• Stars
    star
    490
  • Rank 86,459 (Top 2 %)
  • Language
    Python
  • License
    Other
  • Created almost 5 years ago
  • Updated 12 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Pixel-Adaptive Convolutional Neural Networks (CVPR '19)

Pixel-Adaptive Convolutional Neural Networks

Project page | Paper | Video

Pixel-Adaptive Convolutional Neural Networks
Hang Su, Varun Jampani, Deqing Sun, Orazio Gallo, Erik Learned-Miller, and Jan Kautz.
CVPR 2019.

License

Copyright (C) 2019 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).

Installation

  • Make sure you have Python>=3.5 (we recommend using a Conda environment).
  • Add the project directory to your Python paths.
  • Install dependencies:
    • PyTorch v0.4-1.1 (incl. torchvision) with CUDA: see PyTorch instructions.
    • Additional libraries:
      pip install -r requirements.txt
  • (Optional) Verify installation:
    python -m unittest 

Layer Catalog

We implemented 5 types of PAC layers (as PyTorch Module):

  • PacConv2d: the standard variant
  • PacConvTranspose2d: the transposed (fractionally-strided) variant for upsampling
  • PacPool2d: the pooling variant
  • PacCRF: Mean-Field (MF) inference of a CRF
  • PacCRFLoose: MF inference of a CRF where the MF steps do not share weights

More details regarding each layer is provided below.

PacConv2d

PacConv2d is the PAC counterpart of nn.Conv2d. It accepts most standard nn.Conv2d arguments (including in_channels, out_channels, kernel_size, bias, stride, padding, dilation, but not groups and padding_mode), and we make sure that when the same arguments are used, PacConv2d and nn.Conv2d have the exact same output sizes. A few additional optional arguments are available:

    Args (in addition to those of Conv2d):
        kernel_type (str): 'gaussian' | 'inv_{alpha}_{lambda}[_asym][_fixed]'. Default: 'gaussian'
        smooth_kernel_type (str): 'none' | 'gaussian' | 'average_{sz}' | 'full_{sz}'. Default: 'none'
        normalize_kernel (bool): Default: False
        shared_filters (bool): Default: False
        filler (str): 'uniform'. Default: 'uniform'

    Note:
        - kernel_size only accepts odd numbers
        - padding should not be larger than :math:`dilation * (kernel_size - 1) / 2`

When used to build computation graphs, this layer takes two input tensors and generates one output tensor:

in_ch, out_ch, g_ch = 16, 32, 8         # channel sizes of input, output and guidance
f, b, h, w = 5, 2, 64, 64               # filter size, batch size, input height and width
input = torch.rand(b, in_ch, h, w)
guide = torch.rand(b, g_ch, h, w)       # guidance feature ('f' in Eq.3 of paper)

conv = nn.Conv2d(in_ch, out_ch, f)
out_conv = conv(input)                  # standard spatial convolution

pacconv = PacConv2d(in_ch, out_ch, f)   
out_pac = pacconv(input, guide)         # PAC 
out_pac = pacconv(input, None, guide_k) # alternative interface
                                        # guide_k is pre-computed 'K' (see Eq.3 of paper) 
                                        # of shape [b, g_ch, f, f, h, w]. packernel2d can be 
                                        # used for its creation.  

Use pacconv2d (in conjunction with packernel2d) for its functional interface.

PacConvTranspose2d

PacConvTranspose2d is the PAC counterpart of nn.ConvTranspose2d. It accepts most standard nn.ConvTranspose2d arguments (including in_channels, out_channels, kernel_size, bias, stride, padding, output_padding, dilation, but not groups and padding_mode), and we make sure that when the same arguments are used, PacConvTranspose2d and nn.ConvTranspose2d have the exact same output sizes. A few additional optional arguments are available: , and also a few additional ones:

    Args (in addition to those of ConvTranspose2d):
        kernel_type (str): 'gaussian' | 'inv_{alpha}_{lambda}[_asym][_fixed]'. Default: 'gaussian'
        smooth_kernel_type (str): 'none' | 'gaussian' | 'average_{sz}' | 'full_{sz}'. Default: 'none'
        normalize_kernel (bool): Default: False
        shared_filters (bool): Default: False
        filler (str): 'uniform' | 'linear'. Default: 'uniform'

    Note:
        - kernel_size only accepts odd numbers
        - padding should not be larger than :math:`dilation * (kernel_size - 1) / 2`

Similar to PacConv2d, PacConvTranspose2d also offers two ways of usage:

in_ch, out_ch, g_ch = 16, 32, 8             # channel sizes of input, output and guidance
f, b, h, w, oh, ow = 5, 2, 8, 8, 16, 16     # filter size, batch size, input height and width
input = torch.rand(b, in_ch, h, w)
guide = torch.rand(b, g_ch, oh, ow)         # guidance feature, note that it needs to match 
                                            # the spatial sizes of the output

convt = nn.ConvTranspose2d(in_ch, out_ch, f, stride=2, padding=2, output_padding=1)
out_convt = convt(input)                    # standard transposed convolution

pacconvt = PacConvTranspose2d(in_ch, out_ch, f, stride=2, padding=2, output_padding=1)   
out_pact = pacconvt(input, guide)           # PAC 
out_pact = pacconvt(input, None, guide_k)   # alternative interface
                                            # guide_k is pre-computed 'K' 
                                            # of shape [b, g_ch, f, f, oh, ow].
                                            # packernel2d can be used for its creation.  

Use pacconv_transpose2d (in conjunction with packernel2d) for its functional interface.

PacPool2d

PacPool2d is the PAC counterpart of nn.AvgPool2d. It accepts most standard nn.AvgPool2d arguments (including kernel_size, stride, padding, dilation, but not ceil_mode and count_include_pad), and we make sure that when the same arguments are used, PacPool2d and nn.AvgPool2d have the exact same output sizes. A few additional optional arguments are available: , and also a few additional ones:

    Args:
        kernel_size, stride, padding, dilation
        kernel_type (str): 'gaussian' | 'inv_{alpha}_{lambda}[_asym][_fixed]'. Default: 'gaussian'
        smooth_kernel_type (str): 'none' | 'gaussian' | 'average_{sz}' | 'full_{sz}'. Default: 'none'
        channel_wise (bool): Default: False
        normalize_kernel (bool): Default: False
        out_channels (int): needs to be specified for channel_wise 'inv_*' (non-fixed) kernels. Default: -1

    Note:
        - kernel_size only accepts odd numbers
        - padding should not be larger than :math:`dilation * (kernel_size - 1) / 2`

Similar to PacConv2d, PacPool2d also offers two ways of usage:

in_ch, g_ch = 16, 8                     # channel sizes of input and guidance
stride, f, b, h, w = 5, 2, 64, 64       # stride, filter size, batch size, input height and width
input = torch.rand(b, in_ch, h, w)
guide = torch.rand(b, g_ch, h, w)       # guidance feature 

pool = nn.AvgPool2d(f, stride)
out_pool = pool(input)                  # standard spatial convolution

pacpool = PacPool2d(f, stride)   
out_pac = pacpool(input, guide)         # PAC 
out_pac = pacpool(input, None, guide_k) # alternative interface
                                        # guide_k is pre-computed 'K'
                                        # of shape [b, g_ch, f, f, h, w]. packernel2d can be 
                                        # used for its creation.  

Use pacpool2d (in conjunction with packernel2d) for its functional interface.

PacCRF and PacCRFLoose

These layers offer a convenient way to add a CRF component at the end of a dense prediction network. They performs approximate mean-field inference under the hood. Available arguments include:

    Args:
        channels (int): number of categories.
        num_steps (int): number of mean-field update steps.
        final_output (str): 'log_softmax' | 'softmax' | 'log_Q'. Default: 'log_Q'
        perturbed_init (bool): whether to perturb initialization. Default: True
        native_impl (bool): Default: False
        fixed_weighting (bool): whether to use fixed weighting for unary/pairwise terms. Default: False
        unary_weight (float): Default: 1.0
        pairwise_kernels (dict or list): pairwise kernels, see add_pairwise_kernel() for details. Default: None

Usage example:

# create a CRF layer for 21 classes using 5 mean-field steps
crf = PacCRF(21, num_steps=5, unary_weight=1.0)

# add a pariwise term with equal weight with the unary term
crf.add_pairwise_kernel(kernel_size=5, dilation=1, blur=1, compat_type='4d', pairwise_weight=1.0)

# a convenient function is provided for creating pairwise features based on pixel color and positions
edge_features = [paccrf.create_YXRGB(im, yx_scale=100.0, rgb_scale=30.0)] 
output = crf(unary, edge_features)

# Note that we use constant values for unary_weight, pairwise_weight, yx_scale, rgb_scale, but they can 
# also take tensors and be learned through backprop.

Experiments

Joint upsampling

Joint depth upsampling on NYU Depth V2
  • Train/test split is provided by Li et al.

  • Test with one of our pre-trained models:

    python -m task_jointUpsampling.main --load-weights weights_depth/x8_pac_weights_epoch_5000.pth \
                                        --download \
                                        --factor 8 \
                                        --model PacJointUpsample \
                                        --dataset NYUDepthV2 \
                                        --data-root data/nyu
    4x 8x 16x
    Bilinear RMSE: 5.43 RMSE: 8.36 RMSE: 12.90
    PacJointUpsample RMSE: 2.39 | download RMSE: 4.59 | download RMSE: 8.09 | download
    PacJointUpsampleLite RMSE: 2.55 | download RMSE: 4.82 | download RMSE: 8.52 | download
    DJIF RMSE: 2.64 | download RMSE: 5.15 | download RMSE: 9.39 | download
  • Train from scratch:

    python -m task_jointUpsampling.main --factor 8 \
                                        --data-root data/nyu \
                                        --exp-root exp/nyu \
                                        --download \
                                        --dataset NYUDepthV2 \
                                        --epochs 5000 \
                                        --lr-steps 3500 4500

    See python -m task_jointUpsampling.main -h for the complete list of command line options.

Joint optical flow upsampling on Sintel
  • Train/val split (1 - train, 2 - val) is provided in meta/Sintel_train_val.txt (original source):

    • Validation: 133 pairs
      • ambush_6 (all 19)
      • bamboo_2 (last 25)
      • cave_4 (last 25)
      • market_6 (all 39)
      • temple_2 (last 25)
    • Training: remaining 908 pairs
  • Test with one of our pre-trained models:

    python -m task_jointUpsampling.main --load-weights weights_flow/x8_pac_weights_epoch_5000.pth \
                                        --download \
                                        --factor 8 \
                                        --model PacJointUpsample \
                                        --dataset Sintel \
                                        --data-root data/sintel
    4x 8x 16x
    Bilinear EPE: 0.4650 EPE: 0.9011 EPE: 1.6281
    PacJointUpsample EPE: 0.1042 | download EPE: 0.2558 | download EPE: 0.5921 | download
    DJIF EPE: 0.1760 | download EPE: 0.4382 | download EPE: 1.0422 | download
  • Train from scratch:

    python -m task_jointUpsampling.main --factor 8 \
                                        --data-root data/sintel \
                                        --exp-root exp/sintel \
                                        --download \
                                        --dataset Sintel \
                                        --epochs 5000 \
                                        --lr-steps 3500 4500

    See python -m task_jointUpsampling.main -h for the complete list of command line options.

Semantic segmentation

  • Test with one of the pre-trained models:

    python -m task_semanticSegmentation.main --data-root data/voc \ 
                                             --exp-root exp/voc \
                                             --download \
                                             --load-weights fcn8s_from_caffe.pth \
                                             --model fcn8s \
                                             --test-split val11_sbd \
                                             --test-crop -1
    miou (val / test) model name weights
    Backbone (FCN8s) 65.51% / 67.20% fcn8s download
    PacCRF 68.90% / 69.82% fcn8s_crfi5p4d5641p4d5161 download
    PacCRF-32 68.52% / 69.41% fcn8s_crfi5p4d5321 download
    PacFCN (hot-swapping) 67.44% / 69.18% fcn8spac download
    PacFCN+PacCRF 69.87% / 71.34% fcn8spac_crfi5p4d5641p4d5161 download

    Note that the last two models requires argument --test-crop 512.

  • Generate predictions

    Use the --eval pred mode to save predictions instead of reporting scores. Predictions will be saved under exp-root/outputs_*_pred, and can be used for VOC evaluation server:

    python -m task_semanticSegmentation.main \
    --data-root data/voc \
    --exp-root exp/voc \
    --load-weights fcn8s_paccrf_epoch_30.pth \
    --test-crop -1 \
    --test-split test \
    --eval pred \
    --model fcn8s_crfi5p4d5641p4d5161 
    
    cd exp/voc
    mkdir -p results/VOC2012/Segmentation
    mv outputs_test_pred results/VOC2012/Segmentation/comp6_test_cls
    tar zcf results_fcn8s_crf.tgz results

    Note that since there is no publicly available URL for the test split of VOC, when using the test split, the data files need to be downloaded from the official website manually. Simply place the downloaded VOC2012test.tar under the data root and untar.

  • Train models

    As an example, here shows the commands for the two-stage training of PacCRF:

    # stage 1: train CRF only with frozen backbone
    python -m task_semanticSegmentation.main \
    --data-root data/voc \
    --exp-root exp/voc/crf_only \
    --load-weights-backbone fcn8s_from_caffe.pth \
    --train-split train11 \
    --test-split val11_sbd \
    --train-crop 449 \
    --test-crop -1 \
    --model fcn8sfrozen_crfi5p4d5641p4d5161 \
    --epochs 40 \
    --lr 0.001 \
    --lr-steps 20
    
    # stage 2: train CRF and backbone jointly
    python -m task_semanticSegmentation.main \
    --data-root data/voc \
    --exp-root exp/voc/joint \
    --load-weights-backbone fcn8s_from_caffe.pth \
    --load-weights exp/voc/crf_only/weights_epoch_40.pth \
    --train-split train11 \
    --test-split val11_sbd \
    --train-crop 449 \
    --test-crop -1 \
    --model fcn8s_crfi5lp4d5641p4d5161 \
    --epochs 30 \
    --lr 0.0000001 \
    --lr-steps 20

See python -m task_semanticSegmentation.main -h for the complete list of command line options.

Citation

If you use this code for your research, please consider citing our paper:

@inproceedings{su2019pixel,
  author    = {Hang Su and 
	       Varun Jampani and 
	       Deqing Sun and 
	       Orazio Gallo and 
	       Erik Learned-Miller and 
	       Jan Kautz},
  title     = {Pixel-Adaptive Convolutional Neural Networks},
  booktitle = {Proceedings of the IEEE Conference on Computer 
               Vision and Pattern Recognition (CVPR)},
  year      = {2019}
}

More Repositories

1

instant-ngp

Instant neural graphics primitives: lightning fast NeRF and more
Cuda
15,102
star
2

stylegan

StyleGAN - Official TensorFlow Implementation
Python
13,882
star
3

stylegan2

StyleGAN2 - Official TensorFlow Implementation
Python
10,740
star
4

SPADE

Semantic Image Synthesis with SPADE
Python
7,518
star
5

stylegan3

Official PyTorch implementation of StyleGAN3
Python
6,108
star
6

neuralangelo

Official implementation of "Neuralangelo: High-Fidelity Neural Surface Reconstruction" (CVPR 2023)
Python
4,125
star
7

imaginaire

NVIDIA's Deep Imagination Team's PyTorch Library
Python
3,941
star
8

stylegan2-ada-pytorch

StyleGAN2-ADA - Official PyTorch implementation
Python
3,866
star
9

ffhq-dataset

Flickr-Faces-HQ Dataset (FFHQ)
Python
3,483
star
10

tiny-cuda-nn

Lightning fast C++/CUDA neural network framework
C++
3,286
star
11

eg3d

Python
3,089
star
12

MUNIT

Multimodal Unsupervised Image-to-Image Translation
Python
2,564
star
13

SegFormer

Official PyTorch implementation of SegFormer
Python
2,252
star
14

nvdiffrec

Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".
Python
2,019
star
15

few-shot-vid2vid

Pytorch implementation for few-shot photorealistic video-to-video translation.
Python
1,780
star
16

stylegan2-ada

StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation
Python
1,778
star
17

FUNIT

Translate images to unseen domains in the test time with few example images.
Python
1,545
star
18

PWC-Net

PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume, CVPR 2018 (Oral)
Python
1,512
star
19

noise2noise

Noise2Noise: Learning Image Restoration without Clean Data - Official TensorFlow implementation of the ICML 2018 paper
Python
1,356
star
20

alias-free-gan

Alias-Free GAN project website and code
1,320
star
21

prismer

The implementation of "Prismer: A Vision-Language Model with Multi-Task Experts".
Python
1,287
star
22

DG-Net

👫 Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral) 👫
Python
1,268
star
23

nvdiffrast

Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering
C++
1,137
star
24

edm

Elucidating the Design Space of Diffusion-Based Generative Models (EDM)
Python
1,014
star
25

Deep_Object_Pose

Deep Object Pose Estimation (DOPE) – ROS inference (CoRL 2018)
Python
955
star
26

VoxFormer

Official PyTorch implementation of VoxFormer [CVPR 2023 Highlight]
Python
937
star
27

NVAE

The Official PyTorch Implementation of "NVAE: A Deep Hierarchical Variational Autoencoder" (NeurIPS 2020 spotlight paper)
Python
889
star
28

BundleSDF

[CVPR 2023] BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown Objects
Python
842
star
29

ODISE

Official PyTorch implementation of ODISE: Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models [CVPR 2023 Highlight]
Python
779
star
30

GroupViT

Official PyTorch implementation of GroupViT: Semantic Segmentation Emerges from Text Supervision, CVPR 2022.
Python
679
star
31

FasterViT

[ICLR 2024] Official PyTorch implementation of FasterViT: Fast Vision Transformers with Hierarchical Attention
Python
664
star
32

GA3C

Hybrid CPU/GPU implementation of the A3C algorithm for deep reinforcement learning.
Python
641
star
33

denoising-diffusion-gan

Tackling the Generative Learning Trilemma with Denoising Diffusion GANs https://arxiv.org/abs/2112.07804
Python
634
star
34

genvs

610
star
35

sionna

Sionna: An Open-Source Library for Next-Generation Physical Layer Research
Jupyter Notebook
580
star
36

curobo

CUDA Accelerated Robot Library
Python
545
star
37

FB-BEV

Official PyTorch implementation of FB-BEV & FB-OCC - Forward-backward view transformation for vision-centric autonomous driving perception
Python
518
star
38

Dancing2Music

Python
513
star
39

planercnn

PlaneRCNN detects and reconstructs piece-wise planar surfaces from a single RGB image
Python
502
star
40

CALM

Python
486
star
41

DeepInversion

Official PyTorch implementation of Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion (CVPR 2020)
Python
474
star
42

EmerNeRF

PyTorch Implementation of EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via Self-Supervision
Python
456
star
43

FAN

Official PyTorch implementation of Fully Attentional Networks
Python
454
star
44

FourCastNet

Initial public release of code, data, and model weights for FourCastNet
Python
421
star
45

GCVit

[ICML 2023] Official PyTorch implementation of Global Context Vision Transformers
Python
414
star
46

intrinsic3d

Intrinsic3D - High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting (ICCV 2017)
C++
411
star
47

nvdiffmodeling

Differentiable rasterization applied to 3D model simplification tasks
Python
404
star
48

flip

A tool for visualizing and communicating the errors in rendered images.
C++
375
star
49

wetectron

Weakly-supervised object detection.
Python
355
star
50

FoundationPose

FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects
JavaScript
349
star
51

nvdiffrecmc

Official code for the NeurIPS 2022 paper "Shape, Light, and Material Decomposition from Images using Monte Carlo Rendering and Denoising".
C
341
star
52

geomapnet

Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)
Python
338
star
53

GLAMR

[CVPR 2022 Oral] Official PyTorch Implementation of "GLAMR: Global Occlusion-Aware Human Mesh Recovery with Dynamic Cameras”.
Python
329
star
54

LSGM

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)
Python
326
star
55

ssn_superpixels

Superpixel Sampling Networks (ECCV2018)
Python
323
star
56

DiffiT

Official Repository for DiffiT: Diffusion Vision Transformers for Image Generation
315
star
57

FreeSOLO

FreeSOLO for unsupervised instance segmentation, CVPR 2022
Python
307
star
58

long-video-gan

Official PyTorch implementation of LongVideoGAN
Python
297
star
59

neuralrgbd

Neural RGB→D Sensing: Per-pixel depth and its uncertainty estimation from a monocular RGB video
Python
294
star
60

selfsupervised-denoising

High-Quality Self-Supervised Deep Image Denoising - Official TensorFlow implementation of the NeurIPS 2019 paper
Python
293
star
61

Taylor_pruning

Pruning Neural Networks with Taylor criterion in Pytorch
Python
279
star
62

timeloop

Timeloop performs modeling, mapping and code-generation for tensor algebra workloads on various accelerator architectures.
C++
278
star
63

metfaces-dataset

Python
272
star
64

few_shot_gaze

Pytorch implementation and demo of FAZE: Few-Shot Adaptive Gaze Estimation (ICCV 2019, oral)
Python
272
star
65

splatnet

SPLATNet: Sparse Lattice Networks for Point Cloud Processing (CVPR2018)
Python
268
star
66

MinVIS

Python
261
star
67

edm2

Analyzing and Improving the Training Dynamics of Diffusion Models (EDM2)
Python
261
star
68

contact_graspnet

Efficient 6-DoF Grasp Generation in Cluttered Scenes
Python
260
star
69

CenterPose

Single-Stage Keypoint-based Category-level Object Pose Estimation from an RGB Image (ICRA 2022)
Python
251
star
70

trajdata

A unified interface to many trajectory forecasting datasets.
Python
245
star
71

STEP

STEP: Spatio-Temporal Progressive Learning for Video Action Detection. CVPR'19 (Oral)
Python
244
star
72

matchlib

SystemC/C++ library of commonly-used hardware functions and components for HLS.
C++
235
star
73

sim-web-visualizer

Web Based Visualizer for Simulation Environments
Python
231
star
74

SCOPS

SCOPS: Self-Supervised Co-Part Segmentation (CVPR'19)
Python
221
star
75

UMR

Self-supervised Single-view 3D Reconstruction
Python
221
star
76

DiffRL

[ICLR 2022] Accelerated Policy Learning with Parallel Differentiable Simulation
Python
220
star
77

cule

CuLE: A CUDA port of the Atari Learning Environment (ALE)
C++
216
star
78

SSV

Pytorch implementation of SSV: Self-Supervised Viewpoint Learning from Image Collections (CVPR 2020)
Python
214
star
79

DiffPure

A new adversarial purification method that uses the forward and reverse processes of diffusion models to remove adversarial perturbations.
Python
210
star
80

latentfusion

LatentFusion: End-to-End Differentiable Reconstruction and Rendering for Unseen Object Pose Estimation
Python
197
star
81

I2SB

Python
194
star
82

nvbio

NVBIO is a library of reusable components designed to accelerate bioinformatics applications using CUDA.
C++
193
star
83

6dof-graspnet

Implementation of 6-DoF GraspNet with tensorflow and python. This repo has been tested with python 2.7 and tensorflow 1.12.
Python
186
star
84

NVBit

183
star
85

AFNO-transformer

Adaptive FNO transformer - official Pytorch implementation
Python
174
star
86

UnseenObjectClustering

Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation
Python
166
star
87

AL-MDN

Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)
Python
159
star
88

fermat

Fermat is a high performance research oriented physically based rendering system, trying to produce beautiful pictures following the mathematician’s principle of least time
C++
158
star
89

PoseCNN-PyTorch

PyTorch implementation of the PoseCNN framework
C
156
star
90

mask-auto-labeler

Python
153
star
91

mimicgen_environments

This code corresponds to simulation environments used as part of the MimicGen project.
Python
153
star
92

Bi3D

Python
150
star
93

RVT

Official Code for RVT: Robotic View Transformer for 3D Object Manipulation
Python
147
star
94

condensa

Programmable Neural Network Compression
Python
146
star
95

traffic-behavior-simulation

Python
145
star
96

learningrigidity

Learning Rigidity in Dynamic Scenes with a Moving Camera for 3D Motion Field Estimation (ECCV 2018)
Python
144
star
97

ocrodeg

document image degradation
Jupyter Notebook
142
star
98

ocropus3

Repository collecting all the submodules for the new PyTorch-based OCR System.
Shell
141
star
99

CGBN

CGBN: CUDA Accelerated Multiple Precision Arithmetic (Big Num) using Cooperative Groups
Cuda
139
star
100

PL4NN

Perceptual Losses for Neural Networks: Caffe implementation of loss layers based on perceptual image quality metrics.
Python
138
star