• Stars
    star
    193
  • Rank 201,081 (Top 4 %)
  • Language
    Jupyter Notebook
  • License
    Apache License 2.0
  • Created almost 2 years ago
  • Updated 2 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Easy, fast and very cheap training and inference on AWS Trainium and Inferentia chips.

Optimum Neuron

๐Ÿค— Optimum Neuron is the interface between the ๐Ÿค— Transformers library and AWS Acceleratorsย including AWS Trainium and AWS Inferentia. It provides a set of tools enabling easy model loading, training and inference on single- and multi-Accelerator settings for different downstream tasks. The list of officially validated models and tasks is available here. Users can try other models and tasks with only few changes.

Install

To install the latest release of this package:

  • For AWS Trainium (trn1) or AWS inferentia2 (inf2)
pip install optimum[neuronx]
  • For AWS inferentia (inf1)
pip install optimum[neuron]

Optimum Neuron is a fast-moving project, and you may want to install it from source:

pip install git+https://github.com/huggingface/optimum-neuron.git

Alternatively, you can install the package without pip as follows:

git clone https://github.com/huggingface/optimum-neuron.git
cd optimum-neuron
python setup.py install

Make sure that you have installed the Neuron driver and tools before installing optimum-neuron, more extensive guide here.

Last but not least, don't forget to install the requirements for every example:

cd <example-folder>
pip install -r requirements.txt

Quick Start

๐Ÿค— Optimum Neuron was designed with one goal in mind: to make training and inference straightforward for any ๐Ÿค— Transformers user while leveraging the complete power of AWS Accelerators.

Training

There are two main classes one needs to know:

  • TrainiumArgumentParser: inherits the original HfArgumentParser in Transformers with additional checks on the argument values to make sure that they will work well with AWS Trainium instances.
  • NeuronTrainer: this version trainer takes care of doing the proper checks and changes to the supported models to make them trainable on AWS Trainium instances.

The NeuronTrainer is very similar to the ๐Ÿค— Transformers Trainer, and adapting a script using the Trainer to make it work with Trainium will mostly consist in simply swapping the Trainer class for the NeuronTrainer one. That's how most of the example scripts were adapted from their original counterparts.

from transformers import TrainingArguments
+from optimum.neuron import NeuronTrainer as Trainer

training_args = TrainingArguments(
  # training arguments...
)

# A lot of code here

# Initialize our Trainer
trainer = Trainer(
    model=model,
    args=training_args,  # Original training arguments.
    train_dataset=train_dataset if training_args.do_train else None,
    eval_dataset=eval_dataset if training_args.do_eval else None,
    compute_metrics=compute_metrics,
    tokenizer=tokenizer,
    data_collator=data_collator,
)

Inference

You can compile and export your ๐Ÿค— Transformers models to a serialized format before inference on Neuron devices:

optimum-cli export neuron \
  --model distilbert-base-uncased-finetuned-sst-2-english \
  --batch_size 1 \
  --sequence_length 32 \
  --auto_cast matmul \
  --auto_cast_type bf16 \
  distilbert_base_uncased_finetuned_sst2_english_neuron/

The command above will export distilbert-base-uncased-finetuned-sst-2-english with static shapes: batch_size=1 and sequence_length=32, and cast all matmul operations from FP32 to BF16. Check out the exporter guide for more compilation options.

Then you can run the exported Neuron model on Neuron devices with NeuronModelForXXX classes which are similar to AutoModelForXXX classes in ๐Ÿค— Transformers:

from transformers import AutoTokenizer
-from transformers import AutoModelForSequenceClassification
+from optimum.neuron import NeuronModelForSequenceClassification

# PyTorch checkpoint
-model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
+model = NeuronModelForSequenceClassification.from_pretrained("distilbert_base_uncased_finetuned_sst2_english_neuron")

tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
inputs = tokenizer("Hamilton is considered to be the best musical of past years.", return_tensors="pt")

logits = model(**inputs).logits
print(model.config.id2label[logits.argmax().item()])
# 'POSITIVE'

Documentation

Check out the documentation of Optimum Neuron for more advanced usage.

If you find any issue while using those, please open an issue or a pull request.

Text-generation-inference

This repository maintains a text-generation-inference (TGI) docker image for deployment on AWS inferentia2.

More Repositories

1

transformers

๐Ÿค— Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.
Python
133,705
star
2

pytorch-image-models

PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, NFNet, Vision Transformer (ViT), MobileNet-V3/V2, RegNet, DPN, CSPNet, Swin Transformer, MaxViT, CoAtNet, ConvNeXt, and more
Python
28,073
star
3

diffusers

๐Ÿค— Diffusers: State-of-the-art diffusion models for image and audio generation in PyTorch and FLAX.
Python
25,619
star
4

datasets

๐Ÿค— The largest hub of ready-to-use datasets for ML models with fast, easy-to-use and efficient data manipulation tools
Python
17,530
star
5

peft

๐Ÿค— PEFT: State-of-the-art Parameter-Efficient Fine-Tuning.
Python
15,663
star
6

candle

Minimalist ML framework for Rust
Rust
15,011
star
7

trl

Train transformer language models with reinforcement learning.
Python
9,850
star
8

text-generation-inference

Large Language Model Text Generation Inference
Python
8,939
star
9

tokenizers

๐Ÿ’ฅ Fast State-of-the-Art Tokenizers optimized for Research and Production
Rust
8,885
star
10

accelerate

๐Ÿš€ A simple way to launch, train, and use PyTorch models on almost any device and distributed configuration, automatic mixed precision (including fp8), and easy-to-configure FSDP and DeepSpeed support
Python
7,854
star
11

chat-ui

Open source codebase powering the HuggingChat app
TypeScript
7,113
star
12

lerobot

๐Ÿค— LeRobot: Making AI for Robotics more accessible with end-to-end learning
Python
6,522
star
13

alignment-handbook

Robust recipes to align language models with human and AI preferences
Python
4,474
star
14

parler-tts

Inference and training library for high-quality TTS models.
Python
4,027
star
15

autotrain-advanced

๐Ÿค— AutoTrain Advanced
Python
3,925
star
16

deep-rl-class

This repo contains the syllabus of the Hugging Face Deep Reinforcement Learning Course.
MDX
3,680
star
17

diffusion-models-class

Materials for the Hugging Face Diffusion Models Course
Jupyter Notebook
3,508
star
18

notebooks

Notebooks using the Hugging Face libraries ๐Ÿค—
Jupyter Notebook
3,492
star
19

distil-whisper

Distilled variant of Whisper for speech recognition. 6x faster, 50% smaller, within 1% word error rate.
Python
3,455
star
20

neuralcoref

โœจFast Coreference Resolution in spaCy with Neural Networks
C
2,842
star
21

safetensors

Simple, safe way to store and distribute tensors
Python
2,754
star
22

text-embeddings-inference

A blazing fast inference solution for text embeddings models
Rust
2,746
star
23

knockknock

๐ŸšชโœŠKnock Knock: Get notified when your training ends with only two additional lines of code
Python
2,682
star
24

speech-to-speech

Speech To Speech: an effort for an open-sourced and modular GPT4-o
Python
2,540
star
25

swift-coreml-diffusers

Swift app demonstrating Core ML Stable Diffusion
Swift
2,506
star
26

optimum

๐Ÿš€ Accelerate training and inference of ๐Ÿค— Transformers and ๐Ÿค— Diffusers with easy to use hardware optimization tools
Python
2,469
star
27

blog

Public repo for HF blog posts
Jupyter Notebook
2,303
star
28

setfit

Efficient few-shot learning with Sentence Transformers
Jupyter Notebook
2,142
star
29

course

The Hugging Face course on Transformers
MDX
2,005
star
30

awesome-papers

Papers & presentation materials from Hugging Face's internal science day
1,996
star
31

datatrove

Freeing data processing from scripting madness by providing a set of platform-agnostic customizable pipeline processing blocks.
Python
1,909
star
32

evaluate

๐Ÿค— Evaluate: A library for easily evaluating machine learning models and datasets.
Python
1,825
star
33

cookbook

Open-source AI cookbook
Jupyter Notebook
1,660
star
34

transfer-learning-conv-ai

๐Ÿฆ„ State-of-the-Art Conversational AI with Transfer Learning
Python
1,654
star
35

swift-coreml-transformers

Swift Core ML 3 implementations of GPT-2, DistilGPT-2, BERT, and DistilBERT for Question answering. Other Transformers coming soon!
Swift
1,543
star
36

pytorch-openai-transformer-lm

๐ŸฅA PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI
Python
1,464
star
37

huggingface.js

Utilities to use the Hugging Face Hub API
TypeScript
1,368
star
38

Mongoku

๐Ÿ”ฅThe Web-scale GUI for MongoDB
TypeScript
1,313
star
39

huggingface_hub

All the open source things related to the Hugging Face Hub.
Python
1,311
star
40

gsplat.js

JavaScript Gaussian Splatting library.
TypeScript
1,302
star
41

llm-vscode

LLM powered development for VSCode
TypeScript
1,206
star
42

hmtl

๐ŸŒŠHMTL: Hierarchical Multi-Task Learning - A State-of-the-Art neural network model for several NLP tasks based on PyTorch and AllenNLP
Python
1,185
star
43

nanotron

Minimalistic large language model 3D-parallelism training
Python
1,071
star
44

pytorch-pretrained-BigGAN

๐Ÿฆ‹A PyTorch implementation of BigGAN with pretrained weights and conversion scripts.
Python
986
star
45

optimum-nvidia

Python
888
star
46

torchMoji

๐Ÿ˜‡A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc
Python
880
star
47

awesome-huggingface

๐Ÿค— A list of wonderful open-source projects & applications integrated with Hugging Face libraries.
853
star
48

optimum-quanto

A pytorch quantization backend for optimum
Python
738
star
49

llm.nvim

LLM powered development for Neovim
Lua
728
star
50

naacl_transfer_learning_tutorial

Repository of code for the tutorial on Transfer Learning in NLP held at NAACL 2019 in Minneapolis, MN, USA
Python
718
star
51

dataset-viewer

Backend that powers the dataset viewer on Hugging Face dataset pages through a public API.
Python
689
star
52

swift-transformers

Swift Package to implement a transformers-like API in Swift
Swift
647
star
53

exporters

Export Hugging Face models to Core ML and TensorFlow Lite
Python
587
star
54

llm-ls

LSP server leveraging LLMs for code completion (and more?)
Rust
586
star
55

ratchet

A cross-platform browser ML framework.
Rust
574
star
56

transformers-bloom-inference

Fast Inference Solutions for BLOOM
Python
557
star
57

lighteval

LightEval is a lightweight LLM evaluation suite that Hugging Face has been using internally with the recently released LLM data processing library datatrove and LLM training library nanotron.
Python
554
star
58

pytorch_block_sparse

Fast Block Sparse Matrices for Pytorch
C++
523
star
59

node-question-answering

Fast and production-ready question answering in Node.js
TypeScript
459
star
60

large_language_model_training_playbook

An open collection of implementation tips, tricks and resources for training large language models
Python
452
star
61

swift-chat

Mac app to demonstrate swift-transformers
Swift
444
star
62

llm_training_handbook

An open collection of methodologies to help with successful training of large language models.
Python
437
star
63

text-clustering

Easily embed, cluster and semantically label text datasets
Python
422
star
64

cosmopedia

Python
416
star
65

optimum-intel

๐Ÿค— Optimum Intel: Accelerate inference with Intel optimization tools
Jupyter Notebook
393
star
66

controlnet_aux

Python
386
star
67

community-events

Place where folks can contribute to ๐Ÿค— community events
Jupyter Notebook
368
star
68

tflite-android-transformers

DistilBERT / GPT-2 for on-device inference thanks to TensorFlow Lite with Android demo apps
Java
368
star
69

nn_pruning

Prune a model while finetuning or training.
Jupyter Notebook
360
star
70

speechbox

Python
341
star
71

100-times-faster-nlp

๐Ÿš€100 Times Faster Natural Language Processing in Python - iPython notebook
HTML
325
star
72

education-toolkit

Educational materials for universities
Jupyter Notebook
324
star
73

transformers.js-examples

A collection of ๐Ÿค— Transformers.js demos and example applications
JavaScript
323
star
74

open-muse

Open reproduction of MUSE for fast text2image generation.
Python
320
star
75

local-gemma

Gemma 2 optimized for your local machine.
Python
317
star
76

unity-api

C#
313
star
77

audio-transformers-course

The Hugging Face Course on Transformers for Audio
MDX
308
star
78

datablations

Scaling Data-Constrained Language Models
Jupyter Notebook
305
star
79

hf_transfer

Rust
287
star
80

dataspeech

Python
262
star
81

huggingface-llama-recipes

Jupyter Notebook
259
star
82

optimum-benchmark

๐Ÿ‹๏ธ A unified multi-backend utility for benchmarking Transformers, Timm, PEFT, Diffusers and Sentence-Transformers with full support of Optimum's hardware optimizations & quantization schemes.
Python
245
star
83

diarizers

Python
238
star
84

hub-docs

Docs of the Hugging Face Hub
221
star
85

llm-swarm

Manage scalable open LLM inference endpoints in Slurm clusters
Python
216
star
86

sam2-studio

Swift
196
star
87

data-is-better-together

Let's build better datasets, together!
Jupyter Notebook
192
star
88

instruction-tuned-sd

Code for instruction-tuning Stable Diffusion.
Python
189
star
89

simulate

๐ŸŽข Creating and sharing simulation environments for embodied and synthetic data research
Python
185
star
90

OBELICS

Code used for the creation of OBELICS, an open, massive and curated collection of interleaved image-text web documents, containing 141M documents, 115B text tokens and 353M images.
Python
184
star
91

diffusion-fast

Faster generation with text-to-image diffusion models.
Python
179
star
92

olm-datasets

Pipeline for pulling and processing online language model pretraining data from the web
Python
173
star
93

api-inference-community

Python
161
star
94

jat

General multi-task deep RL Agent
Python
154
star
95

workshops

Materials for workshops on the Hugging Face ecosystem
Jupyter Notebook
148
star
96

coreml-examples

Swift Core ML Examples
Jupyter Notebook
147
star
97

optimum-habana

Easy and lightning fast training of ๐Ÿค— Transformers on Habana Gaudi processor (HPU)
Python
147
star
98

chug

Minimal sharded dataset loaders, decoders, and utils for multi-modal document, image, and text datasets.
Python
140
star
99

sharp-transformers

A Unity plugin for using Transformers models in Unity.
C#
139
star
100

hf-hub

Rust client for the huggingface hub aiming for minimal subset of features over `huggingface-hub` python package
Rust
132
star