_learning_tutorial

Repository of code for the tutorial on Transfer Learning in NLP held at NAACL 2019 in Minneapolis, MN, USA
Python
718
star
50

dataset-viewer

Backend that powers the dataset viewer on Hugging Face dataset pages through a public API.
Python
689
star
51

swift-transformers

Swift Package to implement a transformers-like API in Swift
Swift
647
star
52

exporters

Export Hugging Face models to Core ML and TensorFlow Lite
Python
587
star
53

llm-ls

LSP server leveraging LLMs for code completion (and more?)
Rust
586
star
54

ratchet

A cross-platform browser ML framework.
Rust
574
star
55

transformers-bloom-inference

Fast Inference Solutions for BLOOM
Python
557
star
56

lighteval

LightEval is a lightweight LLM evaluation suite that Hugging Face has been using internally with the recently released LLM data processing library datatrove and LLM training library nanotron.
Python
554
star
57

pytorch_block_sparse

Fast Block Sparse Matrices for Pytorch
C++
523
star
58

node-question-answering

Fast and production-ready question answering in Node.js
TypeScript
459
star
59

large_language_model_training_playbook

An open collection of implementation tips, tricks and resources for training large language models
Python
452
star
60

swift-chat

Mac app to demonstrate swift-transformers
Swift
444
star
61

llm_training_handbook

An open collection of methodologies to help with successful training of large language models.
Python
437
star
62

text-clustering

Easily embed, cluster and semantically label text datasets
Python
422
star
63

cosmopedia

Python
416
star
64

optimum-intel

🤗 Optimum Intel: Accelerate inference with Intel optimization tools
Jupyter Notebook
393
star
65

controlnet_aux

Python
386
star
66

tflite-android-transformers

DistilBERT / GPT-2 for on-device inference thanks to TensorFlow Lite with Android demo apps
Java
368
star
67

community-events

Place where folks can contribute to 🤗 community events
Jupyter Notebook
368
star
68

nn_pruning

Prune a model while finetuning or training.
Jupyter Notebook
360
star
69

speechbox

Python
341
star
70

100-times-faster-nlp

🚀100 Times Faster Natural Language Processing in Python - iPython notebook
HTML
325
star
71

education-toolkit

Educational materials for universities
Jupyter Notebook
324
star
72

transformers.js-examples

A collection of 🤗 Transformers.js demos and example applications
JavaScript
323
star
73

open-muse

Open reproduction of MUSE for fast text2image generation.
Python
320
star
74

local-gemma

Gemma 2 optimized for your local machine.
Python
317
star
75

unity-api

C#
313
star
76

audio-transformers-course

The Hugging Face Course on Transformers for Audio
MDX
308
star
77

datablations

Scaling Data-Constrained Language Models
Jupyter Notebook
305
star
78

hf_transfer

Rust
287
star
79

dataspeech

Python
262
star
80

huggingface-llama-recipes

Jupyter Notebook
259
star
81

optimum-benchmark

🏋️ A unified multi-backend utility for benchmarking Transformers, Timm, PEFT, Diffusers and Sentence-Transformers with full support of Optimum's hardware optimizations & quantization schemes.
Python
245
star
82

diarizers

Python
238
star
83

hub-docs

Docs of the Hugging Face Hub
221
star
84

llm-swarm

Manage scalable open LLM inference endpoints in Slurm clusters
Python
216
star
85

sam2-studio

Swift
196
star
86

optimum-neuron

Easy, fast and very cheap training and inference on AWS Trainium and Inferentia chips.
Jupyter Notebook
193
star
87

data-is-better-together

Let's build better datasets, together!
Jupyter Notebook
192
star
88

instruction-tuned-sd

Code for instruction-tuning Stable Diffusion.
Python
189
star
89

simulate

🎢 Creating and sharing simulation environments for embodied and synthetic data research
Python
185
star
90

OBELICS

Code used for the creation of OBELICS, an open, massive and curated collection of interleaved image-text web documents, containing 141M documents, 115B text tokens and 353M images.
Python
184
star
91

diffusion-fast

Faster generation with text-to-image diffusion models.
Python
179
star
92

olm-datasets

Pipeline for pulling and processing online language model pretraining data from the web
Python
173
star
93

api-inference-community

Python
161
star
94

jat

General multi-task deep RL Agent
Python
154
star
95

workshops

Materials for workshops on the Hugging Face ecosystem
Jupyter Notebook
148
star
96

coreml-examples

Swift Core ML Examples
Jupyter Notebook
147
star
97

optimum-habana

Easy and lightning fast training of 🤗 Transformers on Habana Gaudi processor (HPU)
Python
147
star
98

chug

Minimal sharded dataset loaders, decoders, and utils for multi-modal document, image, and text datasets.
Python
140
star
99

sharp-transformers

A Unity plugin for using Transformers models in Unity.
C#
139
star
100

hf-hub

Rust client for the huggingface hub aiming for minimal subset of features over `huggingface-hub` python package
Rust
132
star