• Stars
    star
    3,089
  • Rank 13,936 (Top 0.3 %)
  • Language
    Python
  • License
    Other
  • Created over 2 years ago
  • Updated 11 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Efficient Geometry-aware 3D Generative Adversarial Networks (EG3D)
Official PyTorch implementation of the CVPR 2022 paper

Teaser image

Efficient Geometry-aware 3D Generative Adversarial Networks
Eric R. Chan*, Connor Z. Lin*, Matthew A. Chan*, Koki Nagano*, Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras, and Gordon Wetzstein
* equal contribution

https://nvlabs.github.io/eg3d/

Abstract: Unsupervised generation of high-quality multi-view-consistent images and 3D shapes using only collections of single-view 2D photographs has been a long-standing challenge. Existing 3D GANs are either compute-intensive or make approximations that are not 3D-consistent; the former limits quality and resolution of the generated images and the latter adversely affects multi-view consistency and shape quality. In this work, we improve the computational efficiency and image quality of 3D GANs without overly relying on these approximations. We introduce an expressive hybrid explicit-implicit network architecture that, together with other design choices, synthesizes not only high-resolution multi-view-consistent images in real time but also produces high-quality 3D geometry. By decoupling feature generation and neural rendering, our framework is able to leverage state-of-the-art 2D CNN generators, such as StyleGAN2, and inherit their efficiency and expressiveness. We demonstrate state-of-the-art 3D-aware synthesis with FFHQ and AFHQ Cats, among other experiments.

For business inquiries, please visit our website and submit the form: NVIDIA Research Licensing

Requirements

  • We recommend Linux for performance and compatibility reasons.
  • 1–8 high-end NVIDIA GPUs. We have done all testing and development using V100, RTX3090, and A100 GPUs.
  • 64-bit Python 3.8 and PyTorch 1.11.0 (or later). See https://pytorch.org for PyTorch install instructions.
  • CUDA toolkit 11.3 or later. (Why is a separate CUDA toolkit installation required? We use the custom CUDA extensions from the StyleGAN3 repo. Please see Troubleshooting).
  • Python libraries: see environment.yml for exact library dependencies. You can use the following commands with Miniconda3 to create and activate your Python environment:
    • cd eg3d
    • conda env create -f environment.yml
    • conda activate eg3d

Getting started

Pre-trained networks are stored as *.pkl files that can be referenced using local filenames. See Models for download links to pre-trained checkpoints.

Generating media

# Generate videos using pre-trained model

python gen_videos.py --outdir=out --trunc=0.7 --seeds=0-3 --grid=2x2 \
    --network=networks/network_snapshot.pkl

# Generate the same 4 seeds in an interpolation sequence

python gen_videos.py --outdir=out --trunc=0.7 --seeds=0-3 --grid=1x1 \
    --network=networks/network_snapshot.pkl
# Generate images and shapes (as .mrc files) using pre-trained model

python gen_samples.py --outdir=out --trunc=0.7 --shapes=true --seeds=0-3 \
    --network=networks/network_snapshot.pkl

We visualize our .mrc shape files with UCSF Chimerax.

To visualize a shape in ChimeraX do the following:

  1. Import the .mrc file with File > Open
  2. Find the selected shape in the Volume Viewer tool
    1. The Volume Viewer tool is located under Tools > Volume Data > Volume Viewer
  3. Change volume type to "Surface"
  4. Change step size to 1
  5. Change level set to 10
    1. Note that the optimal level can vary by each object, but is usually between 2 and 20. Individual adjustment may make certain shapes slightly sharper
  6. In the Lighting menu in the top bar, change lighting to "Full"

Interactive visualization

This release contains an interactive model visualization tool that can be used to explore various characteristics of a trained model. To start it, run:

python visualizer.py

See the Visualizer Guide for a description of important options.

Using networks from Python

You can use pre-trained networks in your own Python code as follows:

with open('ffhq.pkl', 'rb') as f:
    G = pickle.load(f)['G_ema'].cuda()  # torch.nn.Module
z = torch.randn([1, G.z_dim]).cuda()    # latent codes
c = torch.cat([cam2world_pose.reshape(-1, 16), intrinsics.reshape(-1, 9)], 1) # camera parameters
img = G(z, c)['image']                           # NCHW, float32, dynamic range [-1, +1], no truncation

The above code requires torch_utils and dnnlib to be accessible via PYTHONPATH. It does not need source code for the networks themselves — their class definitions are loaded from the pickle via torch_utils.persistence.

The pickle contains three networks. 'G' and 'D' are instantaneous snapshots taken during training, and 'G_ema' represents a moving average of the generator weights over several training steps. The networks are regular instances of torch.nn.Module, with all of their parameters and buffers placed on the CPU at import and gradient computation disabled by default.

The generator consists of two submodules, G.mapping and G.synthesis, that can be executed separately. They also support various additional options:

w = G.mapping(z, conditioning_params, truncation_psi=0.5, truncation_cutoff=8)
img = G.synthesis(w, camera_params)['image]

Please refer to gen_samples.py for complete code example.

Preparing datasets

Datasets are stored as uncompressed ZIP archives containing uncompressed PNG files and a metadata file dataset.json for labels. Each label is a 25-length list of floating point numbers, which is the concatenation of the flattened 4x4 camera extrinsic matrix and flattened 3x3 camera intrinsic matrix. Custom datasets can be created from a folder containing images; see python dataset_tool.py --help for more information. Alternatively, the folder can also be used directly as a dataset, without running it through dataset_tool.py first, but doing so may lead to suboptimal performance.

FFHQ: Download and process the Flickr-Faces-HQ dataset using the following commands.

  1. Ensure the Deep3DFaceRecon_pytorch submodule is properly initialized
git submodule update --init --recursive
  1. Run the following commands
cd dataset_preprocessing/ffhq
python runme.py

Optional: preprocessing in-the-wild portrait images. In case you want to crop in-the-wild face images and extract poses using Deep3DFaceRecon_pytorch in a way that align with the FFHQ data above and the checkpoint, run the following commands

cd dataset_preprocessing/ffhq
python preprocess_in_the_wild.py --indir=INPUT_IMAGE_FOLDER

AFHQv2: Download and process the AFHQv2 dataset with the following.

  1. Download the AFHQv2 images zipfile from the StarGAN V2 repository
  2. Run the following commands:
cd dataset_preprocessing/afhq
python runme.py "path/to/downloaded/afhq.zip"

ShapeNet Cars: Download and process renderings of the cars category of ShapeNet using the following commands. NOTE: the following commands download renderings of the ShapeNet cars from the Scene Representation Networks repository.

cd dataset_preprocessing/shapenet
python runme.py

Training

You can train new networks using train.py. For example:

# Train with FFHQ from scratch with raw neural rendering resolution=64, using 8 GPUs.
python train.py --outdir=~/training-runs --cfg=ffhq --data=~/datasets/FFHQ_512.zip \
  --gpus=8 --batch=32 --gamma=1 --gen_pose_cond=True

# Second stage finetuning of FFHQ to 128 neural rendering resolution (optional).
python train.py --outdir=~/training-runs --cfg=ffhq --data=~/datasets/FFHQ_512.zip \
  --resume=~/training-runs/ffhq_experiment_dir/network-snapshot-025000.pkl \
  --gpus=8 --batch=32 --gamma=1 --gen_pose_cond=True --neural_rendering_resolution_final=128

# Train with Shapenet from scratch, using 8 GPUs.
python train.py --outdir=~/training-runs --cfg=shapenet --data=~/datasets/cars_train.zip \
  --gpus=8 --batch=32 --gamma=0.3

# Train with AFHQ, finetuning from FFHQ with ADA, using 8 GPUs.
python train.py --outdir=~/training-runs --cfg=afhq --data=~/datasets/afhq.zip \
  --gpus=8 --batch=32 --gamma=5 --aug=ada --neural_rendering_resolution_final=128 --gen_pose_cond=True --gpc_reg_prob=0.8

Please see the Training Guide for a guide to setting up a training run on your own data.

Please see Models for recommended training configurations and download links for pre-trained checkpoints.

The results of each training run are saved to a newly created directory, for example ~/training-runs/00000-ffhq-ffhq512-gpus8-batch32-gamma1. The training loop exports network pickles (network-snapshot-<KIMG>.pkl) and random image grids (fakes<KIMG>.png) at regular intervals (controlled by --snap). For each exported pickle, it evaluates FID (controlled by --metrics) and logs the result in metric-fid50k_full.jsonl. It also records various statistics in training_stats.jsonl, as well as *.tfevents if TensorBoard is installed.

Quality metrics

By default, train.py automatically computes FID for each network pickle exported during training. We recommend inspecting metric-fid50k_full.jsonl (or TensorBoard) at regular intervals to monitor the training progress. When desired, the automatic computation can be disabled with --metrics=none to speed up the training slightly.

Additional quality metrics can also be computed after the training:

# Previous training run: look up options automatically, save result to JSONL file.
python calc_metrics.py --metrics=fid50k_full \
    --network=~/training-runs/network-snapshot-000000.pkl

# Pre-trained network pickle: specify dataset explicitly, print result to stdout.
python calc_metrics.py --metrics=fid50k_full --data=~/datasets/ffhq_512.zip \
    --network=ffhq-128.pkl

Note that the metrics can be quite expensive to compute (up to 1h), and many of them have an additional one-off cost for each new dataset (up to 30min). Also note that the evaluation is done using a different random seed each time, so the results will vary if the same metric is computed multiple times.

References:

  1. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium, Heusel et al. 2017
  2. Demystifying MMD GANs, Bińkowski et al. 2018

Citation

@inproceedings{Chan2022,
  author = {Eric R. Chan and Connor Z. Lin and Matthew A. Chan and Koki Nagano and Boxiao Pan and Shalini De Mello and Orazio Gallo and Leonidas Guibas and Jonathan Tremblay and Sameh Khamis and Tero Karras and Gordon Wetzstein},
  title = {Efficient Geometry-aware {3D} Generative Adversarial Networks},
  booktitle = {CVPR},
  year = {2022}
}

Development

This is a research reference implementation and is treated as a one-time code drop. As such, we do not accept outside code contributions in the form of pull requests.

Acknowledgements

We thank David Luebke, Jan Kautz, Jaewoo Seo, Jonathan Granskog, Simon Yuen, Alex Evans, Stan Birchfield, Alexander Bergman, and Joy Hsu for feedback on drafts, Alex Chan, Giap Nguyen, and Trevor Chan for help with diagrams, and Colette Kress and Bryan Catanzaro for allowing use of their photographs. This project was in part supported by Stanford HAI and a Samsung GRO. Koki Nagano and Eric Chan were partially supported by DARPA’s Semantic Forensics (SemaFor) contract (HR0011-20-3-0005). The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government. Distribution Statement "A" (Approved for Public Release, Distribution Unlimited).

More Repositories

1

instant-ngp

Instant neural graphics primitives: lightning fast NeRF and more
Cuda
15,102
star
2

stylegan

StyleGAN - Official TensorFlow Implementation
Python
13,882
star
3

stylegan2

StyleGAN2 - Official TensorFlow Implementation
Python
10,740
star
4

SPADE

Semantic Image Synthesis with SPADE
Python
7,518
star
5

stylegan3

Official PyTorch implementation of StyleGAN3
Python
6,108
star
6

neuralangelo

Official implementation of "Neuralangelo: High-Fidelity Neural Surface Reconstruction" (CVPR 2023)
Python
4,125
star
7

imaginaire

NVIDIA's Deep Imagination Team's PyTorch Library
Python
3,941
star
8

stylegan2-ada-pytorch

StyleGAN2-ADA - Official PyTorch implementation
Python
3,866
star
9

ffhq-dataset

Flickr-Faces-HQ Dataset (FFHQ)
Python
3,483
star
10

tiny-cuda-nn

Lightning fast C++/CUDA neural network framework
C++
3,286
star
11

MUNIT

Multimodal Unsupervised Image-to-Image Translation
Python
2,564
star
12

SegFormer

Official PyTorch implementation of SegFormer
Python
2,252
star
13

nvdiffrec

Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".
Python
2,019
star
14

few-shot-vid2vid

Pytorch implementation for few-shot photorealistic video-to-video translation.
Python
1,780
star
15

stylegan2-ada

StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation
Python
1,778
star
16

FUNIT

Translate images to unseen domains in the test time with few example images.
Python
1,545
star
17

PWC-Net

PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume, CVPR 2018 (Oral)
Python
1,512
star
18

noise2noise

Noise2Noise: Learning Image Restoration without Clean Data - Official TensorFlow implementation of the ICML 2018 paper
Python
1,356
star
19

alias-free-gan

Alias-Free GAN project website and code
1,320
star
20

prismer

The implementation of "Prismer: A Vision-Language Model with Multi-Task Experts".
Python
1,287
star
21

DG-Net

👫 Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral) 👫
Python
1,268
star
22

nvdiffrast

Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering
C++
1,137
star
23

edm

Elucidating the Design Space of Diffusion-Based Generative Models (EDM)
Python
1,014
star
24

Deep_Object_Pose

Deep Object Pose Estimation (DOPE) – ROS inference (CoRL 2018)
Python
955
star
25

VoxFormer

Official PyTorch implementation of VoxFormer [CVPR 2023 Highlight]
Python
937
star
26

NVAE

The Official PyTorch Implementation of "NVAE: A Deep Hierarchical Variational Autoencoder" (NeurIPS 2020 spotlight paper)
Python
889
star
27

BundleSDF

[CVPR 2023] BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown Objects
Python
842
star
28

ODISE

Official PyTorch implementation of ODISE: Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models [CVPR 2023 Highlight]
Python
779
star
29

GroupViT

Official PyTorch implementation of GroupViT: Semantic Segmentation Emerges from Text Supervision, CVPR 2022.
Python
679
star
30

FasterViT

[ICLR 2024] Official PyTorch implementation of FasterViT: Fast Vision Transformers with Hierarchical Attention
Python
664
star
31

GA3C

Hybrid CPU/GPU implementation of the A3C algorithm for deep reinforcement learning.
Python
641
star
32

denoising-diffusion-gan

Tackling the Generative Learning Trilemma with Denoising Diffusion GANs https://arxiv.org/abs/2112.07804
Python
634
star
33

genvs

610
star
34

sionna

Sionna: An Open-Source Library for Next-Generation Physical Layer Research
Jupyter Notebook
580
star
35

curobo

CUDA Accelerated Robot Library
Python
545
star
36

FB-BEV

Official PyTorch implementation of FB-BEV & FB-OCC - Forward-backward view transformation for vision-centric autonomous driving perception
Python
518
star
37

Dancing2Music

Python
513
star
38

planercnn

PlaneRCNN detects and reconstructs piece-wise planar surfaces from a single RGB image
Python
502
star
39

pacnet

Pixel-Adaptive Convolutional Neural Networks (CVPR '19)
Python
490
star
40

CALM

Python
486
star
41

DeepInversion

Official PyTorch implementation of Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion (CVPR 2020)
Python
474
star
42

EmerNeRF

PyTorch Implementation of EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via Self-Supervision
Python
456
star
43

FAN

Official PyTorch implementation of Fully Attentional Networks
Python
454
star
44

FourCastNet

Initial public release of code, data, and model weights for FourCastNet
Python
421
star
45

GCVit

[ICML 2023] Official PyTorch implementation of Global Context Vision Transformers
Python
414
star
46

intrinsic3d

Intrinsic3D - High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting (ICCV 2017)
C++
411
star
47

nvdiffmodeling

Differentiable rasterization applied to 3D model simplification tasks
Python
404
star
48

flip

A tool for visualizing and communicating the errors in rendered images.
C++
375
star
49

wetectron

Weakly-supervised object detection.
Python
355
star
50

FoundationPose

FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects
JavaScript
349
star
51

nvdiffrecmc

Official code for the NeurIPS 2022 paper "Shape, Light, and Material Decomposition from Images using Monte Carlo Rendering and Denoising".
C
341
star
52

geomapnet

Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)
Python
338
star
53

GLAMR

[CVPR 2022 Oral] Official PyTorch Implementation of "GLAMR: Global Occlusion-Aware Human Mesh Recovery with Dynamic Cameras”.
Python
329
star
54

LSGM

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)
Python
326
star
55

ssn_superpixels

Superpixel Sampling Networks (ECCV2018)
Python
323
star
56

DiffiT

Official Repository for DiffiT: Diffusion Vision Transformers for Image Generation
315
star
57

FreeSOLO

FreeSOLO for unsupervised instance segmentation, CVPR 2022
Python
307
star
58

long-video-gan

Official PyTorch implementation of LongVideoGAN
Python
297
star
59

neuralrgbd

Neural RGB→D Sensing: Per-pixel depth and its uncertainty estimation from a monocular RGB video
Python
294
star
60

selfsupervised-denoising

High-Quality Self-Supervised Deep Image Denoising - Official TensorFlow implementation of the NeurIPS 2019 paper
Python
293
star
61

Taylor_pruning

Pruning Neural Networks with Taylor criterion in Pytorch
Python
279
star
62

timeloop

Timeloop performs modeling, mapping and code-generation for tensor algebra workloads on various accelerator architectures.
C++
278
star
63

metfaces-dataset

Python
272
star
64

few_shot_gaze

Pytorch implementation and demo of FAZE: Few-Shot Adaptive Gaze Estimation (ICCV 2019, oral)
Python
272
star
65

splatnet

SPLATNet: Sparse Lattice Networks for Point Cloud Processing (CVPR2018)
Python
268
star
66

MinVIS

Python
261
star
67

edm2

Analyzing and Improving the Training Dynamics of Diffusion Models (EDM2)
Python
261
star
68

contact_graspnet

Efficient 6-DoF Grasp Generation in Cluttered Scenes
Python
260
star
69

CenterPose

Single-Stage Keypoint-based Category-level Object Pose Estimation from an RGB Image (ICRA 2022)
Python
251
star
70

trajdata

A unified interface to many trajectory forecasting datasets.
Python
245
star
71

STEP

STEP: Spatio-Temporal Progressive Learning for Video Action Detection. CVPR'19 (Oral)
Python
244
star
72

matchlib

SystemC/C++ library of commonly-used hardware functions and components for HLS.
C++
235
star
73

sim-web-visualizer

Web Based Visualizer for Simulation Environments
Python
231
star
74

SCOPS

SCOPS: Self-Supervised Co-Part Segmentation (CVPR'19)
Python
221
star
75

UMR

Self-supervised Single-view 3D Reconstruction
Python
221
star
76

DiffRL

[ICLR 2022] Accelerated Policy Learning with Parallel Differentiable Simulation
Python
220
star
77

cule

CuLE: A CUDA port of the Atari Learning Environment (ALE)
C++
216
star
78

SSV

Pytorch implementation of SSV: Self-Supervised Viewpoint Learning from Image Collections (CVPR 2020)
Python
214
star
79

DiffPure

A new adversarial purification method that uses the forward and reverse processes of diffusion models to remove adversarial perturbations.
Python
210
star
80

latentfusion

LatentFusion: End-to-End Differentiable Reconstruction and Rendering for Unseen Object Pose Estimation
Python
197
star
81

I2SB

Python
194
star
82

nvbio

NVBIO is a library of reusable components designed to accelerate bioinformatics applications using CUDA.
C++
193
star
83

6dof-graspnet

Implementation of 6-DoF GraspNet with tensorflow and python. This repo has been tested with python 2.7 and tensorflow 1.12.
Python
186
star
84

NVBit

183
star
85

AFNO-transformer

Adaptive FNO transformer - official Pytorch implementation
Python
174
star
86

UnseenObjectClustering

Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation
Python
166
star
87

AL-MDN

Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)
Python
159
star
88

fermat

Fermat is a high performance research oriented physically based rendering system, trying to produce beautiful pictures following the mathematician’s principle of least time
C++
158
star
89

PoseCNN-PyTorch

PyTorch implementation of the PoseCNN framework
C
156
star
90

mask-auto-labeler

Python
153
star
91

mimicgen_environments

This code corresponds to simulation environments used as part of the MimicGen project.
Python
153
star
92

Bi3D

Python
150
star
93

RVT

Official Code for RVT: Robotic View Transformer for 3D Object Manipulation
Python
147
star
94

condensa

Programmable Neural Network Compression
Python
146
star
95

traffic-behavior-simulation

Python
145
star
96

learningrigidity

Learning Rigidity in Dynamic Scenes with a Moving Camera for 3D Motion Field Estimation (ECCV 2018)
Python
144
star
97

ocrodeg

document image degradation
Jupyter Notebook
142
star
98

ocropus3

Repository collecting all the submodules for the new PyTorch-based OCR System.
Shell
141
star
99

CGBN

CGBN: CUDA Accelerated Multiple Precision Arithmetic (Big Num) using Cooperative Groups
Cuda
139
star
100

PL4NN

Perceptual Losses for Neural Networks: Caffe implementation of loss layers based on perceptual image quality metrics.
Python
138
star