• Stars
    star
    411
  • Rank 105,247 (Top 3 %)
  • Language
    C++
  • License
    BSD 3-Clause "New...
  • Created almost 6 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Intrinsic3D - High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting (ICCV 2017)

Intrinsic3D

High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting (ICCV 2017)

Intrinsic3D

License

Copyright (c) 2019, NVIDIA Corporation and Technical University of Munich. All Rights Reserved. The Intrinsic3D source code is available under the BSD license, please see the LICENSE file for details. All data in the Intrinsic3D Dataset is licensed under a Creative Commons 4.0 Attribution License (CC BY 4.0), unless stated otherwise.

Resources

Project members

Summary

Intrinsic3D is a method to obtain high-quality 3D reconstructions from low-cost RGB-D sensors. The algorithm recovers fine-scale geometric details and sharp surface textures by simultaneously optimizing for reconstructed geometry, surface albedos, camera poses and scene lighting.

This work is based on our publication

If you find our source code or dataset useful in your research, please cite our work as follows:

@inproceedings{maier2017intrinsic3d,
   title = {{Intrinsic3D}: High-Quality {3D} Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting},
   author = {Maier, Robert and Kim, Kihwan and Cremers, Daniel and Kautz, Jan and Nie{\ss}ner, Matthias},
   booktitle = {International Conference on Computer Vision (ICCV)},
   year = {2017}
}

Installation

As the code was mostly developed and tested on Ubuntu Linux (16.10 and 18.10), we only provide the build instructions for Ubuntu in the following. However, the code should also work on Windows with Visual Studio 2013.

Please first clone the source code:

git clone https://github.com/NVlabs/intrinsic3d.git

Dependencies

Building Intrinsic3D requires CMake, Eigen, OpenCV 4, Boost and Ceres Solver (with CXSparse on Windows) as third-party libraries. The following command installs the dependencies from the default Ubuntu repositories:

sudo apt install cmake libeigen3-dev libboost-dev libboost-filesystem-dev libboost-graph-dev libboost-system-dev libopencv-dev

Please install Ceres Solver using the following commands (if not installed already):

# create third_party subdirectory (in Intrinsic3D root folder)
mkdir third_party && cd third_party

# install Ceres Solver dependencies
sudo apt install libgoogle-glog-dev libatlas-base-dev libsuitesparse-dev

# download and extract Ceres Solver source code package
wget http://ceres-solver.org/ceres-solver-2.1.0.tar.gz
tar xvzf ceres-solver-2.1.0.tar.gz
cd ceres-solver-2.1.0

# compile and install Ceres Solver
mkdir build-ceres && cd build-ceres
cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=$PWD/../../ -DCXX11=ON -DSUITESPARSE=ON -DCXSPARSE=ON -DEIGENSPARSE=ON -DBUILD_EXAMPLES=OFF -DBUILD_TESTING=OFF
make -j6
make install

# go back into source code root
cd ../../../

Build

To compile Intrinsic3D, use the standard CMake approach:

mkdir build
cd build
cmake .. -DCeres_DIR=$PWD/../third_party/lib/cmake/Ceres
make -j6

Data

Download one of the RGB-D sequences from the Intrinsic3D Dataset. If you want to use one of your own datasets, you can convert it into the dataset format specified here. In the following, we will reconstruct and refine the Lion sequence using our approach.

# creating working folder in data/
cd ../data
mkdir lion && cd lion

# download, unzip and rename lion dataset
wget https://vision.in.tum.de/_media/data/datasets/intrinsic3d/lion-rgbd.zip
unzip lion-rgbd.zip
mv lion-rgbd rgbd

Intrinsic3D Usage

To run the Intrinsic3D applications, we continue in the current data folder data/lion/ and copy the default YAML configuration files into it:

# copy default configuration files into current data folder
cp ../*.yml .

The dataset configuration file sensor.yml is loaded in all applications and specifies the input RGB-D dataset. Please note that the working folder of each application will be set to the folder containing the sensor.yml passed as argument. The outputs will be generated in the subfolders fusion/ and intrinsic3d/ respectively.

Keyframe Selection

We first run the keyframe selection to discard blurry frames, based on a single-frame blurriness measure:

../../build/bin/AppKeyframes -s=sensor.yml -k=keyframes.yml

This will generate the keyframes file fusion/keyframes.txt. The window size for keyframe selection can be adjusted through the parameter window_size in the keyframes.yml configuration file.

SDF Fusion

Next, the RGB-D input frames are fused in a voxel-hashed signed distance field (SDF), which produces an output 3D triangle mesh fusion/mesh_0.004.ply and an initial SDF volume fusion/volume_0.004.tsdf:

../../build/bin/AppFusion -s=sensor.yml -f=fusion.yml

Since the framework is very computationally demanding, it is recommended to crop the 3D reconstruction already during the SDF fusion process. You can therefore specify the 3D clip coordinates (in absolute coordinates of the first camera frame) by setting the crop_* parameters in the fusion.yml configuration file. To disable clipping, you can set all crop_* parameters to 0.0. To accelerate finding a suitable clip volume, increase the voxel_size value and integrate keyframes only (by setting the parameter keyframes). For reference, here are suitable crop bounds for the Intrinsic3D Dataset sequences:

Lion: left -0.09, right 1.55; top -0.58, bottom 0.26; front 0.0, back 2.0.
Gate: left -0.52, right 0.55; top -1.1, bottom 0.35; front 0.0, back 1.0.
Hieroglyphics: left -0.5, right 0.45; top -1.2, bottom 0.2; front 0.0, back 1.0.
Tomb Statuary: left -0.15, right 0.25; top -0.02, bottom 0.52; front 0.0, back 0.75.
Bricks: left -0.3, right 2.1; top -0.3, bottom 0.3; front 0.0, back 2.0.

Intrinsic3D

The Intrinsic3D approach takes the initial SDF volume (fusion/volume_0.004.tsdf) and selected keyframes (fusion/keyframes.txt) and jointly optimizes the scene geometry and appearance along with the involved image formation model:

../../build/bin/AppIntrinsic3D -s=sensor.yml -i=intrinsic3d.yml

The output is generated in the subfolder intrinsic3d/, with the final refined 3D mesh stored as mesh_g0_p0.ply. The refined camera poses and color camera intrinsics are stored as poses_g0_p0.txt and intrinsics_g0_p0.txt respectively. Intermediate results of coarser refinement levels are also output as mesh_g*_p*.ply, where _g* specifies the SDF grid level and _p* stand for the RGB-D pyramid level (0 is always the finest/highest resolution).

The configuration file intrinsic3d.yml allows to adjust various parameters of the joint optimization method (e.g. hyperparameters for regularization terms). In addition to only exporting the mesh colors, the output_mesh_* parameters enable other visualizations such as the refined albedo (set output_mesh_albedo to 1).

As the Intrinsic3D approach is computationally very demanding w.r.t. runtime and memory, it may require up to 32GB RAM during the optimization (even for object size reconstructions). You can reduce the finest grid level resolution by decreasing the parameter num_grid_levels to reduce the memory usage. num_grid_levels: "3" means that the input SDF volume is upsampled twice; for an initial SDF grid with voxel size 0.004, the voxel size of the final refined SDF grid is 0.001.

Contact

If you have any questions, please contact Robert Maier <[email protected]> or Kihwan Kim <[email protected]>.

More Repositories

1

instant-ngp

Instant neural graphics primitives: lightning fast NeRF and more
Cuda
15,749
star
2

stylegan

StyleGAN - Official TensorFlow Implementation
Python
13,882
star
3

stylegan2

StyleGAN2 - Official TensorFlow Implementation
Python
10,740
star
4

SPADE

Semantic Image Synthesis with SPADE
Python
7,518
star
5

stylegan3

Official PyTorch implementation of StyleGAN3
Python
6,236
star
6

neuralangelo

Official implementation of "Neuralangelo: High-Fidelity Neural Surface Reconstruction" (CVPR 2023)
Python
4,316
star
7

imaginaire

NVIDIA's Deep Imagination Team's PyTorch Library
Python
3,941
star
8

stylegan2-ada-pytorch

StyleGAN2-ADA - Official PyTorch implementation
Python
3,866
star
9

tiny-cuda-nn

Lightning fast C++/CUDA neural network framework
C++
3,627
star
10

ffhq-dataset

Flickr-Faces-HQ Dataset (FFHQ)
Python
3,483
star
11

eg3d

Python
3,194
star
12

MUNIT

Multimodal Unsupervised Image-to-Image Translation
Python
2,564
star
13

SegFormer

Official PyTorch implementation of SegFormer
Python
2,521
star
14

nvdiffrec

Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".
Python
2,080
star
15

VILA

VILA - a multi-image visual language model with training, inference and evaluation recipe, deployable from cloud to edge (Jetson Orin and laptops)
Python
1,849
star
16

few-shot-vid2vid

Pytorch implementation for few-shot photorealistic video-to-video translation.
Python
1,780
star
17

stylegan2-ada

StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation
Python
1,778
star
18

FUNIT

Translate images to unseen domains in the test time with few example images.
Python
1,545
star
19

PWC-Net

PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume, CVPR 2018 (Oral)
Python
1,512
star
20

noise2noise

Noise2Noise: Learning Image Restoration without Clean Data - Official TensorFlow implementation of the ICML 2018 paper
Python
1,356
star
21

nvdiffrast

Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering
C++
1,348
star
22

alias-free-gan

Alias-Free GAN project website and code
1,320
star
23

edm

Elucidating the Design Space of Diffusion-Based Generative Models (EDM)
Python
1,303
star
24

prismer

The implementation of "Prismer: A Vision-Language Model with Multi-Task Experts".
Python
1,297
star
25

FoundationPose

[CVPR 2024 Highlight] FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects
Python
1,293
star
26

DG-Net

👫 Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral) 👫
Python
1,274
star
27

VoxFormer

Official PyTorch implementation of VoxFormer [CVPR 2023 Highlight]
Python
1,023
star
28

Deep_Object_Pose

Deep Object Pose Estimation (DOPE) – ROS inference (CoRL 2018)
Python
1,011
star
29

BundleSDF

[CVPR 2023] BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown Objects
Python
989
star
30

NVAE

The Official PyTorch Implementation of "NVAE: A Deep Hierarchical Variational Autoencoder" (NeurIPS 2020 spotlight paper)
Python
889
star
31

ODISE

Official PyTorch implementation of ODISE: Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models [CVPR 2023 Highlight]
Python
844
star
32

FasterViT

[ICLR 2024] Official PyTorch implementation of FasterViT: Fast Vision Transformers with Hierarchical Attention
Python
775
star
33

MambaVision

Official PyTorch Implementation of MambaVision: A Hybrid Mamba-Transformer Vision Backbone
Python
742
star
34

GroupViT

Official PyTorch implementation of GroupViT: Semantic Segmentation Emerges from Text Supervision, CVPR 2022.
Python
718
star
35

curobo

CUDA Accelerated Robot Library
Python
711
star
36

sionna

Sionna: An Open-Source Library for Next-Generation Physical Layer Research
Python
709
star
37

denoising-diffusion-gan

Tackling the Generative Learning Trilemma with Denoising Diffusion GANs https://arxiv.org/abs/2112.07804
Python
660
star
38

InstantSplat

InstantSplat: Sparse-view SfM-free Gaussian Splatting in Seconds
Python
650
star
39

GA3C

Hybrid CPU/GPU implementation of the A3C algorithm for deep reinforcement learning.
Python
649
star
40

FB-BEV

Official PyTorch implementation of FB-BEV & FB-OCC - Forward-backward view transformation for vision-centric autonomous driving perception
Python
629
star
41

genvs

625
star
42

DoRA

[ICML2024 (Oral)] Official PyTorch implementation of DoRA: Weight-Decomposed Low-Rank Adaptation
Python
574
star
43

RADIO

Official repository for "AM-RADIO: Reduce All Domains Into One"
Python
566
star
44

EmerNeRF

PyTorch Implementation of EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via Self-Supervision
Python
554
star
45

CALM

Python
527
star
46

EAGLE

EAGLE: Exploring The Design Space for Multimodal LLMs with Mixture of Encoders
Python
526
star
47

Dancing2Music

Python
513
star
48

FourCastNet

Initial public release of code, data, and model weights for FourCastNet
Python
511
star
49

planercnn

PlaneRCNN detects and reconstructs piece-wise planar surfaces from a single RGB image
Python
502
star
50

pacnet

Pixel-Adaptive Convolutional Neural Networks (CVPR '19)
Python
490
star
51

edm2

Analyzing and Improving the Training Dynamics of Diffusion Models (EDM2)
Python
489
star
52

DeepInversion

Official PyTorch implementation of Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion (CVPR 2020)
Python
485
star
53

FAN

Official PyTorch implementation of Fully Attentional Networks
Python
464
star
54

DiffiT

[ECCV 2024] Official Repository for DiffiT: Diffusion Vision Transformers for Image Generation
443
star
55

GCVit

[ICML 2023] Official PyTorch implementation of Global Context Vision Transformers
Python
423
star
56

nvdiffmodeling

Differentiable rasterization applied to 3D model simplification tasks
Python
404
star
57

flip

A tool for visualizing and communicating the errors in rendered images.
C++
375
star
58

nvdiffrecmc

Official code for the NeurIPS 2022 paper "Shape, Light, and Material Decomposition from Images using Monte Carlo Rendering and Denoising".
C
362
star
59

wetectron

Weakly-supervised object detection.
Python
355
star
60

GLAMR

[CVPR 2022 Oral] Official PyTorch Implementation of "GLAMR: Global Occlusion-Aware Human Mesh Recovery with Dynamic Cameras”.
Python
351
star
61

geomapnet

Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)
Python
338
star
62

LSGM

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)
Python
338
star
63

timeloop

Timeloop performs modeling, mapping and code-generation for tensor algebra workloads on various accelerator architectures.
C++
325
star
64

ssn_superpixels

Superpixel Sampling Networks (ECCV2018)
Python
323
star
65

FreeSOLO

FreeSOLO for unsupervised instance segmentation, CVPR 2022
Python
313
star
66

long-video-gan

Official PyTorch implementation of LongVideoGAN
Python
308
star
67

trajdata

A unified interface to many trajectory forecasting datasets.
Python
301
star
68

contact_graspnet

Efficient 6-DoF Grasp Generation in Cluttered Scenes
Python
295
star
69

neuralrgbd

Neural RGB→D Sensing: Per-pixel depth and its uncertainty estimation from a monocular RGB video
Python
294
star
70

selfsupervised-denoising

High-Quality Self-Supervised Deep Image Denoising - Official TensorFlow implementation of the NeurIPS 2019 paper
Python
293
star
71

CF-3DGS

Python
286
star
72

sim-web-visualizer

Web Based Visualizer for Simulation Environments
Python
280
star
73

Taylor_pruning

Pruning Neural Networks with Taylor criterion in Pytorch
Python
279
star
74

mimicgen

This code corresponds to simulation environments used as part of the MimicGen project.
Python
275
star
75

metfaces-dataset

Python
272
star
76

few_shot_gaze

Pytorch implementation and demo of FAZE: Few-Shot Adaptive Gaze Estimation (ICCV 2019, oral)
Python
272
star
77

Hydra-MDP

269
star
78

splatnet

SPLATNet: Sparse Lattice Networks for Point Cloud Processing (CVPR2018)
Python
268
star
79

VILA-archive

VILA - A multi-image visual language model with training, inference and evaluation recipe, deployable from cloud to edge (Jetson Orin and laptops)
Python
267
star
80

RVT

Official Code for RVT-2 and RVT
Jupyter Notebook
265
star
81

MinVIS

Python
264
star
82

CenterPose

Single-Stage Keypoint-based Category-level Object Pose Estimation from an RGB Image (ICRA 2022)
Python
262
star
83

matchlib

SystemC/C++ library of commonly-used hardware functions and components for HLS.
C++
255
star
84

Minitron

A family of compressed models obtained via pruning and knowledge distillation
252
star
85

DiffRL

[ICLR 2022] Accelerated Policy Learning with Parallel Differentiable Simulation
Python
249
star
86

DiffPure

A new adversarial purification method that uses the forward and reverse processes of diffusion models to remove adversarial perturbations.
Python
249
star
87

STEP

STEP: Spatio-Temporal Progressive Learning for Video Action Detection. CVPR'19 (Oral)
Python
244
star
88

I2SB

Python
235
star
89

SCOPS

SCOPS: Self-Supervised Co-Part Segmentation (CVPR'19)
Python
221
star
90

UMR

Self-supervised Single-view 3D Reconstruction
Python
221
star
91

cule

CuLE: A CUDA port of the Atari Learning Environment (ALE)
C++
216
star
92

SSV

Pytorch implementation of SSV: Self-Supervised Viewpoint Learning from Image Collections (CVPR 2020)
Python
214
star
93

NVBit

210
star
94

AFNO-transformer

Adaptive FNO transformer - official Pytorch implementation
Python
207
star
95

6dof-graspnet

Implementation of 6-DoF GraspNet with tensorflow and python. This repo has been tested with python 2.7 and tensorflow 1.12.
Python
205
star
96

latentfusion

LatentFusion: End-to-End Differentiable Reconstruction and Rendering for Unseen Object Pose Estimation
Python
197
star
97

nvbio

NVBIO is a library of reusable components designed to accelerate bioinformatics applications using CUDA.
C++
193
star
98

OmniDrive

Python
190
star
99

UnseenObjectClustering

Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation
Python
175
star
100

traffic-behavior-simulation

Python
173
star