• Stars
    star
    718
  • Rank 63,070 (Top 2 %)
  • Language
    Python
  • License
    Other
  • Created over 2 years ago
  • Updated over 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Official PyTorch implementation of GroupViT: Semantic Segmentation Emerges from Text Supervision, CVPR 2022.

GroupViT: Semantic Segmentation Emerges from Text Supervision

GroupViT is a framework for learning semantic segmentation purely from text captions without using any mask supervision. It learns to perform bottom-up heirarchical spatial grouping of semantically-related visual regions. This repository is the official implementation of GroupViT introduced in the paper:

GroupViT: Semantic Segmentation Emerges from Text Supervision, Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang, CVPR 2022.

Visual Results

Links

Citation

If you find our work useful in your research, please cite:

@article{xu2022groupvit,
  author    = {Xu, Jiarui and De Mello, Shalini and Liu, Sifei and Byeon, Wonmin and Breuel, Thomas and Kautz, Jan and Wang, Xiaolong},
  title     = {GroupViT: Semantic Segmentation Emerges from Text Supervision},
  journal   = {arXiv preprint arXiv:2202.11094},
  year      = {2022},
}

Environmental Setup

  • Python 3.7
  • PyTorch 1.8
  • webdataset 0.1.103
  • mmsegmentation 0.18.0
  • timm 0.4.12

Instructions:

conda create -n groupvit python=3.7 -y
conda activate groupvit
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=11.1 -c pytorch -c conda-forge
pip install mmcv-full==1.3.14 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.8.0/index.html
pip install mmsegmentation==0.18.0
pip install webdataset==0.1.103
pip install timm==0.4.12
git clone https://github.com/NVIDIA/apex
cd && apex && pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
pip install opencv-python==4.4.0.46 termcolor==1.1.0 diffdist einops omegaconf
pip install nltk ftfy regex tqdm

Demo

python demo/demo_seg.py --cfg configs/group_vit_gcc_yfcc_30e.yml --resume /path/to/checkpoint --vis input_pred_label final_group --input demo/examples/voc.jpg --output_dir demo/output

The output is saved in demo/output/.

Benchmark Results

Zero-shot Classification Zero-shot Segmentation
config ImageNet Pascal VOC Pascal Context COCO
GCC + YFCC (cfg) 43.7 52.3 22.4 24.3
GCC + RedCaps (cfg) 51.6 50.8 23.7 27.5

Pre-trained weights group_vit_gcc_yfcc_30e-879422e0.pth and group_vit_gcc_redcap_30e-3dd09a76.pth for these models are provided by Jiarui Xu here.

Data Preparation

During training, we use webdataset for scalable data loading. To convert image text pairs into the webdataset format, we use the img2dataset tool to download and preprocess the dataset.

For inference, we use mmsegmentation for semantic segmentation testing, evaluation and visualization on Pascal VOC, Pascal Context and COCO datasets.

The overall file structure is as follows:

GroupViT
β”œβ”€β”€ local_data
β”‚   β”œβ”€β”€ gcc3m_shards
β”‚   β”‚   β”œβ”€β”€ gcc-train-000000.tar
β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”œβ”€β”€ gcc-train-000436.tar
β”‚   β”œβ”€β”€ gcc12m_shards
β”‚   β”‚   β”œβ”€β”€ gcc-conceptual-12m-000000.tar
β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”œβ”€β”€ gcc-conceptual-12m-001943.tar
β”‚   β”œβ”€β”€ yfcc14m_shards
β”‚   β”‚   β”œβ”€β”€ yfcc14m-000000.tar
β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”œβ”€β”€ yfcc14m-001888.tar
β”‚   β”œβ”€β”€ redcap12m_shards
β”‚   β”‚   β”œβ”€β”€ redcap12m-000000.tar
β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”œβ”€β”€ redcap12m-001211.tar
β”‚   β”œβ”€β”€ imagenet_shards
β”‚   β”‚   β”œβ”€β”€ imagenet-val-000000.tar
β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”œβ”€β”€ imagenet-val-000049.tar
β”‚   β”œβ”€β”€ VOCdevkit
β”‚   β”‚   β”œβ”€β”€ VOC2012
β”‚   β”‚   β”‚   β”œβ”€β”€ JPEGImages
β”‚   β”‚   β”‚   β”œβ”€β”€ SegmentationClass
β”‚   β”‚   β”‚   β”œβ”€β”€ ImageSets
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ Segmentation
β”‚   β”‚   β”œβ”€β”€ VOC2010
β”‚   β”‚   β”‚   β”œβ”€β”€ JPEGImages
β”‚   β”‚   β”‚   β”œβ”€β”€ SegmentationClassContext
β”‚   β”‚   β”‚   β”œβ”€β”€ ImageSets
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ SegmentationContext
β”‚   β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ train.txt
β”‚   β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ val.txt
β”‚   β”‚   β”‚   β”œβ”€β”€ trainval_merged.json
β”‚   β”‚   β”œβ”€β”€ VOCaug
β”‚   β”‚   β”‚   β”œβ”€β”€ dataset
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ cls
β”‚   β”œβ”€β”€ coco
β”‚   β”‚   β”œβ”€β”€ images
β”‚   β”‚   β”‚   β”œβ”€β”€ train2017
β”‚   β”‚   β”‚   β”œβ”€β”€ val2017
β”‚   β”‚   β”œβ”€β”€ annotations
β”‚   β”‚   β”‚   β”œβ”€β”€ train2017
β”‚   β”‚   β”‚   β”œβ”€β”€ val2017

The instructions for preparing each dataset are as follows.

GCC3M

Please download the training split annotation file from Conceptual Caption 12M and name it as gcc3m.tsv.

Then run img2dataset to download the image text pairs and save them in the webdataset format.

sed -i '1s/^/caption\turl\n/' gcc3m.tsv
img2dataset --url_list gcc3m.tsv --input_format "tsv" \
            --url_col "url" --caption_col "caption" --output_format webdataset\
            --output_folder local_data/gcc3m_shards
            --processes_count 16 --thread_count 64
            --image_size 512 --resize_mode keep_ratio --resize_only_if_bigger True \
            --enable_wandb True --save_metadata False --oom_shard_count 6
rename -d 's/^/gcc-train-/' local_data/gcc3m_shards/*

Please refer to img2dataset CC3M tutorial for more details.

GCC12M

Please download the annotation file from Conceptual Caption 12M and name it as gcc12m.tsv.

Then run img2dataset to download the image text pairs and save them in the webdataset format.

sed -i '1s/^/caption\turl\n/' gcc12m.tsv
img2dataset --url_list gcc12m.tsv --input_format "tsv" \
            --url_col "url" --caption_col "caption" --output_format webdataset\
            --output_folder local_data/gcc12m_shards \
            --processes_count 16 --thread_count 64
            --image_size 512 --resize_mode keep_ratio --resize_only_if_bigger True \
            --enable_wandb True --save_metadata False --oom_shard_count 6
rename -d 's/^/gcc-conceptual-12m-/' local_data/gcc12m_shards/*

Please refer to img2dataset CC12M tutorial for more details.

YFCC14M

Please follow the CLIP Data Preparation instructions to download the YFCC14M subset.

wget https://openaipublic.azureedge.net/clip/data/yfcc100m_subset_data.tsv.bz2
bunzip2 yfcc100m_subset_data.tsv.bz2

Then run the preprocessing script to create the subset sql db and annotation tsv files. This may take a while.

python convert_dataset/create_subset.py --input-dir . --output-dir . --subset yfcc100m_subset_data.tsv

This script will create two files: an SQLite db called yfcc100m_dataset.sql and an annotation tsv file called yfcc14m_dataset.tsv.

Then follow the YFCC100M Download Instruction to download the dataset and its metadata file.

pip install git+https://gitlab.com/jfolz/yfcc100m.git
mkdir -p yfcc100m_meta
python -m yfcc100m.convert_metadata . -o yfcc100m_meta --skip_verification
mkdir -p yfcc100m_zip
python -m yfcc100m.download yfcc100m_meta -o yfcc100m_zip

Finally convert the dataset into the webdataset format.

python convert_dataset/convert_yfcc14m.py --root yfcc100m_zip --info yfcc14m_dataset.tsv --shards yfcc14m_shards

RedCaps12M

Please download the annotation file from RedCaps.

wget https://www.dropbox.com/s/cqtdpsl4hewlli1/redcaps_v1.0_annotations.zip?dl=1
unzip redcaps_v1.0_annotations.zip

Then run the preprocessing script and img2dataset to download the image text pairs and save them in the webdataset format.

python convert_dataset/process_redcaps.py annotations redcaps12m_meta/redcaps12m.parquet --num-split 16
img2dataset --url_list ~/data/redcaps12m/ --input_format "parquet" \
            --url_col "URL" --caption_col "TEXT" --output_format webdataset \
            --output_folder local_data/recaps12m_shards
            --processes_count 16 --thread_count 64
            --image_size 512 --resize_mode keep_ratio --resize_only_if_bigger True \
            --enable_wandb True --save_metadata False --oom_shard_count 6
rename -d 's/^/redcap12m-/' local_data/recaps12m_shards/*

ImageNet

Please follow the webdataset ImageNet Example to convert ImageNet into the webdataset format.

Pascal VOC

Please follow the MMSegmentation Pascal VOC Preparation instructions to download and setup the Pascal VOC dataset.

Pascal Context

Please refer to the MMSegmentation Pascal Context Preparation instructions to download and setup the Pascal Context dataset.

COCO

COCO dataset is an object detection dataset with instance segmentation annotations. To evaluate GroupViT, we combine all the instance masks of a catergory together and generate semantic segmentation maps. To generate the semantic segmentation maps, please follow MMSegmentation's documentation to download the COCO-Stuff-164k dataset first and then run the following

python convert_dataset/convert_coco.py local_data/data/coco/ -o local_data/data/coco/

Run Experiments

Pre-train

Train on a single node:

(node0)$ ./tools/dist_launch.sh main_group_vit.py /path/to/config $GPUS_PER_NODE

For example, to train on a node with 8 GPUs, run:

(node0)$ ./tools/dist_launch.sh main_group_vit configs/group_vit_gcc_yfcc_30e.yml 8

Train on multiple nodes:

(node0)$ ./tools/dist_mn_launch.sh main_group_vit.py /path/to/config $NODE_RANK $NUM_NODES $GPUS_PER_NODE $MASTER_ADDR
(node1)$ ./tools/dist_mn_launch.sh main_group_vit.py /path/to/config $NODE_RANK $NUM_NODES $GPUS_PER_NODE $MASTER_ADDR

For example, to train on two nodes with 8 GPUs each, run:

(node0)$ ./tools/dist_mn_launch.sh main_group_vit.py configs/group_vit_gcc_yfcc_30e.yml 0 2 8 tcp://node0
(node1)$ ./tools/dist_mn_launch.sh main_group_vit.py configs/group_vit_gcc_yfcc_30e.yml 1 2 8 tcp://node0

We used 16 NVIDIA V100 GPUs for pre-training (in 2 days) in our paper.

Zero-shot Transfer to Image Classification

ImageNet

./tools/dist_launch.sh main_group_vit.py /path/to/config $NUM_GPUS --resume /path/to/checkpoint --eval

Zero-shot Transfer to Semantic Segmentation

Pascal VOC

./tools/dist_launch.sh main_seg.py /path/to/config $NUM_GPUS --resume /path/to/checkpoint

Pascal Context

./tools/dist_launch.sh main_seg.py /path/to/config $NUM_GPUS --resume /path/to/checkpoint --opts evaluate.seg.cfg segmentation/configs/_base_/datasets/pascal_context.py

COCO

./tools/dist_launch.sh main_seg.py /path/to/config $NUM_GPUS --resume /path/to/checkpoint --opts evaluate.seg.cfg segmentation/configs/_base_/datasets/coco.py

More Repositories

1

instant-ngp

Instant neural graphics primitives: lightning fast NeRF and more
Cuda
15,749
star
2

stylegan

StyleGAN - Official TensorFlow Implementation
Python
13,882
star
3

stylegan2

StyleGAN2 - Official TensorFlow Implementation
Python
10,740
star
4

SPADE

Semantic Image Synthesis with SPADE
Python
7,518
star
5

stylegan3

Official PyTorch implementation of StyleGAN3
Python
6,236
star
6

neuralangelo

Official implementation of "Neuralangelo: High-Fidelity Neural Surface Reconstruction" (CVPR 2023)
Python
4,316
star
7

imaginaire

NVIDIA's Deep Imagination Team's PyTorch Library
Python
3,941
star
8

stylegan2-ada-pytorch

StyleGAN2-ADA - Official PyTorch implementation
Python
3,866
star
9

tiny-cuda-nn

Lightning fast C++/CUDA neural network framework
C++
3,627
star
10

ffhq-dataset

Flickr-Faces-HQ Dataset (FFHQ)
Python
3,483
star
11

eg3d

Python
3,194
star
12

MUNIT

Multimodal Unsupervised Image-to-Image Translation
Python
2,564
star
13

SegFormer

Official PyTorch implementation of SegFormer
Python
2,521
star
14

nvdiffrec

Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".
Python
2,080
star
15

VILA

VILA - a multi-image visual language model with training, inference and evaluation recipe, deployable from cloud to edge (Jetson Orin and laptops)
Python
1,849
star
16

few-shot-vid2vid

Pytorch implementation for few-shot photorealistic video-to-video translation.
Python
1,780
star
17

stylegan2-ada

StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation
Python
1,778
star
18

FUNIT

Translate images to unseen domains in the test time with few example images.
Python
1,545
star
19

PWC-Net

PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume, CVPR 2018 (Oral)
Python
1,512
star
20

noise2noise

Noise2Noise: Learning Image Restoration without Clean Data - Official TensorFlow implementation of the ICML 2018 paper
Python
1,356
star
21

nvdiffrast

Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering
C++
1,348
star
22

alias-free-gan

Alias-Free GAN project website and code
1,320
star
23

edm

Elucidating the Design Space of Diffusion-Based Generative Models (EDM)
Python
1,303
star
24

prismer

The implementation of "Prismer: A Vision-Language Model with Multi-Task Experts".
Python
1,297
star
25

FoundationPose

[CVPR 2024 Highlight] FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects
Python
1,293
star
26

DG-Net

πŸ‘« Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral) πŸ‘«
Python
1,274
star
27

VoxFormer

Official PyTorch implementation of VoxFormer [CVPR 2023 Highlight]
Python
1,023
star
28

Deep_Object_Pose

Deep Object Pose Estimation (DOPE) – ROS inference (CoRL 2018)
Python
1,011
star
29

BundleSDF

[CVPR 2023] BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown Objects
Python
989
star
30

NVAE

The Official PyTorch Implementation of "NVAE: A Deep Hierarchical Variational Autoencoder" (NeurIPS 2020 spotlight paper)
Python
889
star
31

ODISE

Official PyTorch implementation of ODISE: Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models [CVPR 2023 Highlight]
Python
844
star
32

FasterViT

[ICLR 2024] Official PyTorch implementation of FasterViT: Fast Vision Transformers with Hierarchical Attention
Python
775
star
33

MambaVision

Official PyTorch Implementation of MambaVision: A Hybrid Mamba-Transformer Vision Backbone
Python
742
star
34

curobo

CUDA Accelerated Robot Library
Python
711
star
35

sionna

Sionna: An Open-Source Library for Next-Generation Physical Layer Research
Python
709
star
36

denoising-diffusion-gan

Tackling the Generative Learning Trilemma with Denoising Diffusion GANs https://arxiv.org/abs/2112.07804
Python
660
star
37

InstantSplat

InstantSplat: Sparse-view SfM-free Gaussian Splatting in Seconds
Python
650
star
38

GA3C

Hybrid CPU/GPU implementation of the A3C algorithm for deep reinforcement learning.
Python
649
star
39

FB-BEV

Official PyTorch implementation of FB-BEV & FB-OCC - Forward-backward view transformation for vision-centric autonomous driving perception
Python
629
star
40

genvs

625
star
41

DoRA

[ICML2024 (Oral)] Official PyTorch implementation of DoRA: Weight-Decomposed Low-Rank Adaptation
Python
574
star
42

RADIO

Official repository for "AM-RADIO: Reduce All Domains Into One"
Python
566
star
43

EmerNeRF

PyTorch Implementation of EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via Self-Supervision
Python
554
star
44

CALM

Python
527
star
45

EAGLE

EAGLE: Exploring The Design Space for Multimodal LLMs with Mixture of Encoders
Python
526
star
46

Dancing2Music

Python
513
star
47

FourCastNet

Initial public release of code, data, and model weights for FourCastNet
Python
511
star
48

planercnn

PlaneRCNN detects and reconstructs piece-wise planar surfaces from a single RGB image
Python
502
star
49

pacnet

Pixel-Adaptive Convolutional Neural Networks (CVPR '19)
Python
490
star
50

edm2

Analyzing and Improving the Training Dynamics of Diffusion Models (EDM2)
Python
489
star
51

DeepInversion

Official PyTorch implementation of Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion (CVPR 2020)
Python
485
star
52

FAN

Official PyTorch implementation of Fully Attentional Networks
Python
464
star
53

DiffiT

[ECCV 2024] Official Repository for DiffiT: Diffusion Vision Transformers for Image Generation
443
star
54

GCVit

[ICML 2023] Official PyTorch implementation of Global Context Vision Transformers
Python
423
star
55

intrinsic3d

Intrinsic3D - High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting (ICCV 2017)
C++
411
star
56

nvdiffmodeling

Differentiable rasterization applied to 3D model simplification tasks
Python
404
star
57

flip

A tool for visualizing and communicating the errors in rendered images.
C++
375
star
58

nvdiffrecmc

Official code for the NeurIPS 2022 paper "Shape, Light, and Material Decomposition from Images using Monte Carlo Rendering and Denoising".
C
362
star
59

wetectron

Weakly-supervised object detection.
Python
355
star
60

GLAMR

[CVPR 2022 Oral] Official PyTorch Implementation of "GLAMR: Global Occlusion-Aware Human Mesh Recovery with Dynamic Cameras”.
Python
351
star
61

geomapnet

Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)
Python
338
star
62

LSGM

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)
Python
338
star
63

timeloop

Timeloop performs modeling, mapping and code-generation for tensor algebra workloads on various accelerator architectures.
C++
325
star
64

ssn_superpixels

Superpixel Sampling Networks (ECCV2018)
Python
323
star
65

FreeSOLO

FreeSOLO for unsupervised instance segmentation, CVPR 2022
Python
313
star
66

long-video-gan

Official PyTorch implementation of LongVideoGAN
Python
308
star
67

trajdata

A unified interface to many trajectory forecasting datasets.
Python
301
star
68

contact_graspnet

Efficient 6-DoF Grasp Generation in Cluttered Scenes
Python
295
star
69

neuralrgbd

Neural RGB→D Sensing: Per-pixel depth and its uncertainty estimation from a monocular RGB video
Python
294
star
70

selfsupervised-denoising

High-Quality Self-Supervised Deep Image Denoising - Official TensorFlow implementation of the NeurIPS 2019 paper
Python
293
star
71

CF-3DGS

Python
286
star
72

sim-web-visualizer

Web Based Visualizer for Simulation Environments
Python
280
star
73

Taylor_pruning

Pruning Neural Networks with Taylor criterion in Pytorch
Python
279
star
74

mimicgen

This code corresponds to simulation environments used as part of the MimicGen project.
Python
275
star
75

metfaces-dataset

Python
272
star
76

few_shot_gaze

Pytorch implementation and demo of FAZE: Few-Shot Adaptive Gaze Estimation (ICCV 2019, oral)
Python
272
star
77

Hydra-MDP

269
star
78

splatnet

SPLATNet: Sparse Lattice Networks for Point Cloud Processing (CVPR2018)
Python
268
star
79

VILA-archive

VILA - A multi-image visual language model with training, inference and evaluation recipe, deployable from cloud to edge (Jetson Orin and laptops)
Python
267
star
80

RVT

Official Code for RVT-2 and RVT
Jupyter Notebook
265
star
81

MinVIS

Python
264
star
82

CenterPose

Single-Stage Keypoint-based Category-level Object Pose Estimation from an RGB Image (ICRA 2022)
Python
262
star
83

matchlib

SystemC/C++ library of commonly-used hardware functions and components for HLS.
C++
255
star
84

Minitron

A family of compressed models obtained via pruning and knowledge distillation
252
star
85

DiffRL

[ICLR 2022] Accelerated Policy Learning with Parallel Differentiable Simulation
Python
249
star
86

DiffPure

A new adversarial purification method that uses the forward and reverse processes of diffusion models to remove adversarial perturbations.
Python
249
star
87

STEP

STEP: Spatio-Temporal Progressive Learning for Video Action Detection. CVPR'19 (Oral)
Python
244
star
88

I2SB

Python
235
star
89

SCOPS

SCOPS: Self-Supervised Co-Part Segmentation (CVPR'19)
Python
221
star
90

UMR

Self-supervised Single-view 3D Reconstruction
Python
221
star
91

cule

CuLE: A CUDA port of the Atari Learning Environment (ALE)
C++
216
star
92

SSV

Pytorch implementation of SSV: Self-Supervised Viewpoint Learning from Image Collections (CVPR 2020)
Python
214
star
93

NVBit

210
star
94

AFNO-transformer

Adaptive FNO transformer - official Pytorch implementation
Python
207
star
95

6dof-graspnet

Implementation of 6-DoF GraspNet with tensorflow and python. This repo has been tested with python 2.7 and tensorflow 1.12.
Python
205
star
96

latentfusion

LatentFusion: End-to-End Differentiable Reconstruction and Rendering for Unseen Object Pose Estimation
Python
197
star
97

nvbio

NVBIO is a library of reusable components designed to accelerate bioinformatics applications using CUDA.
C++
193
star
98

OmniDrive

Python
190
star
99

UnseenObjectClustering

Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation
Python
175
star
100

traffic-behavior-simulation

Python
173
star