• Stars
    star
    511
  • Rank 86,473 (Top 2 %)
  • Language
    Python
  • License
    Other
  • Created over 2 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Initial public release of code, data, and model weights for FourCastNet

FourCastNet

nvidia nersc

This repository contains the code used for "FourCastNet: A Global Data-driven High-resolution Weather Model using Adaptive Fourier Neural Operators" [paper]

The code was developed by the authors of the preprint: Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay, Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, Pedram Hassanzadeh, Karthik Kashinath, Animashree Anandkumar

FourCastNet, short for Fourier Forecasting Neural Network, is a global data-driven weather forecasting model that provides accurate short to medium-range global predictions at 0.25โˆ˜ resolution. FourCastNet accurately forecasts high-resolution, fast-timescale variables such as the surface wind speed, precipitation, and atmospheric water vapor. It has important implications for planning wind energy resources, predicting extreme weather events such as tropical cyclones, extra-tropical cyclones, and atmospheric rivers. FourCastNet matches the forecasting accuracy of the ECMWF Integrated Forecasting System (IFS), a state-of-the-art Numerical Weather Prediction (NWP) model, at short lead times for large-scale variables, while outperforming IFS for variables with complex fine-scale structure, including precipitation. FourCastNet generates a week-long forecast in less than 2 seconds, orders of magnitude faster than IFS. The speed of FourCastNet enables the creation of rapid and inexpensive large-ensemble forecasts with thousands of ensemble-members for improving probabilistic forecasting. We discuss how data-driven deep learning models such as FourCastNet are a valuable addition to the meteorology toolkit to aid and augment NWP models.

FourCastNet is based on the vision transformer architecture with Adaptive Fourier Neural Operator (AFNO) attention proposed in Guibas-Mardani et al. [paper], [code].

Total Column of Water Vapor forecast using FourCastNet

Quick Links:

Pre-processed Training Data - Globus Download Link

Trained Model Weights - Globus Download Link

Trained Model Weights - Web Download Link

Version Notes:

Release Version Model Weights Training Data Normalization
Initial release v0.0.0 FCN_weights_v0 FCN_ERA5_data_v0 stats_v0

Training:

The model is trained on a subset of ERA5 reanalysis data on single levels [ Hersbach 2018 ] and pressure levels [ Hersbach 2018 ] that is pre-processed and stored into hdf5 files.

The subset of the ERA5 training data that FCN was trained on is hosted at the National Energy Resarch Scientific Computing Center (NERSC). For convenience it is available to all via Globus at the following link.

Pre-processed Training Data

You will need a Globus account and will need to be logged in to your account in order to access the data. The full dataset that this version of FourCastNet was trained on is approximately 5TB in size.

The data directory is organized as follows:

FCN_ERA5_data_v0
โ”‚   README.md
โ””โ”€โ”€โ”€train
โ”‚   โ”‚   1979.h5
โ”‚   โ”‚   1980.h5
โ”‚   โ”‚   ...
โ”‚   โ”‚   ...
โ”‚   โ”‚   2015.h5
โ”‚   
โ””โ”€โ”€โ”€test
โ”‚   โ”‚   2016.h5
โ”‚   โ”‚   2017.h5
โ”‚
โ””โ”€โ”€โ”€out_of_sample
โ”‚   โ”‚   2018.h5
โ”‚
โ””โ”€โ”€โ”€static
โ”‚   โ”‚   orography.h5
โ”‚
โ””โ”€โ”€โ”€precip
โ”‚   โ”‚   train/
โ”‚   โ”‚   test/
โ”‚   โ”‚   out_of_sample/

Precomputed stats are provided at additional and have the directory structure:

stats_v0
โ”‚   global_means.npy  
โ”‚   global_stds.npy  
โ”‚   land_sea_mask.npy  
โ”‚   latitude.npy  
โ”‚   longitude.npy  
โ”‚   time_means.npy
โ”‚   time_means_daily.h5
โ””โ”€โ”€โ”€precip
โ”‚   โ”‚   time_means.npy

Training configurations can be set up in config/AFNO.yaml. The following paths need to be set by the user. These paths should point to the data and stats you downloaded in the steps above:

afno_backbone: &backbone
  <<: *FULL_FIELD
  ...
  ...
  orography: !!bool False 
  orography_path: None # provide path to orography.h5 file if set to true, 
  exp_dir:             # directory path to store training checkpoints and other output
  train_data_path:     # full path to /train/
  valid_data_path:     # full path to /test/
  inf_data_path:       # full path to /out_of_sample. Will not be used while training.
  time_means_path:     # full path to time_means.npy
  global_means_path:   # full path to global_means.npy
  global_stds_path:    # full path to global_stds.npy

An example launch script for distributed data parallel training on the slurm based HPC cluster perlmutter is provided in submit_batch.sh. Please follow the pre-training and fine-tuning procedures as described in the pre-print.

To run the precipitation diagnostic model, see the following example config:

precip: &precip
  <<: *backbone
  ...
  ...
  precip:              # full path to precipitation data files 
  time_means_path_tp:  # full path to time means for precipitation
  model_wind_path:     # full path to backbone model weights ckpt

Inference:

In order to run FourCastNet in inference mode you will need to have the following files on hand.

  1. The path to the out of training sample hdf5 file. This could either be a new set of initial conditions that you downloaded from copernicus and processed yourself (see separate instructions for doing so in the next section), or it could be out_of_sample dataset hosted here. The inference script provided assumes that you are using the out_of_sample/2018.h5 file. You can modify the script to use a different h5 file that you processed yourself after downloading the raw data from Copernicus.
  2. The model weights hosted at Trained Model Weights
FCN_weights_v0/
โ”‚   backbone.ckpt  
โ”‚   precip.ckpt  
  1. The pre-computed normalization statistics hosted at additional. It is crucial that you use the statistics that are provided if you are using the pre-trained model weights that we have provided since these stats were used when trainig the model. The normalization statistics go hand-in-hand with the trained model weights. The stats folder contains:
stats_v0
โ”‚   global_means.npy  
โ”‚   global_stds.npy  
โ”‚   land_sea_mask.npy  
โ”‚   latitude.npy  
โ”‚   longitude.npy  
โ”‚   time_means.npy
โ”‚   time_means_daily.h5

Once you have all the file listed above you should be ready to go.

In config/AFNO.yaml, set the user defined paths

afno_backbone: &backbone
  <<: *FULL_FIELD
  ...
  ...
  orography: !!bool False 
  orography_path: None # provide path to orography.h5 file if set to true, 
  inf_data_path:       # full path to /out_of_sample. Will not be used while training.
  time_means_path:     # full path to time_means.npy
  global_means_path:   # full path to global_means.npy
  global_stds_path:    # full path to global_stds.npy

Run inference using

python inference/inference.py \
       --config=afno_backbone \
       --run_num=0 \
       --weights '/path/to/weights/backbone.ckpt' \
       --override_dir '/path/to/output/scratch/directory/ \' 

Run inference for precipitation using

python inference/inference_precip.py \
       --config=precip \
       --run_num=0 \
       --weights '/path/to/weights/precip.ckpt' \
       --override_dir '/path/to/output/scratch/directory/ \' 

Additional information on batched ensemble inference and precipitation model inference can be found at inference/README_inference.md

The outputs of the inference scripts will be written to an hdf5 file at the path specified in the --override_dir input argument. Depending on the params set in the config file, the output file will contain the computed ACC and RMSE of the forecasts and the raw forecasts of selected fields for visualization.

Inference for a custom interval

The steps will walk you through:

  1. Downloading an initial condition from the (continuously expanding) ERA5 dataset to initialize a FourCastNet model.
  2. Pre-processing the downloaded ERA5 files
  3. Running inference

Downloading an initial condition to initialize FourCastNet.

If you are interested in generating a forecast using FourCastNet for a specific time-interval, you should begin by downloading the ERA5 netCDF files for the relevant variables from the Copernicus Climate Change Service Data Store. For convenience, the scripts are provided in /copernicus. Specifically, you need the two scripts /copernicus/get_data_pl_short_length.py and /copernicus/get_data_sl_short_length.py. These two scripts will respectively download (a superset of) the atmospheric variables on single levels and pressure levels that are modelled by FourCastNet. Be sure to specify the correct time interval in both scripts. While a single temporal snapshot from ERA5 is sufficient to generate a forecast using FourCastNet, you will want to download the ground truth for the full interval you are interested in. This is so that you can analyze the skill of FourCastNet by comparing with the ERA5 ground truth via the RMSE and ACC metrics.

The example scripts show you how to download pl and sl variables in an interval from 19 October 2021 to 31 October 2021. Be sure to download consecutive days only and keep all snapshots at the 0, 6, 12, 18 hour timestamps.

Pre-processing

Once you have downloaded the relevant netCDF4 files, you will also need to pre-process them. The pre-processing step simply copies the variables into hdf5 files in the correct order that the trained FourCastNet model expects as input. The pre-processing can be performed using the script data_process/parallel_copy_small_set.py. While the script is MPI capable in order to deal with long time intervals, if your desired interval is short (say a few weeks), you can run it on a single process.

The example script shows you how to process pl and sl variables in the time interval from 19 October 2021 to 31 October 2021 that we downloaded in the previous step.

Running inference

Follow the general steps listed in the Inference section above. You will need to make appropriate modifications to the inference/inference.py script.

References:

ERA5 data [ Hersbach, H. et al., (2018) ] was downloaded from the Copernicus Climate Change Service (C3S) Climate Data Store.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horรกnyi, A., Muรฑoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thรฉpaut, J-N. (2018): ERA5 hourly data on pressure levels from 1959 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). , 10.24381/cds.bd0915c6

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horรกnyi, A., Muรฑoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thรฉpaut, J-N. (2018): ERA5 hourly data on single levels from 1959 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). , 10.24381/cds.adbb2d47

If you find this work useful, cite it using:

@article{pathak2022fourcastnet,
  title={Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators},
  author={Pathak, Jaideep and Subramanian, Shashank and Harrington, Peter and Raja, Sanjeev and Chattopadhyay, Ashesh and Mardani, Morteza and Kurth, Thorsten and Hall, David and Li, Zongyi and Azizzadenesheli, Kamyar and Hassanzadeh, Pedram and Kashinath, Karthik and Anandkumar, Animashree},
  journal={arXiv preprint arXiv:2202.11214},
  year={2022}
}

More Repositories

1

instant-ngp

Instant neural graphics primitives: lightning fast NeRF and more
Cuda
15,749
star
2

stylegan

StyleGAN - Official TensorFlow Implementation
Python
13,882
star
3

stylegan2

StyleGAN2 - Official TensorFlow Implementation
Python
10,740
star
4

SPADE

Semantic Image Synthesis with SPADE
Python
7,518
star
5

stylegan3

Official PyTorch implementation of StyleGAN3
Python
6,236
star
6

neuralangelo

Official implementation of "Neuralangelo: High-Fidelity Neural Surface Reconstruction" (CVPR 2023)
Python
4,316
star
7

imaginaire

NVIDIA's Deep Imagination Team's PyTorch Library
Python
3,941
star
8

stylegan2-ada-pytorch

StyleGAN2-ADA - Official PyTorch implementation
Python
3,866
star
9

tiny-cuda-nn

Lightning fast C++/CUDA neural network framework
C++
3,627
star
10

ffhq-dataset

Flickr-Faces-HQ Dataset (FFHQ)
Python
3,483
star
11

eg3d

Python
3,194
star
12

MUNIT

Multimodal Unsupervised Image-to-Image Translation
Python
2,564
star
13

SegFormer

Official PyTorch implementation of SegFormer
Python
2,521
star
14

nvdiffrec

Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".
Python
2,080
star
15

VILA

VILA - a multi-image visual language model with training, inference and evaluation recipe, deployable from cloud to edge (Jetson Orin and laptops)
Python
1,849
star
16

few-shot-vid2vid

Pytorch implementation for few-shot photorealistic video-to-video translation.
Python
1,780
star
17

stylegan2-ada

StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation
Python
1,778
star
18

FUNIT

Translate images to unseen domains in the test time with few example images.
Python
1,545
star
19

PWC-Net

PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume, CVPR 2018 (Oral)
Python
1,512
star
20

noise2noise

Noise2Noise: Learning Image Restoration without Clean Data - Official TensorFlow implementation of the ICML 2018 paper
Python
1,356
star
21

nvdiffrast

Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering
C++
1,348
star
22

alias-free-gan

Alias-Free GAN project website and code
1,320
star
23

edm

Elucidating the Design Space of Diffusion-Based Generative Models (EDM)
Python
1,303
star
24

prismer

The implementation of "Prismer: A Vision-Language Model with Multi-Task Experts".
Python
1,297
star
25

FoundationPose

[CVPR 2024 Highlight] FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects
Python
1,293
star
26

DG-Net

๐Ÿ‘ซ Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral) ๐Ÿ‘ซ
Python
1,274
star
27

VoxFormer

Official PyTorch implementation of VoxFormer [CVPR 2023 Highlight]
Python
1,023
star
28

Deep_Object_Pose

Deep Object Pose Estimation (DOPE) โ€“ ROS inference (CoRL 2018)
Python
1,011
star
29

BundleSDF

[CVPR 2023] BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown Objects
Python
989
star
30

NVAE

The Official PyTorch Implementation of "NVAE: A Deep Hierarchical Variational Autoencoder" (NeurIPS 2020 spotlight paper)
Python
889
star
31

ODISE

Official PyTorch implementation of ODISE: Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models [CVPR 2023 Highlight]
Python
844
star
32

FasterViT

[ICLR 2024] Official PyTorch implementation of FasterViT: Fast Vision Transformers with Hierarchical Attention
Python
775
star
33

MambaVision

Official PyTorch Implementation of MambaVision: A Hybrid Mamba-Transformer Vision Backbone
Python
742
star
34

GroupViT

Official PyTorch implementation of GroupViT: Semantic Segmentation Emerges from Text Supervision, CVPR 2022.
Python
718
star
35

curobo

CUDA Accelerated Robot Library
Python
711
star
36

sionna

Sionna: An Open-Source Library for Next-Generation Physical Layer Research
Python
709
star
37

denoising-diffusion-gan

Tackling the Generative Learning Trilemma with Denoising Diffusion GANs https://arxiv.org/abs/2112.07804
Python
660
star
38

InstantSplat

InstantSplat: Sparse-view SfM-free Gaussian Splatting in Seconds
Python
650
star
39

GA3C

Hybrid CPU/GPU implementation of the A3C algorithm for deep reinforcement learning.
Python
649
star
40

FB-BEV

Official PyTorch implementation of FB-BEV & FB-OCC - Forward-backward view transformation for vision-centric autonomous driving perception
Python
629
star
41

genvs

625
star
42

DoRA

[ICML2024 (Oral)] Official PyTorch implementation of DoRA: Weight-Decomposed Low-Rank Adaptation
Python
574
star
43

RADIO

Official repository for "AM-RADIO: Reduce All Domains Into One"
Python
566
star
44

EmerNeRF

PyTorch Implementation of EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via Self-Supervision
Python
554
star
45

CALM

Python
527
star
46

EAGLE

EAGLE: Exploring The Design Space for Multimodal LLMs with Mixture of Encoders
Python
526
star
47

Dancing2Music

Python
513
star
48

planercnn

PlaneRCNN detects and reconstructs piece-wise planar surfaces from a single RGB image
Python
502
star
49

pacnet

Pixel-Adaptive Convolutional Neural Networks (CVPR '19)
Python
490
star
50

edm2

Analyzing and Improving the Training Dynamics of Diffusion Models (EDM2)
Python
489
star
51

DeepInversion

Official PyTorch implementation of Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion (CVPR 2020)
Python
485
star
52

FAN

Official PyTorch implementation of Fully Attentional Networks
Python
464
star
53

DiffiT

[ECCV 2024] Official Repository for DiffiT: Diffusion Vision Transformers for Image Generation
443
star
54

GCVit

[ICML 2023] Official PyTorch implementation of Global Context Vision Transformers
Python
423
star
55

intrinsic3d

Intrinsic3D - High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting (ICCV 2017)
C++
411
star
56

nvdiffmodeling

Differentiable rasterization applied to 3D model simplification tasks
Python
404
star
57

flip

A tool for visualizing and communicating the errors in rendered images.
C++
375
star
58

nvdiffrecmc

Official code for the NeurIPS 2022 paper "Shape, Light, and Material Decomposition from Images using Monte Carlo Rendering and Denoising".
C
362
star
59

wetectron

Weakly-supervised object detection.
Python
355
star
60

GLAMR

[CVPR 2022 Oral] Official PyTorch Implementation of "GLAMR: Global Occlusion-Aware Human Mesh Recovery with Dynamic Camerasโ€.
Python
351
star
61

geomapnet

Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)
Python
338
star
62

LSGM

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)
Python
338
star
63

timeloop

Timeloop performs modeling, mapping and code-generation for tensor algebra workloads on various accelerator architectures.
C++
325
star
64

ssn_superpixels

Superpixel Sampling Networks (ECCV2018)
Python
323
star
65

FreeSOLO

FreeSOLO for unsupervised instance segmentation, CVPR 2022
Python
313
star
66

long-video-gan

Official PyTorch implementation of LongVideoGAN
Python
308
star
67

trajdata

A unified interface to many trajectory forecasting datasets.
Python
301
star
68

contact_graspnet

Efficient 6-DoF Grasp Generation in Cluttered Scenes
Python
295
star
69

neuralrgbd

Neural RGBโ†’D Sensing: Per-pixel depth and its uncertainty estimation from a monocular RGB video
Python
294
star
70

selfsupervised-denoising

High-Quality Self-Supervised Deep Image Denoising - Official TensorFlow implementation of the NeurIPS 2019 paper
Python
293
star
71

CF-3DGS

Python
286
star
72

sim-web-visualizer

Web Based Visualizer for Simulation Environments
Python
280
star
73

Taylor_pruning

Pruning Neural Networks with Taylor criterion in Pytorch
Python
279
star
74

mimicgen

This code corresponds to simulation environments used as part of the MimicGen project.
Python
275
star
75

metfaces-dataset

Python
272
star
76

few_shot_gaze

Pytorch implementation and demo of FAZE: Few-Shot Adaptive Gaze Estimation (ICCV 2019, oral)
Python
272
star
77

Hydra-MDP

269
star
78

splatnet

SPLATNet: Sparse Lattice Networks for Point Cloud Processing (CVPR2018)
Python
268
star
79

VILA-archive

VILA - A multi-image visual language model with training, inference and evaluation recipe, deployable from cloud to edge (Jetson Orin and laptops)
Python
267
star
80

RVT

Official Code for RVT-2 and RVT
Jupyter Notebook
265
star
81

MinVIS

Python
264
star
82

CenterPose

Single-Stage Keypoint-based Category-level Object Pose Estimation from an RGB Image (ICRA 2022)
Python
262
star
83

matchlib

SystemC/C++ library of commonly-used hardware functions and components for HLS.
C++
255
star
84

Minitron

A family of compressed models obtained via pruning and knowledge distillation
252
star
85

DiffRL

[ICLR 2022] Accelerated Policy Learning with Parallel Differentiable Simulation
Python
249
star
86

DiffPure

A new adversarial purification method that uses the forward and reverse processes of diffusion models to remove adversarial perturbations.
Python
249
star
87

STEP

STEP: Spatio-Temporal Progressive Learning for Video Action Detection. CVPR'19 (Oral)
Python
244
star
88

I2SB

Python
235
star
89

SCOPS

SCOPS: Self-Supervised Co-Part Segmentation (CVPR'19)
Python
221
star
90

UMR

Self-supervised Single-view 3D Reconstruction
Python
221
star
91

cule

CuLE: A CUDA port of the Atari Learning Environment (ALE)
C++
216
star
92

SSV

Pytorch implementation of SSV: Self-Supervised Viewpoint Learning from Image Collections (CVPR 2020)
Python
214
star
93

NVBit

210
star
94

AFNO-transformer

Adaptive FNO transformer - official Pytorch implementation
Python
207
star
95

6dof-graspnet

Implementation of 6-DoF GraspNet with tensorflow and python. This repo has been tested with python 2.7 and tensorflow 1.12.
Python
205
star
96

latentfusion

LatentFusion: End-to-End Differentiable Reconstruction and Rendering for Unseen Object Pose Estimation
Python
197
star
97

nvbio

NVBIO is a library of reusable components designed to accelerate bioinformatics applications using CUDA.
C++
193
star
98

OmniDrive

Python
190
star
99

UnseenObjectClustering

Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation
Python
175
star
100

traffic-behavior-simulation

Python
173
star