• Stars
    star
    13,882
  • Rank 2,073 (Top 0.05 %)
  • Language
    Python
  • License
    Other
  • Created about 5 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

StyleGAN - Official TensorFlow Implementation

StyleGAN โ€” Official TensorFlow Implementation

Python 3.6 TensorFlow 1.10 cuDNN 7.3.1 License CC BY-NC

Teaser image Picture: These people are not real โ€“ they were produced by our generator that allows control over different aspects of the image.

This repository contains the official TensorFlow implementation of the following paper:

A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras (NVIDIA), Samuli Laine (NVIDIA), Timo Aila (NVIDIA)
https://arxiv.org/abs/1812.04948

Abstract: We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scale-specific control of the synthesis. The new generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. To quantify interpolation quality and disentanglement, we propose two new, automated methods that are applicable to any generator architecture. Finally, we introduce a new, highly varied and high-quality dataset of human faces.

For business inquiries, please visit our website and submit the form: NVIDIA Research Licensing

โ˜…โ˜…โ˜… NEW: StyleGAN2-ADA-PyTorch is now available; see the full list of versions here โ˜…โ˜…โ˜…

Resources

Material related to our paper is available via the following links:

Additional material can be found on Google Drive:

Path Description
StyleGAN Main folder.
โ”œย  stylegan-paper.pdf High-quality version of the paper PDF.
โ”œย  stylegan-video.mp4 High-quality version of the result video.
โ”œย  images Example images produced using our generator.
โ”‚ย  โ”œย  representative-images High-quality images to be used in articles, blog posts, etc.
โ”‚ย  โ””ย  100k-generated-images 100,000 generated images for different amounts of truncation.
โ”‚ย  โ€‚โ€‚ โ”œย  ffhq-1024x1024 Generated using Flickr-Faces-HQ dataset at 1024ร—1024.
โ”‚ย  โ€‚โ€‚ โ”œย  bedrooms-256x256 Generated using LSUN Bedroom dataset at 256ร—256.
โ”‚ย  โ€‚โ€‚ โ”œย  cars-512x384 Generated using LSUN Car dataset at 512ร—384.
โ”‚ย  โ€‚โ€‚ โ””ย  cats-256x256 Generated using LSUN Cat dataset at 256ร—256.
โ”œย  videos Example videos produced using our generator.
โ”‚ย  โ””ย  high-quality-video-clips Individual segments of the result video as high-quality MP4.
โ”œย  ffhq-dataset Raw data for the Flickr-Faces-HQ dataset.
โ””ย  networks Pre-trained networks as pickled instances of dnnlib.tflib.Network.
โ€‚โ€‚ โ”œย  stylegan-ffhq-1024x1024.pkl StyleGAN trained with Flickr-Faces-HQ dataset at 1024ร—1024.
โ€‚โ€‚ โ”œย  stylegan-celebahq-1024x1024.pkl StyleGAN trained with CelebA-HQ dataset at 1024ร—1024.
โ€‚โ€‚ โ”œย  stylegan-bedrooms-256x256.pkl StyleGAN trained with LSUN Bedroom dataset at 256ร—256.
โ€‚โ€‚ โ”œย  stylegan-cars-512x384.pkl StyleGAN trained with LSUN Car dataset at 512ร—384.
โ€‚โ€‚ โ”œย  stylegan-cats-256x256.pkl StyleGAN trained with LSUN Cat dataset at 256ร—256.
โ€‚โ€‚ โ””ย  metrics Auxiliary networks for the quality and disentanglement metrics.
โ€‚โ€‚ โ€‚โ€‚ โ”œย  inception_v3_features.pkl Standard Inception-v3 classifier that outputs a raw feature vector.
โ€‚โ€‚ โ€‚โ€‚ โ”œย  vgg16_zhang_perceptual.pkl Standard LPIPS metric to estimate perceptual similarity.
โ€‚โ€‚ โ€‚โ€‚ โ”œย  celebahq-classifier-00-male.pkl Binary classifier trained to detect a single attribute of CelebA-HQ.
โ€‚โ€‚ โ€‚โ€‚ โ””ย โ‹ฏ Please see the file listing for remaining networks.

Licenses

All material, excluding the Flickr-Faces-HQ dataset, is made available under Creative Commons BY-NC 4.0 license by NVIDIA Corporation. You can use, redistribute, and adapt the material for non-commercial purposes, as long as you give appropriate credit by citing our paper and indicating any changes that you've made.

For license information regarding the FFHQ dataset, please refer to the Flickr-Faces-HQ repository.

inception_v3_features.pkl and inception_v3_softmax.pkl are derived from the pre-trained Inception-v3 network by Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. The network was originally shared under Apache 2.0 license on the TensorFlow Models repository.

vgg16.pkl and vgg16_zhang_perceptual.pkl are derived from the pre-trained VGG-16 network by Karen Simonyan and Andrew Zisserman. The network was originally shared under Creative Commons BY 4.0 license on the Very Deep Convolutional Networks for Large-Scale Visual Recognition project page.

vgg16_zhang_perceptual.pkl is further derived from the pre-trained LPIPS weights by Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The weights were originally shared under BSD 2-Clause "Simplified" License on the PerceptualSimilarity repository.

System requirements

  • Both Linux and Windows are supported, but we strongly recommend Linux for performance and compatibility reasons.
  • 64-bit Python 3.6 installation. We recommend Anaconda3 with numpy 1.14.3 or newer.
  • TensorFlow 1.10.0 or newer with GPU support.
  • One or more high-end NVIDIA GPUs with at least 11GB of DRAM. We recommend NVIDIA DGX-1 with 8 Tesla V100 GPUs.
  • NVIDIA driver 391.35 or newer, CUDA toolkit 9.0 or newer, cuDNN 7.3.1 or newer.

Using pre-trained networks

A minimal example of using a pre-trained StyleGAN generator is given in pretrained_example.py. When executed, the script downloads a pre-trained StyleGAN generator from Google Drive and uses it to generate an image:

> python pretrained_example.py
Downloading https://drive.google.com/uc?id=1MEGjdvVpUsu1jB4zrXZN7Y4kBBOzizDQ .... done

Gs                              Params    OutputShape          WeightShape
---                             ---       ---                  ---
latents_in                      -         (?, 512)             -
...
images_out                      -         (?, 3, 1024, 1024)   -
---                             ---       ---                  ---
Total                           26219627

> ls results
example.png # https://drive.google.com/uc?id=1UDLT_zb-rof9kKH0GwiJW_bS9MoZi8oP

A more advanced example is given in generate_figures.py. The script reproduces the figures from our paper in order to illustrate style mixing, noise inputs, and truncation:

> python generate_figures.py
results/figure02-uncurated-ffhq.png     # https://drive.google.com/uc?id=1U3r1xgcD7o-Fd0SBRpq8PXYajm7_30cu
results/figure03-style-mixing.png       # https://drive.google.com/uc?id=1U-nlMDtpnf1RcYkaFQtbh5oxnhA97hy6
results/figure04-noise-detail.png       # https://drive.google.com/uc?id=1UX3m39u_DTU6eLnEW6MqGzbwPFt2R9cG
results/figure05-noise-components.png   # https://drive.google.com/uc?id=1UQKPcvYVeWMRccGMbs2pPD9PVv1QDyp_
results/figure08-truncation-trick.png   # https://drive.google.com/uc?id=1ULea0C12zGlxdDQFNLXOWZCHi3QNfk_v
results/figure10-uncurated-bedrooms.png # https://drive.google.com/uc?id=1UEBnms1XMfj78OHj3_cx80mUf_m9DUJr
results/figure11-uncurated-cars.png     # https://drive.google.com/uc?id=1UO-4JtAs64Kun5vIj10UXqAJ1d5Ir1Ke
results/figure12-uncurated-cats.png     # https://drive.google.com/uc?id=1USnJc14prlu3QAYxstrtlfXC9sDWPA-W

The pre-trained networks are stored as standard pickle files on Google Drive:

# Load pre-trained network.
url = 'https://drive.google.com/uc?id=1MEGjdvVpUsu1jB4zrXZN7Y4kBBOzizDQ' # karras2019stylegan-ffhq-1024x1024.pkl
with dnnlib.util.open_url(url, cache_dir=config.cache_dir) as f:
    _G, _D, Gs = pickle.load(f)
    # _G = Instantaneous snapshot of the generator. Mainly useful for resuming a previous training run.
    # _D = Instantaneous snapshot of the discriminator. Mainly useful for resuming a previous training run.
    # Gs = Long-term average of the generator. Yields higher-quality results than the instantaneous snapshot.

The above code downloads the file and unpickles it to yield 3 instances of dnnlib.tflib.Network. To generate images, you will typically want to use Gs โ€“ the other two networks are provided for completeness. In order for pickle.load() to work, you will need to have the dnnlib source directory in your PYTHONPATH and a tf.Session set as default. The session can initialized by calling dnnlib.tflib.init_tf().

There are three ways to use the pre-trained generator:

  1. Use Gs.run() for immediate-mode operation where the inputs and outputs are numpy arrays:

    # Pick latent vector.
    rnd = np.random.RandomState(5)
    latents = rnd.randn(1, Gs.input_shape[1])
    
    # Generate image.
    fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
    images = Gs.run(latents, None, truncation_psi=0.7, randomize_noise=True, output_transform=fmt)
    

    The first argument is a batch of latent vectors of shape [num, 512]. The second argument is reserved for class labels (not used by StyleGAN). The remaining keyword arguments are optional and can be used to further modify the operation (see below). The output is a batch of images, whose format is dictated by the output_transform argument.

  2. Use Gs.get_output_for() to incorporate the generator as a part of a larger TensorFlow expression:

    latents = tf.random_normal([self.minibatch_per_gpu] + Gs_clone.input_shape[1:])
    images = Gs_clone.get_output_for(latents, None, is_validation=True, randomize_noise=True)
    images = tflib.convert_images_to_uint8(images)
    result_expr.append(inception_clone.get_output_for(images))
    

    The above code is from metrics/frechet_inception_distance.py. It generates a batch of random images and feeds them directly to the Inception-v3 network without having to convert the data to numpy arrays in between.

  3. Look up Gs.components.mapping and Gs.components.synthesis to access individual sub-networks of the generator. Similar to Gs, the sub-networks are represented as independent instances of dnnlib.tflib.Network:

    src_latents = np.stack(np.random.RandomState(seed).randn(Gs.input_shape[1]) for seed in src_seeds)
    src_dlatents = Gs.components.mapping.run(src_latents, None) # [seed, layer, component]
    src_images = Gs.components.synthesis.run(src_dlatents, randomize_noise=False, **synthesis_kwargs)
    

    The above code is from generate_figures.py. It first transforms a batch of latent vectors into the intermediate W space using the mapping network and then turns these vectors into a batch of images using the synthesis network. The dlatents array stores a separate copy of the same w vector for each layer of the synthesis network to facilitate style mixing.

The exact details of the generator are defined in training/networks_stylegan.py (see G_style, G_mapping, and G_synthesis). The following keyword arguments can be specified to modify the behavior when calling run() and get_output_for():

  • truncation_psi and truncation_cutoff control the truncation trick that that is performed by default when using Gs (ฯˆ=0.7, cutoff=8). It can be disabled by setting truncation_psi=1 or is_validation=True, and the image quality can be further improved at the cost of variation by setting e.g. truncation_psi=0.5. Note that truncation is always disabled when using the sub-networks directly. The average w needed to manually perform the truncation trick can be looked up using Gs.get_var('dlatent_avg').

  • randomize_noise determines whether to use re-randomize the noise inputs for each generated image (True, default) or whether to use specific noise values for the entire minibatch (False). The specific values can be accessed via the tf.Variable instances that are found using [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')].

  • When using the mapping network directly, you can specify dlatent_broadcast=None to disable the automatic duplication of dlatents over the layers of the synthesis network.

  • Runtime performance can be fine-tuned via structure='fixed' and dtype='float16'. The former disables support for progressive growing, which is not needed for a fully-trained generator, and the latter performs all computation using half-precision floating point arithmetic.

Preparing datasets for training

The training and evaluation scripts operate on datasets stored as multi-resolution TFRecords. Each dataset is represented by a directory containing the same image data in several resolutions to enable efficient streaming. There is a separate *.tfrecords file for each resolution, and if the dataset contains labels, they are stored in a separate file as well. By default, the scripts expect to find the datasets at datasets/<NAME>/<NAME>-<RESOLUTION>.tfrecords. The directory can be changed by editing config.py:

result_dir = 'results'
data_dir = 'datasets'
cache_dir = 'cache'

To obtain the FFHQ dataset (datasets/ffhq), please refer to the Flickr-Faces-HQ repository.

To obtain the CelebA-HQ dataset (datasets/celebahq), please refer to the Progressive GAN repository.

To obtain other datasets, including LSUN, please consult their corresponding project pages. The datasets can be converted to multi-resolution TFRecords using the provided dataset_tool.py:

> python dataset_tool.py create_lsun datasets/lsun-bedroom-full ~/lsun/bedroom_lmdb --resolution 256
> python dataset_tool.py create_lsun_wide datasets/lsun-car-512x384 ~/lsun/car_lmdb --width 512 --height 384
> python dataset_tool.py create_lsun datasets/lsun-cat-full ~/lsun/cat_lmdb --resolution 256
> python dataset_tool.py create_cifar10 datasets/cifar10 ~/cifar10
> python dataset_tool.py create_from_images datasets/custom-dataset ~/custom-images

Training networks

Once the datasets are set up, you can train your own StyleGAN networks as follows:

  1. Edit train.py to specify the dataset and training configuration by uncommenting or editing specific lines.
  2. Run the training script with python train.py.
  3. The results are written to a newly created directory results/<ID>-<DESCRIPTION>.
  4. The training may take several days (or weeks) to complete, depending on the configuration.

By default, train.py is configured to train the highest-quality StyleGAN (configuration F in Table 1) for the FFHQ dataset at 1024ร—1024 resolution using 8 GPUs. Please note that we have used 8 GPUs in all of our experiments. Training with fewer GPUs may not produce identical results โ€“ if you wish to compare against our technique, we strongly recommend using the same number of GPUs.

Expected training times for the default configuration using Tesla V100 GPUs:

GPUs 1024ร—1024 512ร—512 256ร—256
1 41 days 4 hours 24 days 21 hours 14 days 22 hours
2 21 days 22 hours 13 days 7 hours 9 days 5 hours
4 11 days 8 hours 7 days 0 hours 4 days 21 hours
8 6 days 14 hours 4 days 10 hours 3 days 8 hours

Evaluating quality and disentanglement

The quality and disentanglement metrics used in our paper can be evaluated using run_metrics.py. By default, the script will evaluate the Frรฉchet Inception Distance (fid50k) for the pre-trained FFHQ generator and write the results into a newly created directory under results. The exact behavior can be changed by uncommenting or editing specific lines in run_metrics.py.

Expected evaluation time and results for the pre-trained FFHQ generator using one Tesla V100 GPU:

Metric Time Result Description
fid50k 16 min 4.4159 Frรฉchet Inception Distance using 50,000 images.
ppl_zfull 55 min 664.8854 Perceptual Path Length for full paths in Z.
ppl_wfull 55 min 233.3059 Perceptual Path Length for full paths in W.
ppl_zend 55 min 666.1057 Perceptual Path Length for path endpoints in Z.
ppl_wend 55 min 197.2266 Perceptual Path Length for path endpoints in W.
ls 10 hours z: 165.0106
w: 3.7447
Linear Separability in Z and W.

Please note that the exact results may vary from run to run due to the non-deterministic nature of TensorFlow.

Acknowledgements

We thank Jaakko Lehtinen, David Luebke, and Tuomas Kynkรครคnniemi for in-depth discussions and helpful comments; Janne Hellsten, Tero Kuosmanen, and Pekka Jรคnis for compute infrastructure and help with the code release.

More Repositories

1

instant-ngp

Instant neural graphics primitives: lightning fast NeRF and more
Cuda
15,102
star
2

stylegan2

StyleGAN2 - Official TensorFlow Implementation
Python
10,740
star
3

SPADE

Semantic Image Synthesis with SPADE
Python
7,518
star
4

stylegan3

Official PyTorch implementation of StyleGAN3
Python
6,108
star
5

neuralangelo

Official implementation of "Neuralangelo: High-Fidelity Neural Surface Reconstruction" (CVPR 2023)
Python
4,125
star
6

imaginaire

NVIDIA's Deep Imagination Team's PyTorch Library
Python
3,941
star
7

stylegan2-ada-pytorch

StyleGAN2-ADA - Official PyTorch implementation
Python
3,866
star
8

ffhq-dataset

Flickr-Faces-HQ Dataset (FFHQ)
Python
3,483
star
9

tiny-cuda-nn

Lightning fast C++/CUDA neural network framework
C++
3,286
star
10

eg3d

Python
3,089
star
11

MUNIT

Multimodal Unsupervised Image-to-Image Translation
Python
2,564
star
12

SegFormer

Official PyTorch implementation of SegFormer
Python
2,252
star
13

nvdiffrec

Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".
Python
2,019
star
14

few-shot-vid2vid

Pytorch implementation for few-shot photorealistic video-to-video translation.
Python
1,780
star
15

stylegan2-ada

StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation
Python
1,778
star
16

FUNIT

Translate images to unseen domains in the test time with few example images.
Python
1,545
star
17

PWC-Net

PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume, CVPR 2018 (Oral)
Python
1,512
star
18

noise2noise

Noise2Noise: Learning Image Restoration without Clean Data - Official TensorFlow implementation of the ICML 2018 paper
Python
1,356
star
19

alias-free-gan

Alias-Free GAN project website and code
1,320
star
20

prismer

The implementation of "Prismer: A Vision-Language Model with Multi-Task Experts".
Python
1,287
star
21

DG-Net

๐Ÿ‘ซ Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral) ๐Ÿ‘ซ
Python
1,268
star
22

nvdiffrast

Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering
C++
1,137
star
23

edm

Elucidating the Design Space of Diffusion-Based Generative Models (EDM)
Python
1,014
star
24

Deep_Object_Pose

Deep Object Pose Estimation (DOPE) โ€“ ROS inference (CoRL 2018)
Python
955
star
25

VoxFormer

Official PyTorch implementation of VoxFormer [CVPR 2023 Highlight]
Python
937
star
26

NVAE

The Official PyTorch Implementation of "NVAE: A Deep Hierarchical Variational Autoencoder" (NeurIPS 2020 spotlight paper)
Python
889
star
27

BundleSDF

[CVPR 2023] BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown Objects
Python
842
star
28

ODISE

Official PyTorch implementation of ODISE: Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models [CVPR 2023 Highlight]
Python
779
star
29

GroupViT

Official PyTorch implementation of GroupViT: Semantic Segmentation Emerges from Text Supervision, CVPR 2022.
Python
679
star
30

FasterViT

[ICLR 2024] Official PyTorch implementation of FasterViT: Fast Vision Transformers with Hierarchical Attention
Python
664
star
31

GA3C

Hybrid CPU/GPU implementation of the A3C algorithm for deep reinforcement learning.
Python
641
star
32

denoising-diffusion-gan

Tackling the Generative Learning Trilemma with Denoising Diffusion GANs https://arxiv.org/abs/2112.07804
Python
634
star
33

genvs

610
star
34

sionna

Sionna: An Open-Source Library for Next-Generation Physical Layer Research
Jupyter Notebook
580
star
35

curobo

CUDA Accelerated Robot Library
Python
545
star
36

FB-BEV

Official PyTorch implementation of FB-BEV & FB-OCC - Forward-backward view transformation for vision-centric autonomous driving perception
Python
518
star
37

Dancing2Music

Python
513
star
38

planercnn

PlaneRCNN detects and reconstructs piece-wise planar surfaces from a single RGB image
Python
502
star
39

pacnet

Pixel-Adaptive Convolutional Neural Networks (CVPR '19)
Python
490
star
40

CALM

Python
486
star
41

DeepInversion

Official PyTorch implementation of Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion (CVPR 2020)
Python
474
star
42

EmerNeRF

PyTorch Implementation of EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via Self-Supervision
Python
456
star
43

FAN

Official PyTorch implementation of Fully Attentional Networks
Python
454
star
44

FourCastNet

Initial public release of code, data, and model weights for FourCastNet
Python
421
star
45

GCVit

[ICML 2023] Official PyTorch implementation of Global Context Vision Transformers
Python
414
star
46

intrinsic3d

Intrinsic3D - High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting (ICCV 2017)
C++
411
star
47

nvdiffmodeling

Differentiable rasterization applied to 3D model simplification tasks
Python
404
star
48

flip

A tool for visualizing and communicating the errors in rendered images.
C++
375
star
49

wetectron

Weakly-supervised object detection.
Python
355
star
50

FoundationPose

FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects
JavaScript
349
star
51

nvdiffrecmc

Official code for the NeurIPS 2022 paper "Shape, Light, and Material Decomposition from Images using Monte Carlo Rendering and Denoising".
C
341
star
52

geomapnet

Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)
Python
338
star
53

GLAMR

[CVPR 2022 Oral] Official PyTorch Implementation of "GLAMR: Global Occlusion-Aware Human Mesh Recovery with Dynamic Camerasโ€.
Python
329
star
54

LSGM

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)
Python
326
star
55

ssn_superpixels

Superpixel Sampling Networks (ECCV2018)
Python
323
star
56

DiffiT

Official Repository for DiffiT: Diffusion Vision Transformers for Image Generation
315
star
57

FreeSOLO

FreeSOLO for unsupervised instance segmentation, CVPR 2022
Python
307
star
58

long-video-gan

Official PyTorch implementation of LongVideoGAN
Python
297
star
59

neuralrgbd

Neural RGBโ†’D Sensing: Per-pixel depth and its uncertainty estimation from a monocular RGB video
Python
294
star
60

selfsupervised-denoising

High-Quality Self-Supervised Deep Image Denoising - Official TensorFlow implementation of the NeurIPS 2019 paper
Python
293
star
61

Taylor_pruning

Pruning Neural Networks with Taylor criterion in Pytorch
Python
279
star
62

timeloop

Timeloop performs modeling, mapping and code-generation for tensor algebra workloads on various accelerator architectures.
C++
278
star
63

metfaces-dataset

Python
272
star
64

few_shot_gaze

Pytorch implementation and demo of FAZE: Few-Shot Adaptive Gaze Estimation (ICCV 2019, oral)
Python
272
star
65

splatnet

SPLATNet: Sparse Lattice Networks for Point Cloud Processing (CVPR2018)
Python
268
star
66

MinVIS

Python
261
star
67

edm2

Analyzing and Improving the Training Dynamics of Diffusion Models (EDM2)
Python
261
star
68

contact_graspnet

Efficient 6-DoF Grasp Generation in Cluttered Scenes
Python
260
star
69

CenterPose

Single-Stage Keypoint-based Category-level Object Pose Estimation from an RGB Image (ICRA 2022)
Python
251
star
70

trajdata

A unified interface to many trajectory forecasting datasets.
Python
245
star
71

STEP

STEP: Spatio-Temporal Progressive Learning for Video Action Detection. CVPR'19 (Oral)
Python
244
star
72

matchlib

SystemC/C++ library of commonly-used hardware functions and components for HLS.
C++
235
star
73

sim-web-visualizer

Web Based Visualizer for Simulation Environments
Python
231
star
74

SCOPS

SCOPS: Self-Supervised Co-Part Segmentation (CVPR'19)
Python
221
star
75

UMR

Self-supervised Single-view 3D Reconstruction
Python
221
star
76

DiffRL

[ICLR 2022] Accelerated Policy Learning with Parallel Differentiable Simulation
Python
220
star
77

cule

CuLE: A CUDA port of the Atari Learning Environment (ALE)
C++
216
star
78

SSV

Pytorch implementation of SSV: Self-Supervised Viewpoint Learning from Image Collections (CVPR 2020)
Python
214
star
79

DiffPure

A new adversarial purification method that uses the forward and reverse processes of diffusion models to remove adversarial perturbations.
Python
210
star
80

latentfusion

LatentFusion: End-to-End Differentiable Reconstruction and Rendering for Unseen Object Pose Estimation
Python
197
star
81

I2SB

Python
194
star
82

nvbio

NVBIO is a library of reusable components designed to accelerate bioinformatics applications using CUDA.
C++
193
star
83

6dof-graspnet

Implementation of 6-DoF GraspNet with tensorflow and python. This repo has been tested with python 2.7 and tensorflow 1.12.
Python
186
star
84

NVBit

183
star
85

AFNO-transformer

Adaptive FNO transformer - official Pytorch implementation
Python
174
star
86

UnseenObjectClustering

Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation
Python
166
star
87

AL-MDN

Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)
Python
159
star
88

fermat

Fermat is a high performance research oriented physically based rendering system, trying to produce beautiful pictures following the mathematicianโ€™s principle of least time
C++
158
star
89

PoseCNN-PyTorch

PyTorch implementation of the PoseCNN framework
C
156
star
90

mask-auto-labeler

Python
153
star
91

mimicgen_environments

This code corresponds to simulation environments used as part of the MimicGen project.
Python
153
star
92

Bi3D

Python
150
star
93

RVT

Official Code for RVT: Robotic View Transformer for 3D Object Manipulation
Python
147
star
94

condensa

Programmable Neural Network Compression
Python
146
star
95

traffic-behavior-simulation

Python
145
star
96

learningrigidity

Learning Rigidity in Dynamic Scenes with a Moving Camera for 3D Motion Field Estimation (ECCV 2018)
Python
144
star
97

ocrodeg

document image degradation
Jupyter Notebook
142
star
98

ocropus3

Repository collecting all the submodules for the new PyTorch-based OCR System.
Shell
141
star
99

CGBN

CGBN: CUDA Accelerated Multiple Precision Arithmetic (Big Num) using Cooperative Groups
Cuda
139
star
100

PL4NN

Perceptual Losses for Neural Networks: Caffe implementation of loss layers based on perceptual image quality metrics.
Python
138
star