• Stars
    star
    631
  • Rank 71,222 (Top 2 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 4 years ago
  • Updated almost 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

XTREME is a benchmark for the evaluation of the cross-lingual generalization ability of pre-trained multilingual models that covers 40 typologically diverse languages and includes nine tasks.

XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization

Tasks | Download | Baselines | Leaderboard | Website | Paper | Translations

This repository contains information about XTREME, code for downloading data, and implementations of baseline systems for the benchmark.

Introduction

The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages (spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks, and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil (spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the Niger-Congo languages Swahili and Yoruba, spoken in Africa.

For a full description of the benchmark, see the paper.

Tasks and Languages

The tasks included in XTREME cover a range of standard paradigms in natural language processing, including sentence classification, structured prediction, sentence retrieval and question answering. The full list of tasks can be seen in the image below.

The datasets used in XTREME

In order for models to be successful on the XTREME benchmark, they must learn representations that generalize across many tasks and languages. Each of the tasks covers a subset of the 40 languages included in XTREME (shown here with their ISO 639-1 codes): af, ar, bg, bn, de, el, en, es, et, eu, fa, fi, fr, he, hi, hu, id, it, ja, jv, ka, kk, ko, ml, mr, ms, my, nl, pt, ru, sw, ta, te, th, tl, tr, ur, vi, yo, and zh. The languages were selected among the top 100 languages with the most Wikipedia articles to maximize language diversity, task coverage, and availability of training data. They include members of the Afro-Asiatic, Austro-Asiatic, Austronesian, Dravidian, Indo-European, Japonic, Kartvelian, Kra-Dai, Niger-Congo, Sino-Tibetan, Turkic, and Uralic language families as well as of two isolates, Basque and Korean.

Download the data

In order to run experiments on XTREME, the first step is to download the dependencies. We assume you have installed anaconda and use Python 3.7+. The additional requirements including transformers, seqeval (for sequence labelling evaluation), tensorboardx, jieba, kytea, and pythainlp (for text segmentation in Chinese, Japanese, and Thai), and sacremoses can be installed by running the following script:

bash install_tools.sh

The next step is to download the data. To this end, first create a download folder with mkdir -p download in the root of this project. You then need to manually download panx_dataset (for NER) from here (note that it will download as AmazonPhotos.zip) to the download directory. Finally, run the following command to download the remaining datasets:

bash scripts/download_data.sh

Note that in order to prevent accidental evaluation on the test sets while running experiments, we remove labels of the test data during pre-processing and change the order of the test sentences for cross-lingual sentence retrieval.

Build a baseline system

The evaluation setting in XTREME is zero-shot cross-lingual transfer from English. We fine-tune models that were pre-trained on multilingual data on the labelled data of each XTREME task in English. Each fine-tuned model is then applied to the test data of the same task in other languages to obtain predictions.

For every task, we provide a single script scripts/train.sh that fine-tunes pre-trained models implemented in the Transformers repo. To fine-tune a different model, simply pass a different MODEL argument to the script with the corresponding model. The current supported models are bert-base-multilingual-cased, xlm-mlm-100-1280 and xlm-roberta-large.

Universal dependencies part-of-speech tagging

For part-of-speech tagging, we use data from the Universal Dependencies v2.5. You can fine-tune a pre-trained multilingual model on the English POS tagging data with the following command:

bash scripts/train.sh [MODEL] udpos

Wikiann named entity recognition

For named entity recognition (NER), we use data from the Wikiann (panx) dataset. You can fine-tune a pre-trained multilingual model on the English NER data with the following command:

bash scripts/train.sh [MODEL] panx

PAXS-X sentence classification

For sentence classification, we use the Cross-lingual Paraphrase Adversaries from Word Scrambling (PAWS-X) dataset. You can fine-tune a pre-trained multilingual model on the English PAWS data with the following command:

bash scripts/train.sh [MODEL] pawsx

XNLI sentence classification

The second sentence classification dataset is the Cross-lingual Natural Language Inference (XNLI) dataset. You can fine-tune a pre-trained multilingual model on the English MNLI data with the following command:

bash scripts/train.sh [MODEL] xnli

XQuAD, MLQA, TyDiQA-GoldP question answering

For question answering, we use the data from the XQuAD, MLQA, and TyDiQA-Gold Passage datasets. For XQuAD and MLQA, the model should be trained on the English SQuAD training set. For TyDiQA-Gold Passage, the model is trained on the English TyDiQA-GoldP training set. Using the following command, you can first fine-tune a pre-trained multilingual model on the corresponding English training data, and then you can obtain predictions on the test data of all tasks.

bash scripts/train.sh [MODEL] [xquad,mlqa,tydiqa]

BUCC sentence retrieval

For cross-lingual sentence retrieval, we use the data from the Building and Using Parallel Corpora (BUCC) shared task. As the models are not trained for this task but the representations of the pre-trained models are directly used to obtain similarity judgements, you can directly apply the model to obtain predictions on the test data of the task:

bash scripts/train.sh [MODEL] bucc2018

Tatoeba sentence retrieval

The second cross-lingual sentence retrieval dataset we use is the Tatoeba dataset. Similarly to BUCC, you can directly apply the model to obtain predictions on the test data of the task:

bash scripts/train.sh [MODEL] tatoeba

Leaderboard Submission

Submissions

To submit your predicitons to XTREME, please create one single folder that contains 9 sub-folders named after all the tasks, i.e., udpos, panx, xnli, pawsx, xquad, mlqa, tydiqa, bucc2018, tatoeba. Inside each sub-folder, create a file containing the predicted labels of the test set for all languages. Name the file using the format test-{language}.{extension} where language indicates the 2-character language code, and extension is json for QA tasks and tsv for other tasks. You can see an example of the folder structure in mock_test_data/predictions.

Evaluation

We will compare your submissions with our label files using the following command:

python evaluate.py --prediction_folder [path] --label_folder [path]

Translations

As part of training translate-train and translate-test baselines we have automatically translated English training sets to other languages and tests sets to English. Translations are available for the following datasets: SQuAD v1.1 (only train and dev), MLQA, PAWS-X, TyDiQA-GoldP, XNLI, and XQuAD.

For PAWS-X and XNLI, the translations are in the following format: Column 1 and Column 2: original sentence pairs Column 3 and Column 4: translated sentence pairs Column 5: label

This will help make the association between the original data and their translations.

For XNLI and XQuAD, we have furthermore created pseudo test sets by automatically translating the English test set to the remaining languages in XTREME so that test data for all 40 languages is available. Note that these translations are noisy and should not be treated as ground truth.

All translations are available here.

Paper

If you use our benchmark or the code in this repo, please cite our paper \cite{hu2020xtreme}.

@article{hu2020xtreme,
      author    = {Junjie Hu and Sebastian Ruder and Aditya Siddhant and Graham Neubig and Orhan Firat and Melvin Johnson},
      title     = {XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization},
      journal   = {CoRR},
      volume    = {abs/2003.11080},
      year      = {2020},
      archivePrefix = {arXiv},
      eprint    = {2003.11080}
}

Please consider including a note similar to the one below to make sure to cite all the individual datasets in your paper.

We experiment on the XTREME benchmark \cite{hu2020xtreme}, a composite benchmark for multi-lingual learning consisting of data from the XNLI \cite{Conneau2018xnli}, PAWS-X \cite{Yang2019paws-x}, UD-POS \cite{nivre2018universal}, Wikiann NER \cite{Pan2017}, XQuAD \cite{artetxe2020cross}, MLQA \cite{Lewis2020mlqa}, TyDiQA-GoldP \cite{Clark2020tydiqa}, BUCC 2018 \cite{zweigenbaum2018overview}, Tatoeba \cite{Artetxe2019massively} tasks. We provide their BibTex information as follows.

@inproceedings{Conneau2018xnli,
    title = "{XNLI}: Evaluating Cross-lingual Sentence Representations",
    author = "Conneau, Alexis  and
      Rinott, Ruty  and
      Lample, Guillaume  and
      Williams, Adina  and
      Bowman, Samuel  and
      Schwenk, Holger  and
      Stoyanov, Veselin",
    booktitle = "Proceedings of EMNLP 2018",
    year = "2018",
    pages = "2475--2485",
}

@inproceedings{Yang2019paws-x,
    title = "{PAWS-X}: A Cross-lingual Adversarial Dataset for Paraphrase Identification",
    author = "Yang, Yinfei  and
      Zhang, Yuan  and
      Tar, Chris  and
      Baldridge, Jason",
    booktitle = "Proceedings of EMNLP 2019",
    year = "2019",
    pages = "3685--3690",
}

@article{nivre2018universal,
  title={Universal Dependencies 2.2},
  author={Nivre, Joakim and Abrams, Mitchell and Agi{\'c}, {\v{Z}}eljko and Ahrenberg, Lars and Antonsen, Lene and Aranzabe, Maria Jesus and Arutie, Gashaw and Asahara, Masayuki and Ateyah, Luma and Attia, Mohammed and others},
  year={2018}
}

@inproceedings{Pan2017,
author = {Pan, Xiaoman and Zhang, Boliang and May, Jonathan and Nothman, Joel and Knight, Kevin and Ji, Heng},
booktitle = {Proceedings of ACL 2017},
pages = {1946--1958},
title = {{Cross-lingual name tagging and linking for 282 languages}},
year = {2017}
}

@inproceedings{artetxe2020cross,
author = {Artetxe, Mikel and Ruder, Sebastian and Yogatama, Dani},
booktitle = {Proceedings of ACL 2020},
title = {{On the Cross-lingual Transferability of Monolingual Representations}},
year = {2020}
}

@inproceedings{Lewis2020mlqa,
author = {Lewis, Patrick and Oğuz, Barlas and Rinott, Ruty and Riedel, Sebastian and Schwenk, Holger},
booktitle = {Proceedings of ACL 2020},
title = {{MLQA: Evaluating Cross-lingual Extractive Question Answering}},
year = {2020}
}

@inproceedings{Clark2020tydiqa,
author = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
booktitle = {Transactions of the Association of Computational Linguistics},
title = {{TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}},
year = {2020}
}

@inproceedings{zweigenbaum2018overview,
  title={Overview of the third BUCC shared task: Spotting parallel sentences in comparable corpora},
  author={Zweigenbaum, Pierre and Sharoff, Serge and Rapp, Reinhard},
  booktitle={Proceedings of 11th Workshop on Building and Using Comparable Corpora},
  pages={39--42},
  year={2018}
}

@article{Artetxe2019massively,
author = {Artetxe, Mikel and Schwenk, Holger},
journal = {Transactions of the ACL 2019},
title = {{Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond}},
year = {2019}
}

More Repositories

1

bert

TensorFlow code and pre-trained models for BERT
Python
37,769
star
2

google-research

Google Research
Jupyter Notebook
33,759
star
3

tuning_playbook

A playbook for systematically maximizing the performance of deep learning models.
26,593
star
4

vision_transformer

Jupyter Notebook
10,251
star
5

text-to-text-transfer-transformer

Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"
Python
6,099
star
6

arxiv-latex-cleaner

arXiv LaTeX Cleaner: Easily clean the LaTeX code of your paper to submit to arXiv
Python
5,233
star
7

simclr

SimCLRv2 - Big Self-Supervised Models are Strong Semi-Supervised Learners
Jupyter Notebook
3,937
star
8

multinerf

A Code Release for Mip-NeRF 360, Ref-NeRF, and RawNeRF
Python
3,612
star
9

timesfm

TimesFM (Time Series Foundation Model) is a pretrained time-series foundation model developed by Google Research for time-series forecasting.
Python
3,576
star
10

scenic

Scenic: A Jax Library for Computer Vision Research and Beyond
Python
3,295
star
11

football

Check out the new game server:
Python
3,260
star
12

albert

ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
Python
3,209
star
13

frame-interpolation

FILM: Frame Interpolation for Large Motion, In ECCV 2022.
Python
2,818
star
14

t5x

Python
2,656
star
15

electra

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
Python
2,325
star
16

kubric

A data generation pipeline for creating semi-realistic synthetic multi-object videos with rich annotations such as instance segmentation masks, depth maps, and optical flow.
Jupyter Notebook
2,312
star
17

big_vision

Official codebase used to develop Vision Transformer, SigLIP, MLP-Mixer, LiT and more.
Jupyter Notebook
2,219
star
18

uda

Unsupervised Data Augmentation (UDA)
Python
2,131
star
19

language

Shared repository for open-sourced projects from the Google AI Language team.
Python
1,605
star
20

pegasus

Python
1,600
star
21

dex-lang

Research language for array processing in the Haskell/ML family
Haskell
1,581
star
22

torchsde

Differentiable SDE solvers with GPU support and efficient sensitivity analysis.
Python
1,548
star
23

parti

1,538
star
24

big_transfer

Official repository for the "Big Transfer (BiT): General Visual Representation Learning" paper.
Python
1,504
star
25

FLAN

Python
1,460
star
26

robotics_transformer

Python
1,337
star
27

disentanglement_lib

disentanglement_lib is an open-source library for research on learning disentangled representations.
Python
1,311
star
28

multilingual-t5

Python
1,197
star
29

circuit_training

Python
1,151
star
30

tapas

End-to-end neural table-text understanding models.
Python
1,143
star
31

planet

Learning Latent Dynamics for Planning from Pixels
Python
1,134
star
32

mixmatch

Python
1,130
star
33

deduplicate-text-datasets

Rust
1,104
star
34

fixmatch

A simple method to perform semi-supervised learning with limited data.
Python
1,094
star
35

morph-net

Fast & Simple Resource-Constrained Learning of Deep Network Structure
Python
1,016
star
36

maxim

[CVPR 2022 Oral] Official repository for "MAXIM: Multi-Axis MLP for Image Processing". SOTA for denoising, deblurring, deraining, dehazing, and enhancement.
Python
996
star
37

deeplab2

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.
Python
995
star
38

batch-ppo

Efficient Batched Reinforcement Learning in TensorFlow
Python
963
star
39

augmix

AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
Python
951
star
40

magvit

Official JAX implementation of MAGVIT: Masked Generative Video Transformer
Python
947
star
41

pix2seq

Pix2Seq codebase: multi-tasks with generative modeling (autoregressive and diffusion)
Jupyter Notebook
865
star
42

seed_rl

SEED RL: Scalable and Efficient Deep-RL with Accelerated Central Inference. Implements IMPALA and R2D2 algorithms in TF2 with SEED's architecture.
Python
793
star
43

meta-dataset

A dataset of datasets for learning to learn from few examples
Jupyter Notebook
762
star
44

noisystudent

Code for Noisy Student Training. https://arxiv.org/abs/1911.04252
Python
751
star
45

rliable

[NeurIPS'21 Outstanding Paper] Library for reliable evaluation on RL and ML benchmarks, even with only a handful of seeds.
Jupyter Notebook
747
star
46

recsim

A Configurable Recommender Systems Simulation Platform
Python
739
star
47

jax3d

Python
733
star
48

long-range-arena

Long Range Arena for Benchmarking Efficient Transformers
Python
719
star
49

lottery-ticket-hypothesis

A reimplementation of "The Lottery Ticket Hypothesis" (Frankle and Carbin) on MNIST.
Python
706
star
50

federated

A collection of Google research projects related to Federated Learning and Federated Analytics.
Python
675
star
51

bleurt

BLEURT is a metric for Natural Language Generation based on transfer learning.
Python
651
star
52

prompt-tuning

Original Implementation of Prompt Tuning from Lester, et al, 2021
Python
642
star
53

nasbench

NASBench: A Neural Architecture Search Dataset and Benchmark
Python
641
star
54

neuralgcm

Hybrid ML + physics model of the Earth's atmosphere
Python
641
star
55

lasertagger

Python
606
star
56

sound-separation

Python
603
star
57

pix2struct

Python
587
star
58

vmoe

Jupyter Notebook
569
star
59

dreamer

Dream to Control: Learning Behaviors by Latent Imagination
Python
568
star
60

robopianist

[CoRL '23] Dexterous piano playing with deep reinforcement learning.
Python
562
star
61

omniglue

Code release for CVPR'24 submission 'OmniGlue'
Python
561
star
62

fast-soft-sort

Fast Differentiable Sorting and Ranking
Python
561
star
63

ravens

Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet. Transporter Nets, CoRL 2020.
Python
560
star
64

sam

Python
551
star
65

batch_rl

Offline Reinforcement Learning (aka Batch Reinforcement Learning) on Atari 2600 games
Python
521
star
66

bigbird

Transformers for Longer Sequences
Python
518
star
67

tensor2robot

Distributed machine learning infrastructure for large-scale robotics research
Python
483
star
68

byt5

Python
477
star
69

adapter-bert

Python
476
star
70

mint

Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.
Python
465
star
71

leaf-audio

LEAF is a learnable alternative to audio features such as mel-filterbanks, that can be initialized as an approximation of mel-filterbanks, and then be trained for the task at hand, while using a very small number of parameters.
Python
446
star
72

robustness_metrics

Jupyter Notebook
442
star
73

maxvit

[ECCV 2022] Official repository for "MaxViT: Multi-Axis Vision Transformer". SOTA foundation models for classification, detection, segmentation, image quality, and generative modeling...
Jupyter Notebook
436
star
74

receptive_field

Compute receptive fields of your favorite convnets
Python
434
star
75

maskgit

Official Jax Implementation of MaskGIT
Jupyter Notebook
429
star
76

weatherbench2

A benchmark for the next generation of data-driven global weather models.
Python
420
star
77

l2p

Learning to Prompt (L2P) for Continual Learning @ CVPR22 and DualPrompt: Complementary Prompting for Rehearsal-free Continual Learning @ ECCV22
Python
408
star
78

distilling-step-by-step

Python
407
star
79

ssl_detection

Semi-supervised learning for object detection
Python
398
star
80

nerf-from-image

Shape, Pose, and Appearance from a Single Image via Bootstrapped Radiance Field Inversion
Python
377
star
81

computation-thru-dynamics

Understanding computation in artificial and biological recurrent networks through the lens of dynamical systems.
Jupyter Notebook
369
star
82

tf-slim

Python
368
star
83

realworldrl_suite

Real-World RL Benchmark Suite
Python
341
star
84

python-graphs

A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.
Python
325
star
85

rigl

End-to-end training of sparse deep neural networks with little-to-no performance loss.
Python
314
star
86

task_adaptation

Python
310
star
87

self-organising-systems

Jupyter Notebook
308
star
88

ibc

Official implementation of Implicit Behavioral Cloning, as described in our CoRL 2021 paper, see more at https://implicitbc.github.io/
Python
306
star
89

tensorflow_constrained_optimization

Python
300
star
90

syn-rep-learn

Learning from synthetic data - code and models
Python
294
star
91

arco-era5

Recipes for reproducing Analysis-Ready & Cloud Optimized (ARCO) ERA5 datasets.
Python
291
star
92

vdm

Jupyter Notebook
291
star
93

rlds

Jupyter Notebook
284
star
94

exoplanet-ml

Machine learning models and utilities for exoplanet science.
Python
283
star
95

retvec

RETVec is an efficient, multilingual, and adversarially-robust text vectorizer.
Jupyter Notebook
281
star
96

sparf

This is the official code release for SPARF: Neural Radiance Fields from Sparse and Noisy Poses [CVPR 2023-Highlight]
Python
279
star
97

tensorflow-coder

Python
275
star
98

lm-extraction-benchmark

Python
270
star
99

language-table

Suite of human-collected datasets and a multi-task continuous control benchmark for open vocabulary visuolinguomotor learning.
Jupyter Notebook
260
star
100

falken

Falken provides developers with a service that allows them to train AI that can play their games
Python
254
star