• Stars
    star
    297
  • Rank 134,910 (Top 3 %)
  • Language
    Python
  • License
    Other
  • Created over 1 year ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Official PyTorch implementation of LongVideoGAN

Generating Long Videos of Dynamic Scenes (LongVideoGAN)
Official PyTorch code release for the NeurIPS 2022 paper: https://arxiv.org/abs/2206.03429

Generated horseback video Generated biking video

Generating Long Videos of Dynamic Scenes
Tim Brooks, Janne Hellsten, Miika Aittala, Ting-Chun Wang, Timo Aila, Jaakko Lehtinen, Ming-Yu Liu, Alexei A. Efros, Tero Karras
https://www.timothybrooks.com/tech/long-video-gan

Abstract: We present a video generation model that accurately reproduces object motion, changes in camera viewpoint, and new content that arises over time. Existing video generation methods often fail to produce new content as a function of time while maintaining consistencies expected in real environments, such as plausible dynamics and object persistence. A common failure case is for content to never change due to over-reliance on inductive biases to provide temporal consistency, such as a single latent code that dictates content for the entire video. On the other extreme, without long-term consistency, generated videos may morph unrealistically between different scenes. To address these limitations, we prioritize the time axis by redesigning the temporal latent representation and learning long-term consistency from data by training on longer videos. To this end, we leverage a two-phase training strategy, where we separately train using longer videos at a low resolution and shorter videos at a high resolution. To evaluate the capabilities of our model, we introduce two new benchmark datasets with explicit focus on long-term temporal dynamics.

Requirements

  • Linux and Windows are supported, but we recommend Linux for performance and compatibility reasons.
  • 1+ high-end NVIDIA GPU for synthesis and 8+ GPUs for training. We have done all testing and development using V100 and A100 GPUs.
  • CUDA toolkit 11.1 or later.
  • GCC 7 or later (Linux) or Visual Studio (Windows) compilers. Recommended GCC version depends on CUDA version, see for example CUDA 11.4 system requirements.
  • Python libraries: see environment.yml for exact library dependencies. You can use the following commands with Miniconda3 to create and activate your LongVideoGAN Python environment:
    • conda env create -f environment.yml -n long-video-gan
    • conda activate long-video-gan

The code relies heavily on custom PyTorch extensions that are compiled on the fly using NVCC. On Windows, the compilation requires Microsoft Visual Studio. We recommend installing Visual Studio Community Edition and adding it into PATH using "C:\Program Files (x86)\Microsoft Visual Studio\<VERSION>\Community\VC\Auxiliary\Build\vcvars64.bat".

See StyleGAN3 troubleshooting for help on common installation and run-time problems.

Generating videos

Pre-trained models are stored as *.pkl files. You can download our pre-trained checkpoints for horseback riding and mountain biking datasets, or load models directly from their URL. Make sure you have set up the required Python environment before generating videos.

Generate high-resolution video using pre-trained horseback riding model:

python generate.py --outdir=outputs/horseback --seed=49 \
    --lres=https://nvlabs-fi-cdn.nvidia.com/long-video-gan/pretrained/horseback_lres.pkl \
    --sres=https://nvlabs-fi-cdn.nvidia.com/long-video-gan/pretrained/horseback_sres.pkl

Generate low-resolution video using pre-trained horseback riding model:

python generate.py --outdir=outputs/horseback --seed=49 --save-lres=True \
    --lres=https://nvlabs-fi-cdn.nvidia.com/long-video-gan/pretrained/horseback_lres.pkl

Generate low- and high-resolution videos and frame images using pre-trained mountain biking model:

python generate.py --outdir=outputs/biking --seed=41 --save-lres=True -i 0 -i 15 -i 30 -i 60 -i 150 -i 300 \
    --lres=https://nvlabs-fi-cdn.nvidia.com/long-video-gan/pretrained/biking_lres.pkl \
    --sres=https://nvlabs-fi-cdn.nvidia.com/long-video-gan/pretrained/biking_sres.pkl

You can use pre-trained networks in your own Python code. Please refer to the generate.py file for a minimal example.

To run our pretrained models requires torch_utils and dnnlib to be accessible via PYTHONPATH. It does not need source code for the networks themselves — their class definitions are loaded from the pickle via torch_utils.persistence.

The pickle files directly load the 'G_ema' network that is a moving average of the generator weights over several training steps. The network is a regular instance of torch.nn.Module, with all parameters and buffers placed on the CPU at import and gradient computation disabled by default.

Note that to generate very long videos without running out of memory, we recommend generating videos in chunks of shorter segments. In generate.py, we run the super-resolution network over in chunks by calling sres_G.sample_video_segments(...) rather than sres_G(...) directly. The low res network can similarly be called using lres_G.sample_video_segments(...) if you would like to generate longer videos and run into memory issues.

Preparing datasets

We release two new video datasets of horseback riding and mountain biking videos that can be downloaded directly from the links below. Thank you to Elisa Wallace Eventing and Brian Kennedy for kindly allowing us to make datasets from their videos.

We have preprocessed the video datasets into frames at many resolutions. Under each dataset directory are many subdirectories with the corresponding resolution -- we recommend only downloading the specific resolutions you plan to use. In our paper, we only use 144x256 and 36x64 resolutions.

The video datasets are stored in shards of uncompressed ZIP archives containing frames as compressed JPG images (with 100% quality and no color subsampling). The source YouTube videos links and time intervals used to create the horseback riding and mountain biking datasets can be found in dataset_tools/youtube_configs.

To create your own video dataset in this format, see the dataset_tools directory. Make sure you have set up the required Python environment before creating the dataset. Then run the appropriate dataset_tools/make_datase_from_* script, depending on if your dataset source is directories of frame images, video files, or YouTube video metadata. See the example below, and make sure to run the script separately for each shard/partition.

python -m dataset_tools.make_dataset_from_videos SOURCE_VIDEOS_DIR OUTPUT_DATASET_DIR \
    --height=144 --width=256 --partition=0 --num-partitions=10

Setting --partition=0 --num-partitions=10 (default) in the above example will produce a single shard of the dataset as one ZIP archive containing roughly 1/10 of the videos. You must run the command separately for each partition from 0 to 9 to create all shards. For a small dataset you can set --num-partitions=1 and for very large datasets you can set it to be larger than 10. Breaking the dataset into shards allows each shard to be created at the same time in parallel, or for creation of the shards to be distributed over different machines. See dataset_tools/make_dataset_sbatch.sh for an example of how to run dataset creation in parallel in a Slurm job.

Training

You can train new models using train_lres.py to train the low resolution network and train_sres.py to train the super-resolution network. We recommend using at least 8 high-end NVIDIA GPUs for training, if possible. If that is not possible or you run out of memory, you can try increasing the number of gradient accumulation steps (--grad-accum), which will train more slowly but use less memory. You may also experiment with lowering the batch size (--batch), although this may worsen results. For multi-GPU training, we use torchrun.

Distributed low-resolution training over 8 GPUs on horseback riding dataset:

python -m torch.distributed.run --nnodes=1 --nproc_per_node=8 train_lres.py \
    --outdir=runs/lres --dataset=datasets/horseback --batch=64 --grad-accum=2 --gamma=1.0 --metric=fvd2048_128f

Distributed super-resolution training over 8 GPUs on horseback riding dataset:

python -m torch.distributed.run --nnodes=1 --nproc_per_node=8 train_sres.py \
    --outdir=runs/sres --dataset=datasets/horseback --batch=32 --grad-accum=1 --gamma=1.0 --metric=fvd2048_16f

Model checkpoints, random generated video samples, and metrics will be logged in subdirectory of --outdir created for each run. Setting --outdir is optional and will default to the runs/lres and runs/sres directories shown above. We only support the most crucial arguments through the command line. Rather than rely on passing all arguments through the command line or reading a separate configuration file, other training settings can be modified directly in the train file, and the settings will be logged under the run subdirectory to config.json for each training run.

We use W&B for logging and recommend setting up an account to track experiments. If you prefer not to use W&B and have not already logged into a W&B account, select "Don't visualize my results" when prompted after launching a training run.

Quality metrics

By default, train_lres.py computes FVD-128 for each checkpoint saved during training, and train_sres.py computes FVD-16 for each checkpoint. Note that these metrics run during training only evaluate the single network in isolation. Ultimately, we would like to measure the quality of the low- and super-resolution networks when run together. We provide the calc_metrics.py script for this, which should be run after training is completed.

Run metrics on a previous training run:

python calc_metrics.py --dataset=datasets/horseback -m fvd2048_16f --verbose=True --path=outputs/metrics_horseback.json \
    --lres=runs/lres/00000-horseback-64batch-2accum-1.0gamma/checkpoints/ckpt-00000000-G-ema.pkl \
    --sres=runs/sres/00000-horseback-32batch-1accum-1.0gamma/checkpoints/ckpt-00000000-G-ema.pkl

Run metrics on a pretrained model:

python calc_metrics.py --dataset=datasets/horseback -m fvd2048_128f -m fvd2048_16f -m fid50k_full --verbose=True \
    --lres=https://nvlabs-fi-cdn.nvidia.com/long-video-gan/pretrained/horseback_lres.pkl \
    --sres=https://nvlabs-fi-cdn.nvidia.com/long-video-gan/pretrained/horseback_sres.pkl

Since many low- and super-resolution checkpoints are saved during training, it can make sense to try different combinations when evaluating to see which results in the best performance. A good starting point is to use checkpoints of the best-performing low- and super-resolution networks based on the individual metrics logged during training.

Note that the metrics can be quite expensive to compute (up to 1h), and many of them have an additional one-off cost for each new dataset (up to 30min). Also note that the evaluation is done using a different random seed each time, so the results will vary if the same metric is computed multiple times. We found that variance is particularly high for video metrics. To compute mean/std over multiple runs, set --num-runs to a higher number and --replace-cache=True such that both generator and dataset statistics are recomputed with a different random seed each time.

Recommended metrics:

  • fvd2048_128f: Fréchet video distance[1] against 2048 videos of length 128 frames.
  • fvd2048_16f: Fréchet video distance[1] against 2048 videos of length 16 frames.
  • fid50k_full: Fréchet inception distance[2] on frames, weighted such that each real video has equal contribution regardless of its length.

References:

  1. Towards Accurate Generative Models of Video: A New Metric & Challenges, Unterthiner et al. 2018
  2. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium, Heusel et al. 2017

License

Copyright © 2022, NVIDIA Corporation & affiliates. All rights reserved.

This work is made available under the Nvidia Source Code License.

The horseback riding dataset is made available under the CC BY-NC-SA 4.0 License, is only to be used for non-commercial research and evaluation purposes, and is not to be redistributed or used for commercial purposes without consent from Elisa Wallace Eventing. The mountain biking dataset it made available under the CC BY 4.0 License.

Citation

@inproceedings{brooks2022generating,
    title={Generating Long Videos of Dynamic Scenes},
    author={Brooks, Tim and Hellsten, Janne and Aittala, Miika and Wang, Ting-Chun and Aila, Timo and Lehtinen, Jaakko and Liu, Ming-Yu and Efros, Alexei A and Karras, Tero},
    booktitle=NeurIPS,
    year={2022}
}

Development

This is a research reference implementation and is treated as a one-time code drop. As such, we do not accept outside code contributions in the form of pull requests.

Acknowledgements

We thank William Peebles, Samuli Laine, Axel Sauer and David Luebke for helpful discussion and feedback; Ivan Skorokhodov for providing additional results and insight into the StyleGAN-V baseline; Tero Kuosmanen for maintaining compute infrastructure; Elisa Wallace Eventing and Brian Kennedy for videos used to make the horseback riding and mountain biking datasets. Tim Brooks is supported by the National Science Foundation Graduate Research Fellowship under Grant No. 2020306087.

More Repositories

1

instant-ngp

Instant neural graphics primitives: lightning fast NeRF and more
Cuda
15,102
star
2

stylegan

StyleGAN - Official TensorFlow Implementation
Python
13,882
star
3

stylegan2

StyleGAN2 - Official TensorFlow Implementation
Python
10,740
star
4

SPADE

Semantic Image Synthesis with SPADE
Python
7,518
star
5

stylegan3

Official PyTorch implementation of StyleGAN3
Python
6,108
star
6

neuralangelo

Official implementation of "Neuralangelo: High-Fidelity Neural Surface Reconstruction" (CVPR 2023)
Python
4,125
star
7

imaginaire

NVIDIA's Deep Imagination Team's PyTorch Library
Python
3,941
star
8

stylegan2-ada-pytorch

StyleGAN2-ADA - Official PyTorch implementation
Python
3,866
star
9

ffhq-dataset

Flickr-Faces-HQ Dataset (FFHQ)
Python
3,483
star
10

tiny-cuda-nn

Lightning fast C++/CUDA neural network framework
C++
3,286
star
11

eg3d

Python
3,089
star
12

MUNIT

Multimodal Unsupervised Image-to-Image Translation
Python
2,564
star
13

SegFormer

Official PyTorch implementation of SegFormer
Python
2,252
star
14

nvdiffrec

Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".
Python
2,019
star
15

few-shot-vid2vid

Pytorch implementation for few-shot photorealistic video-to-video translation.
Python
1,780
star
16

stylegan2-ada

StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation
Python
1,778
star
17

FUNIT

Translate images to unseen domains in the test time with few example images.
Python
1,545
star
18

PWC-Net

PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume, CVPR 2018 (Oral)
Python
1,512
star
19

noise2noise

Noise2Noise: Learning Image Restoration without Clean Data - Official TensorFlow implementation of the ICML 2018 paper
Python
1,356
star
20

alias-free-gan

Alias-Free GAN project website and code
1,320
star
21

prismer

The implementation of "Prismer: A Vision-Language Model with Multi-Task Experts".
Python
1,287
star
22

DG-Net

👫 Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral) 👫
Python
1,268
star
23

nvdiffrast

Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering
C++
1,137
star
24

edm

Elucidating the Design Space of Diffusion-Based Generative Models (EDM)
Python
1,014
star
25

Deep_Object_Pose

Deep Object Pose Estimation (DOPE) – ROS inference (CoRL 2018)
Python
955
star
26

VoxFormer

Official PyTorch implementation of VoxFormer [CVPR 2023 Highlight]
Python
937
star
27

NVAE

The Official PyTorch Implementation of "NVAE: A Deep Hierarchical Variational Autoencoder" (NeurIPS 2020 spotlight paper)
Python
889
star
28

BundleSDF

[CVPR 2023] BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown Objects
Python
842
star
29

ODISE

Official PyTorch implementation of ODISE: Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models [CVPR 2023 Highlight]
Python
779
star
30

GroupViT

Official PyTorch implementation of GroupViT: Semantic Segmentation Emerges from Text Supervision, CVPR 2022.
Python
679
star
31

FasterViT

[ICLR 2024] Official PyTorch implementation of FasterViT: Fast Vision Transformers with Hierarchical Attention
Python
664
star
32

GA3C

Hybrid CPU/GPU implementation of the A3C algorithm for deep reinforcement learning.
Python
641
star
33

denoising-diffusion-gan

Tackling the Generative Learning Trilemma with Denoising Diffusion GANs https://arxiv.org/abs/2112.07804
Python
634
star
34

genvs

610
star
35

sionna

Sionna: An Open-Source Library for Next-Generation Physical Layer Research
Jupyter Notebook
580
star
36

curobo

CUDA Accelerated Robot Library
Python
545
star
37

FB-BEV

Official PyTorch implementation of FB-BEV & FB-OCC - Forward-backward view transformation for vision-centric autonomous driving perception
Python
518
star
38

Dancing2Music

Python
513
star
39

planercnn

PlaneRCNN detects and reconstructs piece-wise planar surfaces from a single RGB image
Python
502
star
40

pacnet

Pixel-Adaptive Convolutional Neural Networks (CVPR '19)
Python
490
star
41

CALM

Python
486
star
42

DeepInversion

Official PyTorch implementation of Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion (CVPR 2020)
Python
474
star
43

EmerNeRF

PyTorch Implementation of EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via Self-Supervision
Python
456
star
44

FAN

Official PyTorch implementation of Fully Attentional Networks
Python
454
star
45

FourCastNet

Initial public release of code, data, and model weights for FourCastNet
Python
421
star
46

GCVit

[ICML 2023] Official PyTorch implementation of Global Context Vision Transformers
Python
414
star
47

intrinsic3d

Intrinsic3D - High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting (ICCV 2017)
C++
411
star
48

nvdiffmodeling

Differentiable rasterization applied to 3D model simplification tasks
Python
404
star
49

flip

A tool for visualizing and communicating the errors in rendered images.
C++
375
star
50

wetectron

Weakly-supervised object detection.
Python
355
star
51

FoundationPose

FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects
JavaScript
349
star
52

nvdiffrecmc

Official code for the NeurIPS 2022 paper "Shape, Light, and Material Decomposition from Images using Monte Carlo Rendering and Denoising".
C
341
star
53

geomapnet

Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)
Python
338
star
54

GLAMR

[CVPR 2022 Oral] Official PyTorch Implementation of "GLAMR: Global Occlusion-Aware Human Mesh Recovery with Dynamic Cameras”.
Python
329
star
55

LSGM

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)
Python
326
star
56

ssn_superpixels

Superpixel Sampling Networks (ECCV2018)
Python
323
star
57

DiffiT

Official Repository for DiffiT: Diffusion Vision Transformers for Image Generation
315
star
58

FreeSOLO

FreeSOLO for unsupervised instance segmentation, CVPR 2022
Python
307
star
59

neuralrgbd

Neural RGB→D Sensing: Per-pixel depth and its uncertainty estimation from a monocular RGB video
Python
294
star
60

selfsupervised-denoising

High-Quality Self-Supervised Deep Image Denoising - Official TensorFlow implementation of the NeurIPS 2019 paper
Python
293
star
61

Taylor_pruning

Pruning Neural Networks with Taylor criterion in Pytorch
Python
279
star
62

timeloop

Timeloop performs modeling, mapping and code-generation for tensor algebra workloads on various accelerator architectures.
C++
278
star
63

metfaces-dataset

Python
272
star
64

few_shot_gaze

Pytorch implementation and demo of FAZE: Few-Shot Adaptive Gaze Estimation (ICCV 2019, oral)
Python
272
star
65

splatnet

SPLATNet: Sparse Lattice Networks for Point Cloud Processing (CVPR2018)
Python
268
star
66

MinVIS

Python
261
star
67

edm2

Analyzing and Improving the Training Dynamics of Diffusion Models (EDM2)
Python
261
star
68

contact_graspnet

Efficient 6-DoF Grasp Generation in Cluttered Scenes
Python
260
star
69

CenterPose

Single-Stage Keypoint-based Category-level Object Pose Estimation from an RGB Image (ICRA 2022)
Python
251
star
70

trajdata

A unified interface to many trajectory forecasting datasets.
Python
245
star
71

STEP

STEP: Spatio-Temporal Progressive Learning for Video Action Detection. CVPR'19 (Oral)
Python
244
star
72

matchlib

SystemC/C++ library of commonly-used hardware functions and components for HLS.
C++
235
star
73

sim-web-visualizer

Web Based Visualizer for Simulation Environments
Python
231
star
74

SCOPS

SCOPS: Self-Supervised Co-Part Segmentation (CVPR'19)
Python
221
star
75

UMR

Self-supervised Single-view 3D Reconstruction
Python
221
star
76

DiffRL

[ICLR 2022] Accelerated Policy Learning with Parallel Differentiable Simulation
Python
220
star
77

cule

CuLE: A CUDA port of the Atari Learning Environment (ALE)
C++
216
star
78

SSV

Pytorch implementation of SSV: Self-Supervised Viewpoint Learning from Image Collections (CVPR 2020)
Python
214
star
79

DiffPure

A new adversarial purification method that uses the forward and reverse processes of diffusion models to remove adversarial perturbations.
Python
210
star
80

latentfusion

LatentFusion: End-to-End Differentiable Reconstruction and Rendering for Unseen Object Pose Estimation
Python
197
star
81

I2SB

Python
194
star
82

nvbio

NVBIO is a library of reusable components designed to accelerate bioinformatics applications using CUDA.
C++
193
star
83

6dof-graspnet

Implementation of 6-DoF GraspNet with tensorflow and python. This repo has been tested with python 2.7 and tensorflow 1.12.
Python
186
star
84

NVBit

183
star
85

AFNO-transformer

Adaptive FNO transformer - official Pytorch implementation
Python
174
star
86

UnseenObjectClustering

Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation
Python
166
star
87

AL-MDN

Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)
Python
159
star
88

fermat

Fermat is a high performance research oriented physically based rendering system, trying to produce beautiful pictures following the mathematician’s principle of least time
C++
158
star
89

PoseCNN-PyTorch

PyTorch implementation of the PoseCNN framework
C
156
star
90

mask-auto-labeler

Python
153
star
91

mimicgen_environments

This code corresponds to simulation environments used as part of the MimicGen project.
Python
153
star
92

Bi3D

Python
150
star
93

RVT

Official Code for RVT: Robotic View Transformer for 3D Object Manipulation
Python
147
star
94

condensa

Programmable Neural Network Compression
Python
146
star
95

traffic-behavior-simulation

Python
145
star
96

learningrigidity

Learning Rigidity in Dynamic Scenes with a Moving Camera for 3D Motion Field Estimation (ECCV 2018)
Python
144
star
97

ocrodeg

document image degradation
Jupyter Notebook
142
star
98

ocropus3

Repository collecting all the submodules for the new PyTorch-based OCR System.
Shell
141
star
99

CGBN

CGBN: CUDA Accelerated Multiple Precision Arithmetic (Big Num) using Cooperative Groups
Cuda
139
star
100

PL4NN

Perceptual Losses for Neural Networks: Caffe implementation of loss layers based on perceptual image quality metrics.
Python
138
star