• Stars
    star
    10,740
  • Rank 3,006 (Top 0.07 %)
  • Language
    Python
  • License
    Other
  • Created over 4 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 — Official TensorFlow Implementation

Teaser image

Analyzing and Improving the Image Quality of StyleGAN
Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, Timo Aila

Paper: http://arxiv.org/abs/1912.04958
Video: https://youtu.be/c-NJtV9Jvp0

Abstract: The style-based GAN architecture (StyleGAN) yields state-of-the-art results in data-driven unconditional generative image modeling. We expose and analyze several of its characteristic artifacts, and propose changes in both model architecture and training methods to address them. In particular, we redesign generator normalization, revisit progressive growing, and regularize the generator to encourage good conditioning in the mapping from latent vectors to images. In addition to improving image quality, this path length regularizer yields the additional benefit that the generator becomes significantly easier to invert. This makes it possible to reliably detect if an image is generated by a particular network. We furthermore visualize how well the generator utilizes its output resolution, and identify a capacity problem, motivating us to train larger models for additional quality improvements. Overall, our improved model redefines the state of the art in unconditional image modeling, both in terms of existing distribution quality metrics as well as perceived image quality.

For business inquiries, please visit our website and submit the form: NVIDIA Research Licensing

★★★ NEW: StyleGAN2-ADA-PyTorch is now available; see the full list of versions here ★★★

Additional material  
StyleGAN2 Main Google Drive folder
├  stylegan2-paper.pdf High-quality version of the paper
├  stylegan2-video.mp4 High-quality version of the video
├  images Example images produced using our method
│  ├  curated-images Hand-picked images showcasing our results
│  └  100k-generated-images Random images with and without truncation
├  videos Individual clips of the video as high-quality MP4
└  networks Pre-trained networks
   ├  stylegan2-ffhq-config-f.pkl StyleGAN2 for FFHQ dataset at 1024×1024
   ├  stylegan2-car-config-f.pkl StyleGAN2 for LSUN Car dataset at 512×384
   ├  stylegan2-cat-config-f.pkl StyleGAN2 for LSUN Cat dataset at 256×256
   ├  stylegan2-church-config-f.pkl StyleGAN2 for LSUN Church dataset at 256×256
   ├  stylegan2-horse-config-f.pkl StyleGAN2 for LSUN Horse dataset at 256×256
   └ ⋯ Other training configurations used in the paper

Requirements

  • Both Linux and Windows are supported. Linux is recommended for performance and compatibility reasons.
  • 64-bit Python 3.6 installation. We recommend Anaconda3 with numpy 1.14.3 or newer.
  • We recommend TensorFlow 1.14, which we used for all experiments in the paper, but TensorFlow 1.15 is also supported on Linux. TensorFlow 2.x is not supported.
  • On Windows you need to use TensorFlow 1.14, as the standard 1.15 installation does not include necessary C++ headers.
  • One or more high-end NVIDIA GPUs, NVIDIA drivers, CUDA 10.0 toolkit and cuDNN 7.5. To reproduce the results reported in the paper, you need an NVIDIA GPU with at least 16 GB of DRAM.
  • Docker users: use the provided Dockerfile to build an image with the required library dependencies.

StyleGAN2 relies on custom TensorFlow ops that are compiled on the fly using NVCC. To test that your NVCC installation is working correctly, run:

nvcc test_nvcc.cu -o test_nvcc -run
| CPU says hello.
| GPU says hello.

On Windows, the compilation requires Microsoft Visual Studio to be in PATH. We recommend installing Visual Studio Community Edition and adding into PATH using "C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\vcvars64.bat".

Using pre-trained networks

Pre-trained networks are stored as *.pkl files on the StyleGAN2 Google Drive folder. Below, you can either reference them directly using the syntax gdrive:networks/<filename>.pkl, or download them manually and reference by filename.

# Generate uncurated ffhq images (matches paper Figure 12)
python run_generator.py generate-images --network=gdrive:networks/stylegan2-ffhq-config-f.pkl \
  --seeds=6600-6625 --truncation-psi=0.5

# Generate curated ffhq images (matches paper Figure 11)
python run_generator.py generate-images --network=gdrive:networks/stylegan2-ffhq-config-f.pkl \
  --seeds=66,230,389,1518 --truncation-psi=1.0

# Generate uncurated car images
python run_generator.py generate-images --network=gdrive:networks/stylegan2-car-config-f.pkl \
  --seeds=6000-6025 --truncation-psi=0.5

# Example of style mixing (matches the corresponding video clip)
python run_generator.py style-mixing-example --network=gdrive:networks/stylegan2-ffhq-config-f.pkl \
  --row-seeds=85,100,75,458,1500 --col-seeds=55,821,1789,293 --truncation-psi=1.0

The results are placed in results/<RUNNING_ID>/*.png. You can change the location with --result-dir. For example, --result-dir=~/my-stylegan2-results.

You can import the networks in your own Python code using pickle.load(). For this to work, you need to include the dnnlib source directory in PYTHONPATH and create a default TensorFlow session by calling dnnlib.tflib.init_tf(). See run_generator.py and pretrained_networks.py for examples.

Preparing datasets

Datasets are stored as multi-resolution TFRecords, similar to the original StyleGAN. Each dataset consists of multiple *.tfrecords files stored under a common directory, e.g., ~/datasets/ffhq/ffhq-r*.tfrecords. In the following sections, the datasets are referenced using a combination of --dataset and --data-dir arguments, e.g., --dataset=ffhq --data-dir=~/datasets.

FFHQ. To download the Flickr-Faces-HQ dataset as multi-resolution TFRecords, run:

pushd ~
git clone https://github.com/NVlabs/ffhq-dataset.git
cd ffhq-dataset
python download_ffhq.py --tfrecords
popd
python dataset_tool.py display ~/ffhq-dataset/tfrecords/ffhq

LSUN. Download the desired LSUN categories in LMDB format from the LSUN project page. To convert the data to multi-resolution TFRecords, run:

python dataset_tool.py create_lsun_wide ~/datasets/car ~/lsun/car_lmdb --width=512 --height=384
python dataset_tool.py create_lsun ~/datasets/cat ~/lsun/cat_lmdb --resolution=256
python dataset_tool.py create_lsun ~/datasets/church ~/lsun/church_outdoor_train_lmdb --resolution=256
python dataset_tool.py create_lsun ~/datasets/horse ~/lsun/horse_lmdb --resolution=256

Custom. Create custom datasets by placing all training images under a single directory. The images must be square-shaped and they must all have the same power-of-two dimensions. To convert the images to multi-resolution TFRecords, run:

python dataset_tool.py create_from_images ~/datasets/my-custom-dataset ~/my-custom-images
python dataset_tool.py display ~/datasets/my-custom-dataset

Projecting images to latent space

To find the matching latent vectors for a set of images, run:

# Project generated images
python run_projector.py project-generated-images --network=gdrive:networks/stylegan2-car-config-f.pkl \
  --seeds=0,1,5

# Project real images
python run_projector.py project-real-images --network=gdrive:networks/stylegan2-car-config-f.pkl \
  --dataset=car --data-dir=~/datasets

Training networks

To reproduce the training runs for config F in Tables 1 and 3, run:

python run_training.py --num-gpus=8 --data-dir=~/datasets --config=config-f \
  --dataset=ffhq --mirror-augment=true
python run_training.py --num-gpus=8 --data-dir=~/datasets --config=config-f \
  --dataset=car --total-kimg=57000
python run_training.py --num-gpus=8 --data-dir=~/datasets --config=config-f \
  --dataset=cat --total-kimg=88000
python run_training.py --num-gpus=8 --data-dir=~/datasets --config=config-f \
  --dataset=church --total-kimg 88000 --gamma=100
python run_training.py --num-gpus=8 --data-dir=~/datasets --config=config-f \
  --dataset=horse --total-kimg 100000 --gamma=100

For other configurations, see python run_training.py --help.

We have verified that the results match the paper when training with 1, 2, 4, or 8 GPUs. Note that training FFHQ at 1024×1024 resolution requires GPU(s) with at least 16 GB of memory. The following table lists typical training times using NVIDIA DGX-1 with 8 Tesla V100 GPUs:

Configuration Resolution Total kimg 1 GPU 2 GPUs 4 GPUs 8 GPUs GPU mem
config-f 1024×1024 25000 69d 23h 36d 4h 18d 14h 9d 18h 13.3 GB
config-f 1024×1024 10000 27d 23h 14d 11h 7d 10h 3d 22h 13.3 GB
config-e 1024×1024 25000 35d 11h 18d 15h 9d 15h 5d 6h 8.6 GB
config-e 1024×1024 10000 14d 4h 7d 11h 3d 20h 2d 3h 8.6 GB
config-f 256×256 25000 32d 13h 16d 23h 8d 21h 4d 18h 6.4 GB
config-f 256×256 10000 13d 0h 6d 19h 3d 13h 1d 22h 6.4 GB

Training curves for FFHQ config F (StyleGAN2) compared to original StyleGAN using 8 GPUs:

Training curves

After training, the resulting networks can be used the same way as the official pre-trained networks:

# Generate 1000 random images without truncation
python run_generator.py generate-images --seeds=0-999 --truncation-psi=1.0 \
  --network=results/00006-stylegan2-ffhq-8gpu-config-f/networks-final.pkl

Evaluation metrics

To reproduce the numbers for config F in Tables 1 and 3, run:

python run_metrics.py --data-dir=~/datasets --network=gdrive:networks/stylegan2-ffhq-config-f.pkl \
  --metrics=fid50k,ppl_wend --dataset=ffhq --mirror-augment=true
python run_metrics.py --data-dir=~/datasets --network=gdrive:networks/stylegan2-car-config-f.pkl \
  --metrics=fid50k,ppl2_wend --dataset=car
python run_metrics.py --data-dir=~/datasets --network=gdrive:networks/stylegan2-cat-config-f.pkl \
  --metrics=fid50k,ppl2_wend --dataset=cat
python run_metrics.py --data-dir=~/datasets --network=gdrive:networks/stylegan2-church-config-f.pkl \
  --metrics=fid50k,ppl2_wend --dataset=church
python run_metrics.py --data-dir=~/datasets --network=gdrive:networks/stylegan2-horse-config-f.pkl \
  --metrics=fid50k,ppl2_wend --dataset=horse

For other configurations, see the StyleGAN2 Google Drive folder.

Note that the metrics are evaluated using a different random seed each time, so the results will vary between runs. In the paper, we reported the average result of running each metric 10 times. The following table lists the available metrics along with their expected runtimes and random variation:

Metric FFHQ config F 1 GPU 2 GPUs 4 GPUs Description
fid50k 2.84 ± 0.03 22 min 14 min 10 min Fréchet Inception Distance
is50k 5.13 ± 0.02 23 min 14 min 8 min Inception Score
ppl_zfull 348.0 ± 3.8 41 min 22 min 14 min Perceptual Path Length in Z, full paths
ppl_wfull 126.9 ± 0.2 42 min 22 min 13 min Perceptual Path Length in W, full paths
ppl_zend 348.6 ± 3.0 41 min 22 min 14 min Perceptual Path Length in Z, path endpoints
ppl_wend 129.4 ± 0.8 40 min 23 min 13 min Perceptual Path Length in W, path endpoints
ppl2_wend 145.0 ± 0.5 41 min 23 min 14 min Perceptual Path Length without center crop
ls 154.2 / 4.27 10 hrs 6 hrs 4 hrs Linear Separability
pr50k3 0.689 / 0.492 26 min 17 min 12 min Precision and Recall

Note that some of the metrics cache dataset-specific data on the disk, and they will take somewhat longer when run for the first time.

License

Copyright © 2019, NVIDIA Corporation. All rights reserved.

This work is made available under the Nvidia Source Code License-NC. To view a copy of this license, visit https://nvlabs.github.io/stylegan2/license.html

Citation

@inproceedings{Karras2019stylegan2,
  title     = {Analyzing and Improving the Image Quality of {StyleGAN}},
  author    = {Tero Karras and Samuli Laine and Miika Aittala and Janne Hellsten and Jaakko Lehtinen and Timo Aila},
  booktitle = {Proc. CVPR},
  year      = {2020}
}

Acknowledgements

We thank Ming-Yu Liu for an early review, Timo Viitanen for his help with code release, and Tero Kuosmanen for compute infrastructure.

More Repositories

1

instant-ngp

Instant neural graphics primitives: lightning fast NeRF and more
Cuda
15,102
star
2

stylegan

StyleGAN - Official TensorFlow Implementation
Python
13,882
star
3

SPADE

Semantic Image Synthesis with SPADE
Python
7,518
star
4

stylegan3

Official PyTorch implementation of StyleGAN3
Python
6,108
star
5

neuralangelo

Official implementation of "Neuralangelo: High-Fidelity Neural Surface Reconstruction" (CVPR 2023)
Python
4,125
star
6

imaginaire

NVIDIA's Deep Imagination Team's PyTorch Library
Python
3,941
star
7

stylegan2-ada-pytorch

StyleGAN2-ADA - Official PyTorch implementation
Python
3,866
star
8

ffhq-dataset

Flickr-Faces-HQ Dataset (FFHQ)
Python
3,483
star
9

tiny-cuda-nn

Lightning fast C++/CUDA neural network framework
C++
3,286
star
10

eg3d

Python
3,089
star
11

MUNIT

Multimodal Unsupervised Image-to-Image Translation
Python
2,564
star
12

SegFormer

Official PyTorch implementation of SegFormer
Python
2,252
star
13

nvdiffrec

Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".
Python
2,019
star
14

few-shot-vid2vid

Pytorch implementation for few-shot photorealistic video-to-video translation.
Python
1,780
star
15

stylegan2-ada

StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation
Python
1,778
star
16

FUNIT

Translate images to unseen domains in the test time with few example images.
Python
1,545
star
17

PWC-Net

PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume, CVPR 2018 (Oral)
Python
1,512
star
18

noise2noise

Noise2Noise: Learning Image Restoration without Clean Data - Official TensorFlow implementation of the ICML 2018 paper
Python
1,356
star
19

alias-free-gan

Alias-Free GAN project website and code
1,320
star
20

prismer

The implementation of "Prismer: A Vision-Language Model with Multi-Task Experts".
Python
1,287
star
21

DG-Net

👫 Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral) 👫
Python
1,268
star
22

nvdiffrast

Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering
C++
1,137
star
23

edm

Elucidating the Design Space of Diffusion-Based Generative Models (EDM)
Python
1,014
star
24

Deep_Object_Pose

Deep Object Pose Estimation (DOPE) – ROS inference (CoRL 2018)
Python
955
star
25

VoxFormer

Official PyTorch implementation of VoxFormer [CVPR 2023 Highlight]
Python
937
star
26

NVAE

The Official PyTorch Implementation of "NVAE: A Deep Hierarchical Variational Autoencoder" (NeurIPS 2020 spotlight paper)
Python
889
star
27

BundleSDF

[CVPR 2023] BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown Objects
Python
842
star
28

ODISE

Official PyTorch implementation of ODISE: Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models [CVPR 2023 Highlight]
Python
779
star
29

GroupViT

Official PyTorch implementation of GroupViT: Semantic Segmentation Emerges from Text Supervision, CVPR 2022.
Python
679
star
30

FasterViT

[ICLR 2024] Official PyTorch implementation of FasterViT: Fast Vision Transformers with Hierarchical Attention
Python
664
star
31

GA3C

Hybrid CPU/GPU implementation of the A3C algorithm for deep reinforcement learning.
Python
641
star
32

denoising-diffusion-gan

Tackling the Generative Learning Trilemma with Denoising Diffusion GANs https://arxiv.org/abs/2112.07804
Python
634
star
33

genvs

610
star
34

sionna

Sionna: An Open-Source Library for Next-Generation Physical Layer Research
Jupyter Notebook
580
star
35

curobo

CUDA Accelerated Robot Library
Python
545
star
36

FB-BEV

Official PyTorch implementation of FB-BEV & FB-OCC - Forward-backward view transformation for vision-centric autonomous driving perception
Python
518
star
37

Dancing2Music

Python
513
star
38

planercnn

PlaneRCNN detects and reconstructs piece-wise planar surfaces from a single RGB image
Python
502
star
39

pacnet

Pixel-Adaptive Convolutional Neural Networks (CVPR '19)
Python
490
star
40

CALM

Python
486
star
41

DeepInversion

Official PyTorch implementation of Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion (CVPR 2020)
Python
474
star
42

EmerNeRF

PyTorch Implementation of EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via Self-Supervision
Python
456
star
43

FAN

Official PyTorch implementation of Fully Attentional Networks
Python
454
star
44

FourCastNet

Initial public release of code, data, and model weights for FourCastNet
Python
421
star
45

GCVit

[ICML 2023] Official PyTorch implementation of Global Context Vision Transformers
Python
414
star
46

intrinsic3d

Intrinsic3D - High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting (ICCV 2017)
C++
411
star
47

nvdiffmodeling

Differentiable rasterization applied to 3D model simplification tasks
Python
404
star
48

flip

A tool for visualizing and communicating the errors in rendered images.
C++
375
star
49

wetectron

Weakly-supervised object detection.
Python
355
star
50

FoundationPose

FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects
JavaScript
349
star
51

nvdiffrecmc

Official code for the NeurIPS 2022 paper "Shape, Light, and Material Decomposition from Images using Monte Carlo Rendering and Denoising".
C
341
star
52

geomapnet

Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)
Python
338
star
53

GLAMR

[CVPR 2022 Oral] Official PyTorch Implementation of "GLAMR: Global Occlusion-Aware Human Mesh Recovery with Dynamic Cameras”.
Python
329
star
54

LSGM

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)
Python
326
star
55

ssn_superpixels

Superpixel Sampling Networks (ECCV2018)
Python
323
star
56

DiffiT

Official Repository for DiffiT: Diffusion Vision Transformers for Image Generation
315
star
57

FreeSOLO

FreeSOLO for unsupervised instance segmentation, CVPR 2022
Python
307
star
58

long-video-gan

Official PyTorch implementation of LongVideoGAN
Python
297
star
59

neuralrgbd

Neural RGB→D Sensing: Per-pixel depth and its uncertainty estimation from a monocular RGB video
Python
294
star
60

selfsupervised-denoising

High-Quality Self-Supervised Deep Image Denoising - Official TensorFlow implementation of the NeurIPS 2019 paper
Python
293
star
61

Taylor_pruning

Pruning Neural Networks with Taylor criterion in Pytorch
Python
279
star
62

timeloop

Timeloop performs modeling, mapping and code-generation for tensor algebra workloads on various accelerator architectures.
C++
278
star
63

metfaces-dataset

Python
272
star
64

few_shot_gaze

Pytorch implementation and demo of FAZE: Few-Shot Adaptive Gaze Estimation (ICCV 2019, oral)
Python
272
star
65

splatnet

SPLATNet: Sparse Lattice Networks for Point Cloud Processing (CVPR2018)
Python
268
star
66

MinVIS

Python
261
star
67

edm2

Analyzing and Improving the Training Dynamics of Diffusion Models (EDM2)
Python
261
star
68

contact_graspnet

Efficient 6-DoF Grasp Generation in Cluttered Scenes
Python
260
star
69

CenterPose

Single-Stage Keypoint-based Category-level Object Pose Estimation from an RGB Image (ICRA 2022)
Python
251
star
70

trajdata

A unified interface to many trajectory forecasting datasets.
Python
245
star
71

STEP

STEP: Spatio-Temporal Progressive Learning for Video Action Detection. CVPR'19 (Oral)
Python
244
star
72

matchlib

SystemC/C++ library of commonly-used hardware functions and components for HLS.
C++
235
star
73

sim-web-visualizer

Web Based Visualizer for Simulation Environments
Python
231
star
74

SCOPS

SCOPS: Self-Supervised Co-Part Segmentation (CVPR'19)
Python
221
star
75

UMR

Self-supervised Single-view 3D Reconstruction
Python
221
star
76

DiffRL

[ICLR 2022] Accelerated Policy Learning with Parallel Differentiable Simulation
Python
220
star
77

cule

CuLE: A CUDA port of the Atari Learning Environment (ALE)
C++
216
star
78

SSV

Pytorch implementation of SSV: Self-Supervised Viewpoint Learning from Image Collections (CVPR 2020)
Python
214
star
79

DiffPure

A new adversarial purification method that uses the forward and reverse processes of diffusion models to remove adversarial perturbations.
Python
210
star
80

latentfusion

LatentFusion: End-to-End Differentiable Reconstruction and Rendering for Unseen Object Pose Estimation
Python
197
star
81

I2SB

Python
194
star
82

nvbio

NVBIO is a library of reusable components designed to accelerate bioinformatics applications using CUDA.
C++
193
star
83

6dof-graspnet

Implementation of 6-DoF GraspNet with tensorflow and python. This repo has been tested with python 2.7 and tensorflow 1.12.
Python
186
star
84

NVBit

183
star
85

AFNO-transformer

Adaptive FNO transformer - official Pytorch implementation
Python
174
star
86

UnseenObjectClustering

Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation
Python
166
star
87

AL-MDN

Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)
Python
159
star
88

fermat

Fermat is a high performance research oriented physically based rendering system, trying to produce beautiful pictures following the mathematician’s principle of least time
C++
158
star
89

PoseCNN-PyTorch

PyTorch implementation of the PoseCNN framework
C
156
star
90

mask-auto-labeler

Python
153
star
91

mimicgen_environments

This code corresponds to simulation environments used as part of the MimicGen project.
Python
153
star
92

Bi3D

Python
150
star
93

RVT

Official Code for RVT: Robotic View Transformer for 3D Object Manipulation
Python
147
star
94

condensa

Programmable Neural Network Compression
Python
146
star
95

traffic-behavior-simulation

Python
145
star
96

learningrigidity

Learning Rigidity in Dynamic Scenes with a Moving Camera for 3D Motion Field Estimation (ECCV 2018)
Python
144
star
97

ocrodeg

document image degradation
Jupyter Notebook
142
star
98

ocropus3

Repository collecting all the submodules for the new PyTorch-based OCR System.
Shell
141
star
99

CGBN

CGBN: CUDA Accelerated Multiple Precision Arithmetic (Big Num) using Cooperative Groups
Cuda
139
star
100

PL4NN

Perceptual Losses for Neural Networks: Caffe implementation of loss layers based on perceptual image quality metrics.
Python
138
star