• Stars
    star
    326
  • Rank 124,261 (Top 3 %)
  • Language
    Python
  • License
    Other
  • Created over 2 years ago
  • Updated over 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)

PWC PWC

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)

Arash Vahdat*·Karsten Kreis*·Jan Kautz

(*equal contribution)

Project Page


LSGM trains a score-based generative model (a.k.a. a denoising diffusion model) in the latent space of a variational autoencoder. It currently achieves state-of-the-art generative performance on several image datasets.

Requirements

LSGM is built in Python 3.8 using PyTorch 1.8.0. Please use the following command to install the requirements:

pip install -r requirements.txt

Optionally, you can also install NVIDIA Apex. When apex is installed, our training scripts use the Adam optimizer from this library, which is faster than Pytorch's native Adam.

Set up file paths and data

This work builds on top of our previous work NVAE. Please follow the instructions in the NVAE repository to prepare your data for training and evaluation. Small datasets such as CIFAR-10, MNIST, and OMNIGLOT do not require any data preparation as they will be downloaded automatically. Below, $DATA_DIR indicates the path to a data directory that will contain all the datasets. $CHECKPOINT_DIR is a directory used for storing checkpoints, and $EXPR_ID is a unique ID for the experiment. $IP_ADDR is the IP address of the machine that will host the process with rank 0 during training (see here). $NODE_RANK is the index of each node among all the nodes that are running the job (setting $IP_ADDR and $NODE_RANK is only required for multi-node training). $FID_STATS_DIR is a directory containing the FID statistics computed on each dataset (see below).

Precomputing feature statistics on each dataset for FID evaluation

You can use the following command to compute FID statistics on the CIFAR-10 dataset as an example:

python scripts/precompute_fid_statistics.py --data $DATA_DIR/cifar10 --dataset cifar10 --fid_dir $FID_STATS_DIR

which will save the FID related statistics in a directory under $FID_STATS_DIR. For other datasets, simply change --data and --dataset accordingly.

Training and evaluation

Training LSGM is often done in two stages. In the first stage, we train our VAE backbone assuming that the prior is a standard Normal distribution. In the second stage, we swap the standard Normal prior with a score-based prior and we jointly train both the VAE backbone and the score-based prior in an end-to-end fashion. Please check Appendix G in our paper for implementation details. Below, we provide commands used for both stages. If for any reason your training is stopped, use the exact same commend with the addition of --cont_training to continue training from the last saved checkpoint. If you observe NaN, continuing the training using this flag will usually not fix the NaN issue.

CIFAR-10

We train 3 different VAEs with the following commands (see Table 7 in the paper).

  • 20 group NVAE with full KL annealing for the "balanced" model (using 8 16GB V100 GPUs):
python train_vae.py --data $DATA_DIR/cifar10 --root $CHECKPOINT_DIR --save $EXPR_ID/vae1 --dataset cifar10 \
    --num_channels_enc 128 --num_channels_dec 128 --num_postprocess_cells 2 --num_preprocess_cells 2 \
    --num_latent_scales 1 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 --num_preprocess_blocks 1 \
    --num_postprocess_blocks 1 --num_latent_per_group 9 --num_groups_per_scale 20 --epochs 600 --batch_size 32 \
    --weight_decay_norm 1e-2 --num_nf 0 --kl_anneal_portion 0.5 --kl_max_coeff 1.0 --channel_mult 1 2 --seed 1 \
    --arch_instance res_bnswish --num_process_per_node 8 --use_se
  • 20 group NVAE with partial KL annealing for the model with best FID (using 8 16GB V100 GPUs):
python train_vae.py --data $DATA_DIR/cifar10 --root $CHECKPOINT_DIR --save $EXPR_ID/vae2 --dataset cifar10 \
    --num_channels_enc 128 --num_channels_dec 128 --num_postprocess_cells 2 --num_preprocess_cells 2 \
    --num_latent_scales 1 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 --num_preprocess_blocks 1 \
    --num_postprocess_blocks 1 --num_latent_per_group 9 --num_groups_per_scale 20 --epochs 400 --batch_size 32 \
    --weight_decay_norm 1e-2 --num_nf 0 --kl_anneal_portion 1.0 --kl_max_coeff 0.7 --channel_mult 1 2 --seed 1 \
    --arch_instance res_bnswish --num_process_per_node 8 --use_se
  • 4 group NVAE with partial KL annealing for the model with best NLL (using 4 16GB V100 GPUs):
python train_vae.py --data $DATA_DIR/cifar10 --root $CHECKPOINT_DIR --save $EXPR_ID/vae3 --dataset cifar10 \
    --num_channels_enc 256 --num_channels_dec 256 --num_postprocess_cells 3 --num_preprocess_cells 3 \
    --num_latent_scales 1 --num_cell_per_cond_enc 3 --num_cell_per_cond_dec 3 --num_preprocess_blocks 1 \
    --num_postprocess_blocks 1 --num_latent_per_group 45 --num_groups_per_scale 4 --epochs 400 --batch_size 64 \
    --weight_decay_norm 1e-2 --num_nf 2 --kl_anneal_portion 1.0 --kl_max_coeff 0.7 --channel_mult 1 2 --seed 1 \
    --arch_instance res_bnswish --num_process_per_node 4 --use_se

With the resulting VAE checkpoints, we can train the three different LSGMs. The models are trained with the following commands on 2 nodes with 8 32GB V100 GPUs each.

  • LSGM (balanced):
mpirun --allow-run-as-root -np 2 -npernode 1 bash -c 
    'python train_vada.py --fid_dir $FID_STATS_DIR --data $DATA_DIR/cifar10 --root $CHECKPOINT_DIR \
    --save $EXPR_ID/lsgm1 --vae_checkpoint $EXPR_ID/vae1/checkpoint.pt --train_vae --custom_conv_dae --apply_sqrt2_res \
    --fir --dae_arch ncsnpp --embedding_scale 1000 --dataset cifar10 --learning_rate_dae 1e-4 \
    --learning_rate_min_dae 1e-4 --epochs 1875 --dropout 0.2 --batch_size 16 --num_channels_dae 512 --num_scales_dae 3 \
    --num_cell_per_scale_dae 8 --sde_type vpsde --beta_start 0.1 --beta_end 20.0 --sigma2_0 0.0 \
    --weight_decay_norm_dae 1e-2 --weight_decay_norm_vae 1e-2 --time_eps 0.01 --train_ode_eps 1e-6 --eval_ode_eps 1e-6 \
    --train_ode_solver_tol 1e-5 --eval_ode_solver_tol 1e-5 --iw_sample_p drop_all_iw --iw_sample_q reweight_p_samples \
    --arch_instance_dae res_ho_attn --num_process_per_node 8 --use_se --node_rank $NODE_RANK --num_proc_node 2 \
    --master_address $IP_ADDR '
  • LSGM (best FID):
mpirun --allow-run-as-root -np 2 -npernode 1 bash -c 
    'python train_vada.py --fid_dir $FID_STATS_DIR --data $DATA_DIR/cifar10 --root $CHECKPOINT_DIR \
    --save $EXPR_ID/lsgm2 --vae_checkpoint $EXPR_ID/vae2/checkpoint.pt --train_vae --custom_conv_dae --apply_sqrt2_res \
    --fir --cont_kl_anneal --dae_arch ncsnpp --embedding_scale 1000 --dataset cifar10 --learning_rate_dae 1e-4 \
    --learning_rate_min_dae 1e-4 --epochs 1875 --dropout 0.2 --batch_size 16 --num_channels_dae 512 --num_scales_dae 3 \
    --num_cell_per_scale_dae 8 --sde_type vpsde --beta_start 0.1 --beta_end 20.0 --sigma2_0 0.0 \
    --weight_decay_norm_dae 1e-2 --weight_decay_norm_vae 1e-2 --time_eps 0.01 --train_ode_eps 1e-6 --eval_ode_eps 1e-6 \
    --train_ode_solver_tol 1e-5 --eval_ode_solver_tol 1e-5 --iw_sample_p drop_all_iw --iw_sample_q reweight_p_samples \
    --arch_instance_dae res_ho_attn --num_process_per_node 8 --use_se --node_rank $NODE_RANK --num_proc_node 2 \
    --master_address $IP_ADDR '
  • LSGM (best NLL):
mpirun --allow-run-as-root -np 2 -npernode 1 bash -c 
    'python train_vada.py --fid_dir $FID_STATS_DIR --data $DATA_DIR/cifar10 --root $CHECKPOINT_DIR \
    --save $EXPR_ID/lsgm3 --vae_checkpoint $EXPR_ID/vae3/checkpoint.pt --train_vae --apply_sqrt2_res --fir \
    --cont_kl_anneal --dae_arch ncsnpp --embedding_scale 1000 --dataset cifar10 --learning_rate_dae 1e-4 \
    --learning_rate_min_dae 1e-4 --epochs 1875 --dropout 0.2 --batch_size 16 --num_channels_dae 512 --num_scales_dae 3 \
    --num_cell_per_scale_dae 8 --sde_type geometric_sde --sigma2_min 3e-5 --sigma2_max 0.999 --sigma2_0 3e-5 \
    --weight_decay_norm_dae 1e-2 --weight_decay_norm_vae 1e-2 --time_eps 0.0 --train_ode_eps 1e-6 --eval_ode_eps 1e-6 \
    --train_ode_solver_tol 1e-5 --eval_ode_solver_tol 1e-5 --iw_sample_p ll_uniform --iw_sample_q reweight_p_samples \
    --arch_instance_dae res_ho_attn --num_process_per_node 8 --use_se --node_rank $NODE_RANK --num_proc_node 2 \
    --master_address \${NGC_MASTER_ADDR} '

The following command can be used to evaluate the negative variational bound on the data log-likelihood as well as the FID score for any of the LSGMs trained on CIFAR-10 (on 2 nodes with 8 32GB V100 GPUs each):

mpirun --allow-run-as-root -np 2 -npernode 1 bash -c 
    'python evaluate_vada.py --data $DATA_DIR/cifar10 --root $CHECKPOINT_DIR --save $EXPR_ID/eval --eval_mode evaluate \
    --checkpoint $CHECKPOINT_DIR/EXPR_ID/lsgm/checkpoint.pt --fid_dir $FID_STATS_DIR --num_process_per_node 8 \
    --nll_ode_eval --fid_ode_eval --ode_eps 1e-6 --ode_solver_tol 1e-5 --batch_size 32 --node_rank $NODE_RANK \
    --num_proc_node 2 --master_address \${NGC_MASTER_ADDR} '
MNIST

We train the NVAE component using the following command on 2 16GB V100 GPUs:

python train_vae.py --data $DATA_DIR/mnist --root $CHECKPOINT_DIR --save $EXPR_ID/vae --dataset mnist \
      --batch_size 100 --epochs 200 --num_latent_scales 1 --num_groups_per_scale 2 --num_postprocess_cells 3 \
      --num_preprocess_cells 3 --num_cell_per_cond_enc 1 --num_cell_per_cond_dec 1 --num_latent_per_group 20 \
      --num_preprocess_blocks 2 --num_postprocess_blocks 2 --weight_decay_norm 1e-2 --num_channels_enc 64 \
      --num_channels_dec 64 --decoder_dist bin --kl_anneal_portion 1.0 --kl_max_coeff 0.7 --channel_mult 1 2 2 \
      --num_nf 0 --arch_instance res_mbconv --num_process_per_node 2 --use_se

We train LSGM using the following command on 4 16GB V100 GPUs:

python train_vada.py --data $DATA_DIR/mnist --root $CHECKPOINT_DIR --save $EXPR_ID/lsgm --dataset mnist --epochs 800 \
        --dropout 0.2 --batch_size 32 --num_scales_dae 2 --weight_decay_norm_vae 1e-2 \
        --weight_decay_norm_dae 0. --num_channels_dae 256 --train_vae  --num_cell_per_scale_dae 8 \
        --learning_rate_dae 3e-4 --learning_rate_min_dae 3e-4 --train_ode_solver_tol 1e-5 --cont_kl_anneal  \
        --sde_type vpsde --iw_sample_p ll_iw --num_process_per_node 4 --use_se \
        --vae_checkpoint $CHECKPOINT_DIR/EXPR_ID/vae/checkpoint.pt  --dae_arch ncsnpp --embedding_scale 1000 \
        --mixing_logit_init -6 --warmup_epochs 20 --drop_inactive_var --skip_final_eval --fid_dir $FID_STATS_DIR

To evaluate the negative variational bound on the data log-likelihood on 4 16GB V100 GPUs the following command can be used:

python evaluate_vada.py --data $DATA_DIR/mnist --root $CHECKPOINT_DIR --save $EXPR_ID/eval --eval_mode evaluate \
        --checkpoint $CHECKPOINT_DIR/EXPR_ID/lsgm/checkpoint.pt --num_process_per_node 4 --nll_ode_eval \
        --ode_eps 1e-5 --ode_solver_tol 1e-5 --batch_size 128
OMNIGLOT

We train the NVAE component using the following command on 2 16GB V100 GPUs.

python train_vae.py --data $DATA_DIR/omniglot --root $CHECKPOINT_DIR --save $EXPR_ID/vae --dataset omniglot \
      --batch_size 64 --epochs 200 --num_latent_scales 1 --num_groups_per_scale 3 --num_postprocess_cells 2 \
      --num_preprocess_cells 2 --num_cell_per_cond_enc 3 --num_cell_per_cond_dec 3 --num_latent_per_group 20 \
      --num_preprocess_blocks 1 --num_postprocess_blocks 1 --num_channels_enc 64 --num_channels_dec 64 \
      --weight_decay_norm 1e-2 --decoder_dist bin --kl_anneal_portion 1.0 --kl_max_coeff 1.0 --channel_mult 1 2 \
      --num_nf 0 --arch_instance res_mbconv --num_process_per_node 2 --use_se

We train LSGM using the following command on 4 16GB V100 GPUs.

python train_vada.py --data $DATA_DIR/omniglot --root $CHECKPOINT_DIR --save $EXPR_ID/lsgm --dataset omniglot --epochs 1500 \
        --dropout 0.2 --batch_size 32 --num_channels_dae 256 --num_scales_dae 3 --weight_decay_norm_vae 1e-2 \
        --weight_decay_norm_dae 1e-3 --train_vae  --num_cell_per_scale_dae 8 --learning_rate_dae 3e-4 \
        --learning_rate_min_dae 3e-4 --train_ode_solver_tol 1e-5 --cont_kl_anneal  --sde_type vpsde \
        --iw_sample_p ll_iw --num_process_per_node 4 --use_se \
        --vae_checkpoint $EXPR_ID/vae/checkpoint.pt  --dae_arch ncsnpp --embedding_scale 1000 --mixing_logit_init -6 \
        --warmup_epochs 20 --drop_inactive_var --skip_final_eval --fid_dir $FID_STATS_DIR

To evaluate the negative variational bound on the data log-likelihood on 4 16GB V100 GPUs the following command can be used:

python evaluate_vada.py --data $DATA_DIR/omniglot --root $CHECKPOINT_DIR --save $EXPR_ID/eval --eval_mode evaluate \
        --checkpoint $CHECKPOINT_DIR/EXPR_ID/lsgm/checkpoint.pt --num_process_per_node 4 --nll_ode_eval \
        --ode_eps 1e-5 --ode_solver_tol 1e-5 --batch_size 128
CelebA-HQ-256 Quantitative Model

We train the NVAE component using the following command on 2 nodes, each with 8 32GB V100 GPUs:

mpirun --allow-run-as-root  -np 2 -npernode 1 bash -c \
    'python train_vae.py --data $DATA_DIR/celeba/celeba-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID/vae --dataset celeba_256 \
    --num_channels_enc 64 --num_channels_dec 64 --epochs 200 --num_postprocess_cells 2 --num_preprocess_cells 2 \
    --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 --num_preprocess_blocks 1 \
    --num_postprocess_blocks 1 --weight_decay_norm 3e-2 --num_latent_scales 3 --num_groups_per_scale 8 --num_nf 2 \
    --batch_size 4 --kl_anneal_portion 1. --kl_max_coeff 1. --channel_mult 1 1 2 4 --num_x_bits 5 --decoder_dist dml \
    --progressive_input_vae input_skip --arch_instance res_mbconv --num_process_per_node 8 --use_se \
    --node_rank $NODE_RANK --num_proc_node 2 --master_address $IP_ADDR '

We train the LSGM using the following command on 2 nodes, each with 8 32GB V100 GPUs:

mpirun --allow-run-as-root  -np 2 -npernode 1 bash -c \
    'python train_vada.py --data $DATA_DIR/celeba/celeba-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID/lsgm --dataset celeba_256 \
    --epochs 1000 --dropout 0.2 --num_channels_dae 256 --num_scales_dae 4 --train_vae  --weight_decay_norm_vae 1e-1 \
    --weight_decay_norm_dae 1e-2 --fir  --num_cell_per_scale_dae 8 --learning_rate_dae 1e-4 --learning_rate_min_dae 1e-4 \
    --batch_size 4 --sde_type vpsde --iw_sample_p drop_sigma2t_iw --iw_sample_q ll_iw --disjoint_training \
    --num_process_per_node 8 --use_se --vae_checkpoint $EXPR_ID/vae/checkpoint.pt  --dae_arch ncsnpp \
    --embedding_scale 1000 --mixing_logit_init -6 --warmup_epochs 20 --drop_inactive_var --skip_final_eval \
    --fid_dir $FID_STATS_DIR --node_rank $NODE_RANK --num_proc_node 2 --master_address $IP_ADDR '

To evaluate the negative variational bound on the data log-likelihood, we use the following command on similarly 2 nodes:

mpirun --allow-run-as-root -np 2 -npernode 1 bash -c \
    'python evaluate_vada.py  --data $DATA_DIR/celeba/celeba-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID/eval_nll \
     --checkpoint $CHECKPOINT_DIR/EXPR_ID/lsgm/checkpoint_fid.pt --num_process_per_node 8 --eval_mode evaluate \
     --nll_ode_eval --ode_eps 1e-5 --ode_solver_tol 1e-5 --batch_size 64 \
     --fid_dir $FID_STATS_DIR --node_rank $NODE_RANK --num_proc_node 2 --master_address $IP_ADDR '

And, to evaluate the FID score, we use the following command on similarly 2 nodes:

mpirun --allow-run-as-root -np 2 -npernode 1 bash -c \
    'python evaluate_vada.py  --data $DATA_DIR/celeba/celeba-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID/eval_fid \
     --checkpoint $CHECKPOINT_DIR/EXPR_ID/lsgm/checkpoint_fid.pt --num_process_per_node 8 --eval_mode evaluate \
     --fid_ode_eval --ode_eps 1e-5 --ode_solver_tol 1e-2 --batch_size 64 --vae_train_mode \
     --fid_dir $FID_STATS_DIR --node_rank $NODE_RANK --num_proc_node 2 --master_address $IP_ADDR '

Note that for the FID evaluation on this model, we observed that --ode_solver_tol 1e-5 gives a slightly worse FID score with much slower sampling speed (see Fig. 4 in the paper).

CelebA-HQ-256 Qualitative Model

We trained the qualitative model on the CelebA-HQ-256 dataset in 3 stages. In the first stage, we only trained the NVAE component, and in the second stage, we trained an LSGM (i.e., both the NVAE backbone and the SGM prior jointly) with the geometric VPSDE for likelihood weighting, similar to our other models. However, in the third stage, we discarded the SGM prior model and re-trained a new SGM prior with the reweighted objective. In this stage, we only trained the SGM prior and left the NVAE component fixed from the second stage.

We train the NVAE component using the following command on 2 nodes, each with 8 32GB V100 GPUs:

mpirun --allow-run-as-root  -np 2 -npernode 1 bash -c \
    'python train_vae.py --data $DATA_DIR/celeba/celeba-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID/vae --dataset celeba_256 \
    --num_channels_enc 64 --num_channels_dec 64 --epochs 200 --num_postprocess_cells 2 --num_preprocess_cells 2 \
    --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 --num_preprocess_blocks 1 \
    --num_postprocess_blocks 1 --weight_decay_norm 3e-2 --num_latent_scales 2 --num_groups_per_scale 10 --num_nf 2 \
    --batch_size 4 --kl_anneal_portion 1. --kl_max_coeff 1. --channel_mult 1 1 2 --num_x_bits 5 --decoder_dist dml \
    --progressive_input_vae input_skip --arch_instance res_mbconv --num_process_per_node 8 --use_se \
    --node_rank $NODE_RANK --num_proc_node 2 --master_address $IP_ADDR '

We train LSGM (both VAE and SGM prior jointly) in the second stage using the following command on 2 nodes, each with 8 32GB V100 GPUs:

mpirun --allow-run-as-root  -np 2 -npernode 1 bash -c \
    'python train_vada.py --data $DATA_DIR/celeba/celeba-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID/lsgm --dataset celeba_256 \
     --epochs 1000 --dropout 0.2 --num_channels_dae 256 --num_scales_dae 5 --train_vae  --weight_decay_norm_vae 1e-1 \
     --weight_decay_norm_dae 1e-2 --fir  --num_cell_per_scale_dae 8 --learning_rate_dae 1e-4 --learning_rate_min_dae 1e-4 \
     --learning_rate_vae 8e-5 --batch_size 4 --sde_type geometric_sde --time_eps 0. --sigma2_0 3e-5 --sigma2_min 3e-5 \
     --sigma2_max 0.999 --iw_sample_p drop_sigma2t_iw --iw_sample_q ll_iw --disjoint_training  --update_q_ema  \
     --cont_kl_anneal --num_process_per_node 8 --use_se --vae_checkpoint $EXPR_ID/vae/checkpoint.pt --dae_arch ncsnpp \
     --embedding_scale 1000 --mixing_logit_init -6 --warmup_epochs 20 --drop_inactive_var --skip_final_eval \
     --fid_dir $FID_STATS_DIR --node_rank $NODE_RANK --num_proc_node 2 --master_address $IP_ADDR '

We re-train the SGM prior in the final stage using the following command on 2 nodes, each with 8 32GB V100 GPUs:

mpirun --allow-run-as-root  -np 2 -npernode 1 bash -c \
    'python train_vada.py --data $DATA_DIR/celeba/celeba-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID/lsgm2 --dataset celeba_256 \
    --epochs 1500 --dropout 0.2 --num_channels_dae 320 --num_scales_dae 5 --weight_decay_norm_vae 1e-1 \
    --weight_decay_norm_dae 1e-2 --fir  --num_cell_per_scale_dae 8 --learning_rate_dae 6e-5 --learning_rate_min_dae 6e-5 \
    --batch_size 6 --sde_type vpsde --iw_sample_p drop_sigma2t_iw --num_process_per_node 8 \
    --use_se --vae_checkpoint $EXPR_ID/lsgm/checkpoint.pt  --dae_arch ncsnpp --embedding_scale 1000 \
    --mixing_logit_init -6 --warmup_epochs 20 --drop_inactive_var --skip_final_eval  \
    --fid_dir $FID_STATS_DIR --node_rank $NODE_RANK --num_proc_node 2 --master_address $IP_ADDR '

For evaluating the final model, we used the following command on 2 nodes, each with 8 32GB V100 GPUs:

mpirun --allow-run-as-root -np 2 -npernode 1 bash -c \
    'python evaluate_vada.py --data $DATA_DIR/celeba/celeba-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID/eval \
    --checkpoint $CHECKPOINT_DIR/EXPR_ID/lsgm2/checkpoint_fid.pt --num_process_per_node 8 --eval_mode evaluate \
    --fid_ode_eval --ode_eps 1e-5 --ode_solver_tol 1e-5 --batch_size 64 --vae_train_mode \
    --fid_dir $FID_STATS_DIR --node_rank $NODE_RANK --num_proc_node 2 --master_address $IP_ADDR '

Note in the commands above --num_process_per_node sets the number of available GPUs for training. Set this argument to different values depending on the available GPUs in your system.

Evaluating NVAE models

Additionally, if you'd like to evaluate an NVAE trained in the first stage, you can use evaluate_vae.py using a command like:

python evaluate_vae.py --data $DATA_DIR/celeba/celeba-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID/eval_vae --eval_mode evaluate \
        --checkpoint $CHECKPOINT_DIR/EXPR_ID/vae/checkpoint.pt --num_process_per_node 8 --fid_dir $FID_STATS_DIR \
        --fid_eval --nll_eval

However, please note that the NVAE models trained in the first stage with our commands are not always fully trained to convergence, as the KL warmup is often performed only partially during first stage training (and completed during the second end-to-end LSGM training stage) and the number of epochs is set to a small value. If you would like to fully train an NVAE model in the first stage use --kl_anneal_portion 0.3 --kl_max_coeff 1.0, and set the number of epochs such that you have about 100k to 400k training iterations.

Monitoring the training progress

We use Tensorboard to monitor the progress of training using a command like:

tensorboard --logdir $CHECKPOINT_DIR/$EXPR_ID/lsgm

Checkpoints

We provide pre-trained LSGM checkpoints for the MNIST, CIFAR-10, and CelebA-HQ-256 datasets at this location. In addition to LSGM models, each directory also contains the pre-trained NVAE checkpoint obtained at the end of the first VAE pre-training stage.

Common issues

Getting NaN in training

One of the main challenges in training very deep hierarchical VAEs are training instabilities that we discussed in the NVAE paper. The training commands provided above train LSGM models similar to the ones reported in the paper. However, if you encounter NaN during training, you can use these tricks to stabilize your training: (i) Increase the spectral regularization coefficients --weight_decay_norm_vae and --weight_decay_norm_dae. (ii) Decrease the learning rate. (iii) Disable training of the VAE component when training LSGM in the second stage by removing the --train_vae argument.

Note that some of our commands above have the --custom_conv_dae flag. This flag tells our spectral regularization (SR) class to look for particular convolution layer classes when applying this regularization on the SGM prior. Since these classes are not present in the NCSN++ architecture, this flag will disable SR on the conv layers of the SGM prior. In our experiments, we accidentally observed that providing this flag (i.e., disabling SR on the SGM prior), sometimes yields better generative performance due to the over-regularization of SR. However, this can come with instabilities at times. If you observe instability while having the --custom_conv_dae flag, we recommend removing this flag such that SR can be applied to the conv layers in the SGM prior as well.

Requirements installation

Installing ninja, pytorch and apex (optional) often requires installing a variant of these libraries that are compiled with the same cuda version. We installed these libraries on a Ubuntu system with python 3.8 and CUDA 10.1 using the following commands:

export CUDA_HOME=/usr/local/cuda-10.1/
pip3 install torch==1.8.0+cu101 torchvision==0.9.0+cu101 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
pip3 install ninja
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Alternatively, if you have difficulties with installing these libraries, we recommend running our code in docker containers. You can build a docker image on top of NVIDIA images in which these libraries are properly compiled. You can find our Dockerfile at scripts/Dockerfile.

License

Please check the LICENSE file. LSGM may be used with NVIDIA Processors non-commercially, meaning for research or evaluation purposes only. For business inquiries, please contact [email protected].

Bibtex

Cite our paper using the following bibtex item:

@inproceedings{vahdat2021score,
  title={Score-based Generative Modeling in Latent Space},
  author={Vahdat, Arash and Kreis, Karsten and Kautz, Jan},
  booktitle={Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

More Repositories

1

instant-ngp

Instant neural graphics primitives: lightning fast NeRF and more
Cuda
15,102
star
2

stylegan

StyleGAN - Official TensorFlow Implementation
Python
13,882
star
3

stylegan2

StyleGAN2 - Official TensorFlow Implementation
Python
10,740
star
4

SPADE

Semantic Image Synthesis with SPADE
Python
7,518
star
5

stylegan3

Official PyTorch implementation of StyleGAN3
Python
6,108
star
6

neuralangelo

Official implementation of "Neuralangelo: High-Fidelity Neural Surface Reconstruction" (CVPR 2023)
Python
4,125
star
7

imaginaire

NVIDIA's Deep Imagination Team's PyTorch Library
Python
3,941
star
8

stylegan2-ada-pytorch

StyleGAN2-ADA - Official PyTorch implementation
Python
3,866
star
9

ffhq-dataset

Flickr-Faces-HQ Dataset (FFHQ)
Python
3,483
star
10

tiny-cuda-nn

Lightning fast C++/CUDA neural network framework
C++
3,286
star
11

eg3d

Python
3,089
star
12

MUNIT

Multimodal Unsupervised Image-to-Image Translation
Python
2,564
star
13

SegFormer

Official PyTorch implementation of SegFormer
Python
2,252
star
14

nvdiffrec

Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".
Python
2,019
star
15

few-shot-vid2vid

Pytorch implementation for few-shot photorealistic video-to-video translation.
Python
1,780
star
16

stylegan2-ada

StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation
Python
1,778
star
17

FUNIT

Translate images to unseen domains in the test time with few example images.
Python
1,545
star
18

PWC-Net

PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume, CVPR 2018 (Oral)
Python
1,512
star
19

noise2noise

Noise2Noise: Learning Image Restoration without Clean Data - Official TensorFlow implementation of the ICML 2018 paper
Python
1,356
star
20

alias-free-gan

Alias-Free GAN project website and code
1,320
star
21

prismer

The implementation of "Prismer: A Vision-Language Model with Multi-Task Experts".
Python
1,287
star
22

DG-Net

👫 Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral) 👫
Python
1,268
star
23

nvdiffrast

Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering
C++
1,137
star
24

edm

Elucidating the Design Space of Diffusion-Based Generative Models (EDM)
Python
1,014
star
25

Deep_Object_Pose

Deep Object Pose Estimation (DOPE) – ROS inference (CoRL 2018)
Python
955
star
26

VoxFormer

Official PyTorch implementation of VoxFormer [CVPR 2023 Highlight]
Python
937
star
27

NVAE

The Official PyTorch Implementation of "NVAE: A Deep Hierarchical Variational Autoencoder" (NeurIPS 2020 spotlight paper)
Python
889
star
28

BundleSDF

[CVPR 2023] BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown Objects
Python
842
star
29

ODISE

Official PyTorch implementation of ODISE: Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models [CVPR 2023 Highlight]
Python
779
star
30

GroupViT

Official PyTorch implementation of GroupViT: Semantic Segmentation Emerges from Text Supervision, CVPR 2022.
Python
679
star
31

FasterViT

[ICLR 2024] Official PyTorch implementation of FasterViT: Fast Vision Transformers with Hierarchical Attention
Python
664
star
32

GA3C

Hybrid CPU/GPU implementation of the A3C algorithm for deep reinforcement learning.
Python
641
star
33

denoising-diffusion-gan

Tackling the Generative Learning Trilemma with Denoising Diffusion GANs https://arxiv.org/abs/2112.07804
Python
634
star
34

genvs

610
star
35

sionna

Sionna: An Open-Source Library for Next-Generation Physical Layer Research
Jupyter Notebook
580
star
36

curobo

CUDA Accelerated Robot Library
Python
545
star
37

FB-BEV

Official PyTorch implementation of FB-BEV & FB-OCC - Forward-backward view transformation for vision-centric autonomous driving perception
Python
518
star
38

Dancing2Music

Python
513
star
39

planercnn

PlaneRCNN detects and reconstructs piece-wise planar surfaces from a single RGB image
Python
502
star
40

pacnet

Pixel-Adaptive Convolutional Neural Networks (CVPR '19)
Python
490
star
41

CALM

Python
486
star
42

DeepInversion

Official PyTorch implementation of Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion (CVPR 2020)
Python
474
star
43

EmerNeRF

PyTorch Implementation of EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via Self-Supervision
Python
456
star
44

FAN

Official PyTorch implementation of Fully Attentional Networks
Python
454
star
45

FourCastNet

Initial public release of code, data, and model weights for FourCastNet
Python
421
star
46

GCVit

[ICML 2023] Official PyTorch implementation of Global Context Vision Transformers
Python
414
star
47

intrinsic3d

Intrinsic3D - High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting (ICCV 2017)
C++
411
star
48

nvdiffmodeling

Differentiable rasterization applied to 3D model simplification tasks
Python
404
star
49

flip

A tool for visualizing and communicating the errors in rendered images.
C++
375
star
50

wetectron

Weakly-supervised object detection.
Python
355
star
51

FoundationPose

FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects
JavaScript
349
star
52

nvdiffrecmc

Official code for the NeurIPS 2022 paper "Shape, Light, and Material Decomposition from Images using Monte Carlo Rendering and Denoising".
C
341
star
53

geomapnet

Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)
Python
338
star
54

GLAMR

[CVPR 2022 Oral] Official PyTorch Implementation of "GLAMR: Global Occlusion-Aware Human Mesh Recovery with Dynamic Cameras”.
Python
329
star
55

ssn_superpixels

Superpixel Sampling Networks (ECCV2018)
Python
323
star
56

DiffiT

Official Repository for DiffiT: Diffusion Vision Transformers for Image Generation
315
star
57

FreeSOLO

FreeSOLO for unsupervised instance segmentation, CVPR 2022
Python
307
star
58

long-video-gan

Official PyTorch implementation of LongVideoGAN
Python
297
star
59

neuralrgbd

Neural RGB→D Sensing: Per-pixel depth and its uncertainty estimation from a monocular RGB video
Python
294
star
60

selfsupervised-denoising

High-Quality Self-Supervised Deep Image Denoising - Official TensorFlow implementation of the NeurIPS 2019 paper
Python
293
star
61

Taylor_pruning

Pruning Neural Networks with Taylor criterion in Pytorch
Python
279
star
62

timeloop

Timeloop performs modeling, mapping and code-generation for tensor algebra workloads on various accelerator architectures.
C++
278
star
63

metfaces-dataset

Python
272
star
64

few_shot_gaze

Pytorch implementation and demo of FAZE: Few-Shot Adaptive Gaze Estimation (ICCV 2019, oral)
Python
272
star
65

splatnet

SPLATNet: Sparse Lattice Networks for Point Cloud Processing (CVPR2018)
Python
268
star
66

MinVIS

Python
261
star
67

edm2

Analyzing and Improving the Training Dynamics of Diffusion Models (EDM2)
Python
261
star
68

contact_graspnet

Efficient 6-DoF Grasp Generation in Cluttered Scenes
Python
260
star
69

CenterPose

Single-Stage Keypoint-based Category-level Object Pose Estimation from an RGB Image (ICRA 2022)
Python
251
star
70

trajdata

A unified interface to many trajectory forecasting datasets.
Python
245
star
71

STEP

STEP: Spatio-Temporal Progressive Learning for Video Action Detection. CVPR'19 (Oral)
Python
244
star
72

matchlib

SystemC/C++ library of commonly-used hardware functions and components for HLS.
C++
235
star
73

sim-web-visualizer

Web Based Visualizer for Simulation Environments
Python
231
star
74

SCOPS

SCOPS: Self-Supervised Co-Part Segmentation (CVPR'19)
Python
221
star
75

UMR

Self-supervised Single-view 3D Reconstruction
Python
221
star
76

DiffRL

[ICLR 2022] Accelerated Policy Learning with Parallel Differentiable Simulation
Python
220
star
77

cule

CuLE: A CUDA port of the Atari Learning Environment (ALE)
C++
216
star
78

SSV

Pytorch implementation of SSV: Self-Supervised Viewpoint Learning from Image Collections (CVPR 2020)
Python
214
star
79

DiffPure

A new adversarial purification method that uses the forward and reverse processes of diffusion models to remove adversarial perturbations.
Python
210
star
80

latentfusion

LatentFusion: End-to-End Differentiable Reconstruction and Rendering for Unseen Object Pose Estimation
Python
197
star
81

I2SB

Python
194
star
82

nvbio

NVBIO is a library of reusable components designed to accelerate bioinformatics applications using CUDA.
C++
193
star
83

6dof-graspnet

Implementation of 6-DoF GraspNet with tensorflow and python. This repo has been tested with python 2.7 and tensorflow 1.12.
Python
186
star
84

NVBit

183
star
85

AFNO-transformer

Adaptive FNO transformer - official Pytorch implementation
Python
174
star
86

UnseenObjectClustering

Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation
Python
166
star
87

AL-MDN

Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)
Python
159
star
88

fermat

Fermat is a high performance research oriented physically based rendering system, trying to produce beautiful pictures following the mathematician’s principle of least time
C++
158
star
89

PoseCNN-PyTorch

PyTorch implementation of the PoseCNN framework
C
156
star
90

mask-auto-labeler

Python
153
star
91

mimicgen_environments

This code corresponds to simulation environments used as part of the MimicGen project.
Python
153
star
92

Bi3D

Python
150
star
93

RVT

Official Code for RVT: Robotic View Transformer for 3D Object Manipulation
Python
147
star
94

condensa

Programmable Neural Network Compression
Python
146
star
95

traffic-behavior-simulation

Python
145
star
96

learningrigidity

Learning Rigidity in Dynamic Scenes with a Moving Camera for 3D Motion Field Estimation (ECCV 2018)
Python
144
star
97

ocrodeg

document image degradation
Jupyter Notebook
142
star
98

ocropus3

Repository collecting all the submodules for the new PyTorch-based OCR System.
Shell
141
star
99

CGBN

CGBN: CUDA Accelerated Multiple Precision Arithmetic (Big Num) using Cooperative Groups
Cuda
139
star
100

PL4NN

Perceptual Losses for Neural Networks: Caffe implementation of loss layers based on perceptual image quality metrics.
Python
138
star