• Stars
    star
    13,882
  • Rank 2,211 (Top 0.05 %)
  • Language
    Python
  • License
    Other
  • Created almost 6 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

StyleGAN - Official TensorFlow Implementation

StyleGAN โ€” Official TensorFlow Implementation

Python 3.6 TensorFlow 1.10 cuDNN 7.3.1 License CC BY-NC

Teaser image Picture: These people are not real โ€“ they were produced by our generator that allows control over different aspects of the image.

This repository contains the official TensorFlow implementation of the following paper:

A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras (NVIDIA), Samuli Laine (NVIDIA), Timo Aila (NVIDIA)
https://arxiv.org/abs/1812.04948

Abstract: We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scale-specific control of the synthesis. The new generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. To quantify interpolation quality and disentanglement, we propose two new, automated methods that are applicable to any generator architecture. Finally, we introduce a new, highly varied and high-quality dataset of human faces.

For business inquiries, please visit our website and submit the form: NVIDIA Research Licensing

โ˜…โ˜…โ˜… NEW: StyleGAN2-ADA-PyTorch is now available; see the full list of versions here โ˜…โ˜…โ˜…

Resources

Material related to our paper is available via the following links:

Additional material can be found on Google Drive:

Path Description
StyleGAN Main folder.
โ”œย  stylegan-paper.pdf High-quality version of the paper PDF.
โ”œย  stylegan-video.mp4 High-quality version of the result video.
โ”œย  images Example images produced using our generator.
โ”‚ย  โ”œย  representative-images High-quality images to be used in articles, blog posts, etc.
โ”‚ย  โ””ย  100k-generated-images 100,000 generated images for different amounts of truncation.
โ”‚ย  โ€‚โ€‚ โ”œย  ffhq-1024x1024 Generated using Flickr-Faces-HQ dataset at 1024ร—1024.
โ”‚ย  โ€‚โ€‚ โ”œย  bedrooms-256x256 Generated using LSUN Bedroom dataset at 256ร—256.
โ”‚ย  โ€‚โ€‚ โ”œย  cars-512x384 Generated using LSUN Car dataset at 512ร—384.
โ”‚ย  โ€‚โ€‚ โ””ย  cats-256x256 Generated using LSUN Cat dataset at 256ร—256.
โ”œย  videos Example videos produced using our generator.
โ”‚ย  โ””ย  high-quality-video-clips Individual segments of the result video as high-quality MP4.
โ”œย  ffhq-dataset Raw data for the Flickr-Faces-HQ dataset.
โ””ย  networks Pre-trained networks as pickled instances of dnnlib.tflib.Network.
โ€‚โ€‚ โ”œย  stylegan-ffhq-1024x1024.pkl StyleGAN trained with Flickr-Faces-HQ dataset at 1024ร—1024.
โ€‚โ€‚ โ”œย  stylegan-celebahq-1024x1024.pkl StyleGAN trained with CelebA-HQ dataset at 1024ร—1024.
โ€‚โ€‚ โ”œย  stylegan-bedrooms-256x256.pkl StyleGAN trained with LSUN Bedroom dataset at 256ร—256.
โ€‚โ€‚ โ”œย  stylegan-cars-512x384.pkl StyleGAN trained with LSUN Car dataset at 512ร—384.
โ€‚โ€‚ โ”œย  stylegan-cats-256x256.pkl StyleGAN trained with LSUN Cat dataset at 256ร—256.
โ€‚โ€‚ โ””ย  metrics Auxiliary networks for the quality and disentanglement metrics.
โ€‚โ€‚ โ€‚โ€‚ โ”œย  inception_v3_features.pkl Standard Inception-v3 classifier that outputs a raw feature vector.
โ€‚โ€‚ โ€‚โ€‚ โ”œย  vgg16_zhang_perceptual.pkl Standard LPIPS metric to estimate perceptual similarity.
โ€‚โ€‚ โ€‚โ€‚ โ”œย  celebahq-classifier-00-male.pkl Binary classifier trained to detect a single attribute of CelebA-HQ.
โ€‚โ€‚ โ€‚โ€‚ โ””ย โ‹ฏ Please see the file listing for remaining networks.

Licenses

All material, excluding the Flickr-Faces-HQ dataset, is made available under Creative Commons BY-NC 4.0 license by NVIDIA Corporation. You can use, redistribute, and adapt the material for non-commercial purposes, as long as you give appropriate credit by citing our paper and indicating any changes that you've made.

For license information regarding the FFHQ dataset, please refer to the Flickr-Faces-HQ repository.

inception_v3_features.pkl and inception_v3_softmax.pkl are derived from the pre-trained Inception-v3 network by Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. The network was originally shared under Apache 2.0 license on the TensorFlow Models repository.

vgg16.pkl and vgg16_zhang_perceptual.pkl are derived from the pre-trained VGG-16 network by Karen Simonyan and Andrew Zisserman. The network was originally shared under Creative Commons BY 4.0 license on the Very Deep Convolutional Networks for Large-Scale Visual Recognition project page.

vgg16_zhang_perceptual.pkl is further derived from the pre-trained LPIPS weights by Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The weights were originally shared under BSD 2-Clause "Simplified" License on the PerceptualSimilarity repository.

System requirements

  • Both Linux and Windows are supported, but we strongly recommend Linux for performance and compatibility reasons.
  • 64-bit Python 3.6 installation. We recommend Anaconda3 with numpy 1.14.3 or newer.
  • TensorFlow 1.10.0 or newer with GPU support.
  • One or more high-end NVIDIA GPUs with at least 11GB of DRAM. We recommend NVIDIA DGX-1 with 8 Tesla V100 GPUs.
  • NVIDIA driver 391.35 or newer, CUDA toolkit 9.0 or newer, cuDNN 7.3.1 or newer.

Using pre-trained networks

A minimal example of using a pre-trained StyleGAN generator is given in pretrained_example.py. When executed, the script downloads a pre-trained StyleGAN generator from Google Drive and uses it to generate an image:

> python pretrained_example.py
Downloading https://drive.google.com/uc?id=1MEGjdvVpUsu1jB4zrXZN7Y4kBBOzizDQ .... done

Gs                              Params    OutputShape          WeightShape
---                             ---       ---                  ---
latents_in                      -         (?, 512)             -
...
images_out                      -         (?, 3, 1024, 1024)   -
---                             ---       ---                  ---
Total                           26219627

> ls results
example.png # https://drive.google.com/uc?id=1UDLT_zb-rof9kKH0GwiJW_bS9MoZi8oP

A more advanced example is given in generate_figures.py. The script reproduces the figures from our paper in order to illustrate style mixing, noise inputs, and truncation:

> python generate_figures.py
results/figure02-uncurated-ffhq.png     # https://drive.google.com/uc?id=1U3r1xgcD7o-Fd0SBRpq8PXYajm7_30cu
results/figure03-style-mixing.png       # https://drive.google.com/uc?id=1U-nlMDtpnf1RcYkaFQtbh5oxnhA97hy6
results/figure04-noise-detail.png       # https://drive.google.com/uc?id=1UX3m39u_DTU6eLnEW6MqGzbwPFt2R9cG
results/figure05-noise-components.png   # https://drive.google.com/uc?id=1UQKPcvYVeWMRccGMbs2pPD9PVv1QDyp_
results/figure08-truncation-trick.png   # https://drive.google.com/uc?id=1ULea0C12zGlxdDQFNLXOWZCHi3QNfk_v
results/figure10-uncurated-bedrooms.png # https://drive.google.com/uc?id=1UEBnms1XMfj78OHj3_cx80mUf_m9DUJr
results/figure11-uncurated-cars.png     # https://drive.google.com/uc?id=1UO-4JtAs64Kun5vIj10UXqAJ1d5Ir1Ke
results/figure12-uncurated-cats.png     # https://drive.google.com/uc?id=1USnJc14prlu3QAYxstrtlfXC9sDWPA-W

The pre-trained networks are stored as standard pickle files on Google Drive:

# Load pre-trained network.
url = 'https://drive.google.com/uc?id=1MEGjdvVpUsu1jB4zrXZN7Y4kBBOzizDQ' # karras2019stylegan-ffhq-1024x1024.pkl
with dnnlib.util.open_url(url, cache_dir=config.cache_dir) as f:
    _G, _D, Gs = pickle.load(f)
    # _G = Instantaneous snapshot of the generator. Mainly useful for resuming a previous training run.
    # _D = Instantaneous snapshot of the discriminator. Mainly useful for resuming a previous training run.
    # Gs = Long-term average of the generator. Yields higher-quality results than the instantaneous snapshot.

The above code downloads the file and unpickles it to yield 3 instances of dnnlib.tflib.Network. To generate images, you will typically want to use Gs โ€“ the other two networks are provided for completeness. In order for pickle.load() to work, you will need to have the dnnlib source directory in your PYTHONPATH and a tf.Session set as default. The session can initialized by calling dnnlib.tflib.init_tf().

There are three ways to use the pre-trained generator:

  1. Use Gs.run() for immediate-mode operation where the inputs and outputs are numpy arrays:

    # Pick latent vector.
    rnd = np.random.RandomState(5)
    latents = rnd.randn(1, Gs.input_shape[1])
    
    # Generate image.
    fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
    images = Gs.run(latents, None, truncation_psi=0.7, randomize_noise=True, output_transform=fmt)
    

    The first argument is a batch of latent vectors of shape [num, 512]. The second argument is reserved for class labels (not used by StyleGAN). The remaining keyword arguments are optional and can be used to further modify the operation (see below). The output is a batch of images, whose format is dictated by the output_transform argument.

  2. Use Gs.get_output_for() to incorporate the generator as a part of a larger TensorFlow expression:

    latents = tf.random_normal([self.minibatch_per_gpu] + Gs_clone.input_shape[1:])
    images = Gs_clone.get_output_for(latents, None, is_validation=True, randomize_noise=True)
    images = tflib.convert_images_to_uint8(images)
    result_expr.append(inception_clone.get_output_for(images))
    

    The above code is from metrics/frechet_inception_distance.py. It generates a batch of random images and feeds them directly to the Inception-v3 network without having to convert the data to numpy arrays in between.

  3. Look up Gs.components.mapping and Gs.components.synthesis to access individual sub-networks of the generator. Similar to Gs, the sub-networks are represented as independent instances of dnnlib.tflib.Network:

    src_latents = np.stack(np.random.RandomState(seed).randn(Gs.input_shape[1]) for seed in src_seeds)
    src_dlatents = Gs.components.mapping.run(src_latents, None) # [seed, layer, component]
    src_images = Gs.components.synthesis.run(src_dlatents, randomize_noise=False, **synthesis_kwargs)
    

    The above code is from generate_figures.py. It first transforms a batch of latent vectors into the intermediate W space using the mapping network and then turns these vectors into a batch of images using the synthesis network. The dlatents array stores a separate copy of the same w vector for each layer of the synthesis network to facilitate style mixing.

The exact details of the generator are defined in training/networks_stylegan.py (see G_style, G_mapping, and G_synthesis). The following keyword arguments can be specified to modify the behavior when calling run() and get_output_for():

  • truncation_psi and truncation_cutoff control the truncation trick that that is performed by default when using Gs (ฯˆ=0.7, cutoff=8). It can be disabled by setting truncation_psi=1 or is_validation=True, and the image quality can be further improved at the cost of variation by setting e.g. truncation_psi=0.5. Note that truncation is always disabled when using the sub-networks directly. The average w needed to manually perform the truncation trick can be looked up using Gs.get_var('dlatent_avg').

  • randomize_noise determines whether to use re-randomize the noise inputs for each generated image (True, default) or whether to use specific noise values for the entire minibatch (False). The specific values can be accessed via the tf.Variable instances that are found using [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')].

  • When using the mapping network directly, you can specify dlatent_broadcast=None to disable the automatic duplication of dlatents over the layers of the synthesis network.

  • Runtime performance can be fine-tuned via structure='fixed' and dtype='float16'. The former disables support for progressive growing, which is not needed for a fully-trained generator, and the latter performs all computation using half-precision floating point arithmetic.

Preparing datasets for training

The training and evaluation scripts operate on datasets stored as multi-resolution TFRecords. Each dataset is represented by a directory containing the same image data in several resolutions to enable efficient streaming. There is a separate *.tfrecords file for each resolution, and if the dataset contains labels, they are stored in a separate file as well. By default, the scripts expect to find the datasets at datasets/<NAME>/<NAME>-<RESOLUTION>.tfrecords. The directory can be changed by editing config.py:

result_dir = 'results'
data_dir = 'datasets'
cache_dir = 'cache'

To obtain the FFHQ dataset (datasets/ffhq), please refer to the Flickr-Faces-HQ repository.

To obtain the CelebA-HQ dataset (datasets/celebahq), please refer to the Progressive GAN repository.

To obtain other datasets, including LSUN, please consult their corresponding project pages. The datasets can be converted to multi-resolution TFRecords using the provided dataset_tool.py:

> python dataset_tool.py create_lsun datasets/lsun-bedroom-full ~/lsun/bedroom_lmdb --resolution 256
> python dataset_tool.py create_lsun_wide datasets/lsun-car-512x384 ~/lsun/car_lmdb --width 512 --height 384
> python dataset_tool.py create_lsun datasets/lsun-cat-full ~/lsun/cat_lmdb --resolution 256
> python dataset_tool.py create_cifar10 datasets/cifar10 ~/cifar10
> python dataset_tool.py create_from_images datasets/custom-dataset ~/custom-images

Training networks

Once the datasets are set up, you can train your own StyleGAN networks as follows:

  1. Edit train.py to specify the dataset and training configuration by uncommenting or editing specific lines.
  2. Run the training script with python train.py.
  3. The results are written to a newly created directory results/<ID>-<DESCRIPTION>.
  4. The training may take several days (or weeks) to complete, depending on the configuration.

By default, train.py is configured to train the highest-quality StyleGAN (configuration F in Table 1) for the FFHQ dataset at 1024ร—1024 resolution using 8 GPUs. Please note that we have used 8 GPUs in all of our experiments. Training with fewer GPUs may not produce identical results โ€“ if you wish to compare against our technique, we strongly recommend using the same number of GPUs.

Expected training times for the default configuration using Tesla V100 GPUs:

GPUs 1024ร—1024 512ร—512 256ร—256
1 41 days 4 hours 24 days 21 hours 14 days 22 hours
2 21 days 22 hours 13 days 7 hours 9 days 5 hours
4 11 days 8 hours 7 days 0 hours 4 days 21 hours
8 6 days 14 hours 4 days 10 hours 3 days 8 hours

Evaluating quality and disentanglement

The quality and disentanglement metrics used in our paper can be evaluated using run_metrics.py. By default, the script will evaluate the Frรฉchet Inception Distance (fid50k) for the pre-trained FFHQ generator and write the results into a newly created directory under results. The exact behavior can be changed by uncommenting or editing specific lines in run_metrics.py.

Expected evaluation time and results for the pre-trained FFHQ generator using one Tesla V100 GPU:

Metric Time Result Description
fid50k 16 min 4.4159 Frรฉchet Inception Distance using 50,000 images.
ppl_zfull 55 min 664.8854 Perceptual Path Length for full paths in Z.
ppl_wfull 55 min 233.3059 Perceptual Path Length for full paths in W.
ppl_zend 55 min 666.1057 Perceptual Path Length for path endpoints in Z.
ppl_wend 55 min 197.2266 Perceptual Path Length for path endpoints in W.
ls 10 hours z: 165.0106
w: 3.7447
Linear Separability in Z and W.

Please note that the exact results may vary from run to run due to the non-deterministic nature of TensorFlow.

Acknowledgements

We thank Jaakko Lehtinen, David Luebke, and Tuomas Kynkรครคnniemi for in-depth discussions and helpful comments; Janne Hellsten, Tero Kuosmanen, and Pekka Jรคnis for compute infrastructure and help with the code release.

More Repositories

1

instant-ngp

Instant neural graphics primitives: lightning fast NeRF and more
Cuda
15,749
star
2

stylegan2

StyleGAN2 - Official TensorFlow Implementation
Python
10,740
star
3

SPADE

Semantic Image Synthesis with SPADE
Python
7,518
star
4

stylegan3

Official PyTorch implementation of StyleGAN3
Python
6,236
star
5

neuralangelo

Official implementation of "Neuralangelo: High-Fidelity Neural Surface Reconstruction" (CVPR 2023)
Python
4,316
star
6

imaginaire

NVIDIA's Deep Imagination Team's PyTorch Library
Python
3,941
star
7

stylegan2-ada-pytorch

StyleGAN2-ADA - Official PyTorch implementation
Python
3,866
star
8

tiny-cuda-nn

Lightning fast C++/CUDA neural network framework
C++
3,627
star
9

ffhq-dataset

Flickr-Faces-HQ Dataset (FFHQ)
Python
3,483
star
10

eg3d

Python
3,194
star
11

MUNIT

Multimodal Unsupervised Image-to-Image Translation
Python
2,564
star
12

SegFormer

Official PyTorch implementation of SegFormer
Python
2,521
star
13

nvdiffrec

Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".
Python
2,080
star
14

VILA

VILA - a multi-image visual language model with training, inference and evaluation recipe, deployable from cloud to edge (Jetson Orin and laptops)
Python
1,849
star
15

few-shot-vid2vid

Pytorch implementation for few-shot photorealistic video-to-video translation.
Python
1,780
star
16

stylegan2-ada

StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation
Python
1,778
star
17

FUNIT

Translate images to unseen domains in the test time with few example images.
Python
1,545
star
18

PWC-Net

PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume, CVPR 2018 (Oral)
Python
1,512
star
19

noise2noise

Noise2Noise: Learning Image Restoration without Clean Data - Official TensorFlow implementation of the ICML 2018 paper
Python
1,356
star
20

nvdiffrast

Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering
C++
1,348
star
21

alias-free-gan

Alias-Free GAN project website and code
1,320
star
22

edm

Elucidating the Design Space of Diffusion-Based Generative Models (EDM)
Python
1,303
star
23

prismer

The implementation of "Prismer: A Vision-Language Model with Multi-Task Experts".
Python
1,297
star
24

FoundationPose

[CVPR 2024 Highlight] FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects
Python
1,293
star
25

DG-Net

๐Ÿ‘ซ Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral) ๐Ÿ‘ซ
Python
1,274
star
26

VoxFormer

Official PyTorch implementation of VoxFormer [CVPR 2023 Highlight]
Python
1,023
star
27

Deep_Object_Pose

Deep Object Pose Estimation (DOPE) โ€“ ROS inference (CoRL 2018)
Python
1,011
star
28

BundleSDF

[CVPR 2023] BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown Objects
Python
989
star
29

NVAE

The Official PyTorch Implementation of "NVAE: A Deep Hierarchical Variational Autoencoder" (NeurIPS 2020 spotlight paper)
Python
889
star
30

ODISE

Official PyTorch implementation of ODISE: Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models [CVPR 2023 Highlight]
Python
844
star
31

FasterViT

[ICLR 2024] Official PyTorch implementation of FasterViT: Fast Vision Transformers with Hierarchical Attention
Python
775
star
32

MambaVision

Official PyTorch Implementation of MambaVision: A Hybrid Mamba-Transformer Vision Backbone
Python
742
star
33

GroupViT

Official PyTorch implementation of GroupViT: Semantic Segmentation Emerges from Text Supervision, CVPR 2022.
Python
718
star
34

curobo

CUDA Accelerated Robot Library
Python
711
star
35

sionna

Sionna: An Open-Source Library for Next-Generation Physical Layer Research
Python
709
star
36

denoising-diffusion-gan

Tackling the Generative Learning Trilemma with Denoising Diffusion GANs https://arxiv.org/abs/2112.07804
Python
660
star
37

InstantSplat

InstantSplat: Sparse-view SfM-free Gaussian Splatting in Seconds
Python
650
star
38

GA3C

Hybrid CPU/GPU implementation of the A3C algorithm for deep reinforcement learning.
Python
649
star
39

FB-BEV

Official PyTorch implementation of FB-BEV & FB-OCC - Forward-backward view transformation for vision-centric autonomous driving perception
Python
629
star
40

genvs

625
star
41

DoRA

[ICML2024 (Oral)] Official PyTorch implementation of DoRA: Weight-Decomposed Low-Rank Adaptation
Python
574
star
42

RADIO

Official repository for "AM-RADIO: Reduce All Domains Into One"
Python
566
star
43

EmerNeRF

PyTorch Implementation of EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via Self-Supervision
Python
554
star
44

CALM

Python
527
star
45

EAGLE

EAGLE: Exploring The Design Space for Multimodal LLMs with Mixture of Encoders
Python
526
star
46

Dancing2Music

Python
513
star
47

FourCastNet

Initial public release of code, data, and model weights for FourCastNet
Python
511
star
48

planercnn

PlaneRCNN detects and reconstructs piece-wise planar surfaces from a single RGB image
Python
502
star
49

pacnet

Pixel-Adaptive Convolutional Neural Networks (CVPR '19)
Python
490
star
50

edm2

Analyzing and Improving the Training Dynamics of Diffusion Models (EDM2)
Python
489
star
51

DeepInversion

Official PyTorch implementation of Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion (CVPR 2020)
Python
485
star
52

FAN

Official PyTorch implementation of Fully Attentional Networks
Python
464
star
53

DiffiT

[ECCV 2024] Official Repository for DiffiT: Diffusion Vision Transformers for Image Generation
443
star
54

GCVit

[ICML 2023] Official PyTorch implementation of Global Context Vision Transformers
Python
423
star
55

intrinsic3d

Intrinsic3D - High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting (ICCV 2017)
C++
411
star
56

nvdiffmodeling

Differentiable rasterization applied to 3D model simplification tasks
Python
404
star
57

flip

A tool for visualizing and communicating the errors in rendered images.
C++
375
star
58

nvdiffrecmc

Official code for the NeurIPS 2022 paper "Shape, Light, and Material Decomposition from Images using Monte Carlo Rendering and Denoising".
C
362
star
59

wetectron

Weakly-supervised object detection.
Python
355
star
60

GLAMR

[CVPR 2022 Oral] Official PyTorch Implementation of "GLAMR: Global Occlusion-Aware Human Mesh Recovery with Dynamic Camerasโ€.
Python
351
star
61

geomapnet

Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)
Python
338
star
62

LSGM

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)
Python
338
star
63

timeloop

Timeloop performs modeling, mapping and code-generation for tensor algebra workloads on various accelerator architectures.
C++
325
star
64

ssn_superpixels

Superpixel Sampling Networks (ECCV2018)
Python
323
star
65

FreeSOLO

FreeSOLO for unsupervised instance segmentation, CVPR 2022
Python
313
star
66

long-video-gan

Official PyTorch implementation of LongVideoGAN
Python
308
star
67

trajdata

A unified interface to many trajectory forecasting datasets.
Python
301
star
68

contact_graspnet

Efficient 6-DoF Grasp Generation in Cluttered Scenes
Python
295
star
69

neuralrgbd

Neural RGBโ†’D Sensing: Per-pixel depth and its uncertainty estimation from a monocular RGB video
Python
294
star
70

selfsupervised-denoising

High-Quality Self-Supervised Deep Image Denoising - Official TensorFlow implementation of the NeurIPS 2019 paper
Python
293
star
71

CF-3DGS

Python
286
star
72

sim-web-visualizer

Web Based Visualizer for Simulation Environments
Python
280
star
73

Taylor_pruning

Pruning Neural Networks with Taylor criterion in Pytorch
Python
279
star
74

mimicgen

This code corresponds to simulation environments used as part of the MimicGen project.
Python
275
star
75

metfaces-dataset

Python
272
star
76

few_shot_gaze

Pytorch implementation and demo of FAZE: Few-Shot Adaptive Gaze Estimation (ICCV 2019, oral)
Python
272
star
77

Hydra-MDP

269
star
78

splatnet

SPLATNet: Sparse Lattice Networks for Point Cloud Processing (CVPR2018)
Python
268
star
79

VILA-archive

VILA - A multi-image visual language model with training, inference and evaluation recipe, deployable from cloud to edge (Jetson Orin and laptops)
Python
267
star
80

RVT

Official Code for RVT-2 and RVT
Jupyter Notebook
265
star
81

MinVIS

Python
264
star
82

CenterPose

Single-Stage Keypoint-based Category-level Object Pose Estimation from an RGB Image (ICRA 2022)
Python
262
star
83

matchlib

SystemC/C++ library of commonly-used hardware functions and components for HLS.
C++
255
star
84

Minitron

A family of compressed models obtained via pruning and knowledge distillation
252
star
85

DiffRL

[ICLR 2022] Accelerated Policy Learning with Parallel Differentiable Simulation
Python
249
star
86

DiffPure

A new adversarial purification method that uses the forward and reverse processes of diffusion models to remove adversarial perturbations.
Python
249
star
87

STEP

STEP: Spatio-Temporal Progressive Learning for Video Action Detection. CVPR'19 (Oral)
Python
244
star
88

I2SB

Python
235
star
89

SCOPS

SCOPS: Self-Supervised Co-Part Segmentation (CVPR'19)
Python
221
star
90

UMR

Self-supervised Single-view 3D Reconstruction
Python
221
star
91

cule

CuLE: A CUDA port of the Atari Learning Environment (ALE)
C++
216
star
92

SSV

Pytorch implementation of SSV: Self-Supervised Viewpoint Learning from Image Collections (CVPR 2020)
Python
214
star
93

NVBit

210
star
94

AFNO-transformer

Adaptive FNO transformer - official Pytorch implementation
Python
207
star
95

6dof-graspnet

Implementation of 6-DoF GraspNet with tensorflow and python. This repo has been tested with python 2.7 and tensorflow 1.12.
Python
205
star
96

latentfusion

LatentFusion: End-to-End Differentiable Reconstruction and Rendering for Unseen Object Pose Estimation
Python
197
star
97

nvbio

NVBIO is a library of reusable components designed to accelerate bioinformatics applications using CUDA.
C++
193
star
98

OmniDrive

Python
190
star
99

UnseenObjectClustering

Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation
Python
175
star
100

traffic-behavior-simulation

Python
173
star