• Stars
    star
    1,311
  • Rank 34,452 (Top 0.7 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created about 5 years ago
  • Updated almost 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib

Sample visualization

disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of different models, metrics and data sets:

  • Models: BetaVAE, FactorVAE, BetaTCVAE, DIP-VAE
  • Metrics: BetaVAE score, FactorVAE score, Mutual Information Gap, SAP score, DCI, MCE, IRS, UDR
  • Data sets: dSprites, Color/Noisy/Scream-dSprites, SmallNORB, Cars3D, and Shapes3D
  • It also includes 10'800 pretrained disentanglement models (see below for details).

disentanglement_lib was created by Olivier Bachem and Francesco Locatello at Google Brain Zurich for the large-scale empirical study

Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem. ICML (Best Paper Award), 2019.

The code is tested with Python 3 and is meant to be run on Linux systems (such as a Google Cloud Deep Learning VM). It uses TensorFlow, Scipy, Numpy, Scikit-Learn, TFHub and Gin.

How does it work?

disentanglement_lib consists of several different steps:

  • Model training: Trains a TensorFlow model and saves trained model in a TFHub module.
  • Postprocessing: Takes a trained model, extracts a representation (e.g. by using the mean of the Gaussian encoder) and saves the representation function in a TFHub module.
  • Evaluation: Takes a representation function and computes a disentanglement metric.
  • Visualization: Takes a trained model and visualizes it.

All configuration details and experimental results of the different steps are saved and propagated along the steps (see below for a description). At the end, they can be aggregated in a single JSON file and analyzed with Pandas.

Usage

Installing disentanglement_lib

First, clone this repository with

git clone https://github.com/google-research/disentanglement_lib.git

Then, navigate to the repository (with cd disentanglement_lib) and run

pip install .[tf_gpu]

(or pip install .[tf] for TensorFlow without GPU support). This should install the package and all the required dependencies. To verify that everything works, simply run the test suite with

dlib_tests

Downloading the data sets

To download the data required for training the models, navigate to any folder and run

dlib_download_data

which will install all the required data files (except for Shapes3D which is not publicly released) in the current working directory. For convenience, we recommend to set the environment variable DISENTANGLEMENT_LIB_DATA to this path, for example by adding

export DISENTANGLEMENT_LIB_DATA=<path to the data directory>

to your .bashrc file. If you choose not to set the environment variable DISENTANGLEMENT_LIB_DATA, disentanglement_lib will always look for the data in your current folder.

Reproducing prior experiments

To fully train and evaluate one of the 12'600 models in the paper Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations, simply run

dlib_reproduce --model_num=<?>

where <?> should be replaced with a model index between 0 and 12'599 which corresponds to the ID of which model to train. This will take a couple of hours and add a folder output/<?> which contains the trained model (including checkpoints and TFHub modules), the experimental results (in JSON format) and visualizations (including GIFs). To only print the configuration of that model instead of training, add the flag --only_print.

After having trained several of these models, you can aggregate the results by running the following command (in the same folder)

dlib_aggregate_results

which creates a results.json file with all the aggregated results.

Running different configurations

Internally, disentanglement_lib uses gin to configure hyperparameters and other settings. To train one of the provided models but with different hyperparameters, you need to write a gin config such as examples/model.gin. Then, you may use the following command

dlib_train --gin_config=examples/model.gin --model_dir=<model_output_directory>

to train the model where --model_dir specifies where the results should be saved.

To evaluate the newly trained model consistent with the evaluation protocol in the paper Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations, simply run

dlib_reproduce --model_dir=<model_output_directory> --output_directory=<output>

Similarly, you might also want to look at dlib_postprocess and dlib_evaluate if you want to customize how representations are extracted and evaluated.

Starting your own research

disentanglement_lib is easily extendible and can be used to implement new models and metrics related to disentangled representations. To get started, simply go through examples/example.py which shows you how to create your own disentanglement model and metric and how to benchmark them against existing models and metrics.

Pretrained disentanglement_lib modules

Reproducing all the 12'600 models in the study Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations requires a substantial computational effort. To foster further research, disentanglement_lib includes 10'800 pretrained disentanglement_lib modules that correspond to the results of running dlib_reproduce with --model_num=<?> between 0 and 10'799 (the other models correspond to Shapes3D which is not publicly available). Each disentanglement_lib module contains the trained model (in the form of a TFHub module), the extracted representations (also as TFHub modules) and the recorded experimental results such as the different disentanglement scores (in JSON format). This makes it easy to compare new models to the pretrained ones and to compute new disentanglement metrics on the set of pretrained models.

To access the 10'800 pretrained disentanglement_lib modules, you may download individual ones using the following link:

https://storage.googleapis.com/disentanglement_lib/unsupervised_study_v1/<?>.zip

where <?> corresponds to a model index between 0 and 10'799 (example).

Each ZIP file in the bucket corresponds to one run of dlib_reproduce with that model number. To learn more about the used configuration settings, look at the code in disentanglement_lib/config/unsupervised_study_v1/sweep.py or run:

dlib_reproduce --model_num=<?> --only_print

Frequently asked questions

How do I make pretty GIFs of my models?

If you run dlib_reproduce, they are automatically saved to the visualizations subfolder in your output directory. Otherwise, you can use the script dlib_visualize_dataset to generate them or call the function visualize(...) in disentanglement_lib/visualize/visualize_model.py.

How are results and models saved?

After each of the main steps (training/postprocessing/evaluation), an output directory is created. For all steps, there is a results folder which contains all the configuration settings and experimental results up to that step. The gin subfolder contains the operative gin config for each step in the gin format. The json subfolder contains files with the operative gin config and the experimental results of that step but in JSON format. Finally, the aggregate subfolder contains aggregated JSON files where each file contains both the configs and results from all preceding steps.

The training step further saves the TensorFlow checkpoint (in a tf_checkpoint subfolder) and the trained model as a TFHub module (in a tfhub subfolder). Similarly, the postprocessing step saves the representation function as a TFHub module (in a tfhub subfolder). If you run dlib_reproduce, it will create subfolders for all the different substeps that you ran. In particular, it will create an output directory for each metric that you computed.

How do I access the results?

To access the results, first aggregate all the results using dlib_aggregate_results by specifying a glob pattern that captures all the results files. For example, after training a couple of different models with dlib_reproduce, you would specify

dlib_aggregate --output_path=<...>.json \
  --result_file_pattern=<...>/*/metrics/*/*/results/aggregate/evaluation.json

The first * in the glob pattern would capture the different models, the second * different representations and the last * the different metrics. Finally, you may access the aggregated results with:

from disentanglement_lib.utils import aggregate_results
df = aggregate_results.load_aggregated_json_results(output_path)

Where to look in the code?

The following provides a guide to the overall code structure:

(1) Training step:

  • disentanglement_lib/methods/unsupervised: Contains the training protocol (train.py) and all the model functions for training the methods (vae.py). The methods all inherit from the GaussianEncoderModel class.
  • disentanglement_lib/methods/shared: Contains shared architectures, losses, and optimizers used in the different models.

(2) Postprocessing step:

  • disentanglement_lib/postprocess: Contains the postprocessing pipeline (postprocess.py) and the two extraction methods (methods.py).

(3) Evaluation step:

  • disentanglement_lib/evaluation: Contains the evaluation protocol (evaluate.py).

  • disentanglement_lib/evaluation/metrics: Contains implementation of the different disentanglement metrics.

Hyperparameters and configuration files:

  • disentanglement_lib/config/unsupervised_study_v1: Contains the gin configuration files (*.gin) for the different steps as well as the hyperparameter sweep (sweep.py) for the experiments in the paper Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations.

Shared functionality:

  • bin: Scripts to run the different pipelines, visualize the data sets as well as the models and aggregate the results.

  • disentanglement_lib/data/ground_truth: Contains all the scripts used to generate the data. All the datasets (in named_data.py) are instances of the class GroundTruthData}.

  • disentanglement_lib/utils: Contains helper functions to aggregate and save the results of the pipeline as well as the trained models.

  • disentanglement_lib/visualize: Contains visualization functions for the datasets and the trained models.

NeurIPS 2019 Disentanglement Challenge

The library is also used for the NeurIPS 2019 Disentanglement challenge. The challenge consists of three different datasets.

  1. Simplistic rendered images (mpi3d_toy)
  2. Realistic rendered images (mpi3d_realistic): not yet published
  3. Real world images (mpi3d_real): not yet published

Currently, only the simplistic rendered dataset is publicly available and will be automatically downloaded by running the following command.

dlib_download_data

Other datasets will be made available at the later stages of the competition. For more information on the competition kindly visit the competition website. More information about the dataset can be found here or in the arXiv preprint On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset.

Abstract reasoning experiments

The library also includes the code used for the experiments of the following paper in the disentanglement_lib/evaluation/abstract_reasoning subdirectory:

Are Disentangled Representations Helpful for Abstract Visual Reasoning? Sjoerd van Steenkiste, Francesco Locatello, Jürgen Schmidhuber, Olivier Bachem. NeurIPS, 2019.

The experimental protocol consists of two parts: First, to train the disentanglement models, one may use the the standard replication pipeline (dlib_reproduce), for example via the following command:

dlib_reproduce --model_num=<?> --study=abstract_reasoning_study_v1

where <?> should be replaced with a model index between 0 and 359 which corresponds to the ID of which model to train.

Second, to train the abstract reasoning models, one can use the automatically installed pipeline dlib_reason. To configure the model, copy and modify disentanglement_lib/config/abstract_reasoning_study_v1/stage2/example.gin as needed. Then, use the following command to train and evaluate an abstract reasoning model:

dlib_reason --gin_config=<?> --input_dir=<?> --output_dir=<?>

The results can then be found in the results subdirectory of the output directory.

Fairness experiments

The library also includes the code used for the experiments of the following paper in disentanglement_lib/evaluation/metrics/fairness.py:

On the Fairness of Disentangled Representations Francesco Locatello, Gabriele Abbati, Tom Rainforth, Stefan Bauer, Bernhard Schoelkopf, Olivier Bachem. NeurIPS, 2019.

To train and evaluate all the models, simply use the following command:

dlib_reproduce --model_num=<?> --study=fairness_study_v1

where <?> should be replaced with a model index between 0 and 12'599 which corresponds to the ID of which model to train.

If you only want to reevaluate an already trained model using the evaluation protocol of the paper, you may use the following command:

dlib_reproduce --model_dir=<model_output_directory> --output_directory=<output> --study=fairness_study_v1

UDR experiments

The library also includes the code for the Unsupervised Disentanglement Ranking (UDR) method proposed in the following paper in disentanglement_lib/bin/dlib_udr:

Unsupervised Model Selection for Variational Disentangled Representation Learning Sunny Duan, Loic Matthey, Andre Saraiva, Nicholas Watters, Christopher P. Burgess, Alexander Lerchner, Irina Higgins.

UDR can be applied to newly trained models (e.g. obtained by running dlib_reproduce) or to the existing pretrained models. After the models have been trained, their UDR scores can be computed by running:

dlib_udr --model_dirs=<model_output_directory1>,<model_output_directory2> \
  --output_directory=<output>

The scores will be exported to <output>/results/aggregate/evaluation.json under the model_scores attribute. The scores will be presented in the order of the input model directories.

Weakly-Supervised experiments

The library also includes the code for the weakly-supervised disentanglement methods proposed in the following paper in disentanglement_lib/bin/dlib_reproduce_weakly_supervised:

Weakly-Supervised Disentanglement Without Compromises Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, Michael Tschannen.

dlib_reproduce_weakly_supervised --output_directory=<output> \
   --gin_model_config_dir=<dir> \
   --gin_model_config_name=<name> \
   --gin_postprocess_config_glob=<postprocess_configs> \
   --gin_evaluation_config_glob=<eval_configs> \
   --pipeline_seed=<seed>

Semi-Supervised experiments

The library also includes the code for the semi-supervised disentanglement methods proposed in the following paper in disentanglement_lib/bin/dlib_reproduce_semi_supervised:

Disentangling Factors of Variation Using Few Labels Francesco Locatello, Michael Tschannen, Stefan Bauer, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem.

dlib_reproduce_weakly_supervised --output_directory=<output> \
   --gin_model_config_dir=<dir> \
   --gin_model_config_name=<name> \
   --gin_postprocess_config_glob=<postprocess_configs> \
   --gin_evaluation_config_glob=<eval_configs> \
   --gin_validation_config_glob=<val_configs> \
   --pipeline_seed=<seed> \
   --eval_seed=<seed> \
   --supervised_seed=<seed> \
   --num_labelled_samples=<num> \
   --train_percentage=0.9 \
   --labeller_fn="@perfect_labeller"

Feedback

Please send any feedback to [email protected] and [email protected].

Citation

If you use disentanglement_lib, please consider citing:

@inproceedings{locatello2019challenging,
  title={Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations},
  author={Locatello, Francesco and Bauer, Stefan and Lucic, Mario and Raetsch, Gunnar and Gelly, Sylvain and Sch{\"o}lkopf, Bernhard and Bachem, Olivier},
  booktitle={International Conference on Machine Learning},
  pages={4114--4124},
  year={2019}
}

This is not an officially supported Google product.

More Repositories

1

bert

TensorFlow code and pre-trained models for BERT
Python
36,701
star
2

google-research

Google Research
Jupyter Notebook
32,494
star
3

tuning_playbook

A playbook for systematically maximizing the performance of deep learning models.
24,615
star
4

vision_transformer

Jupyter Notebook
9,288
star
5

text-to-text-transfer-transformer

Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"
Python
5,820
star
6

arxiv-latex-cleaner

arXiv LaTeX Cleaner: Easily clean the LaTeX code of your paper to submit to arXiv
Python
4,736
star
7

simclr

SimCLRv2 - Big Self-Supervised Models are Strong Semi-Supervised Learners
Jupyter Notebook
3,841
star
8

multinerf

A Code Release for Mip-NeRF 360, Ref-NeRF, and RawNeRF
Python
3,484
star
9

football

Check out the new game server:
Python
3,230
star
10

albert

ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
Python
3,209
star
11

scenic

Scenic: A Jax Library for Computer Vision Research and Beyond
Python
2,999
star
12

frame-interpolation

FILM: Frame Interpolation for Large Motion, In ECCV 2022.
Python
2,643
star
13

t5x

Python
2,494
star
14

electra

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
Python
2,284
star
15

kubric

A data generation pipeline for creating semi-realistic synthetic multi-object videos with rich annotations such as instance segmentation masks, depth maps, and optical flow.
Jupyter Notebook
2,180
star
16

uda

Unsupervised Data Augmentation (UDA)
Python
2,131
star
17

pegasus

Python
1,578
star
18

big_vision

Official codebase used to develop Vision Transformer, SigLIP, MLP-Mixer, LiT and more.
Jupyter Notebook
1,555
star
19

language

Shared repository for open-sourced projects from the Google AI Language team.
Python
1,553
star
20

dex-lang

Research language for array processing in the Haskell/ML family
Haskell
1,532
star
21

parti

1,513
star
22

big_transfer

Official repository for the "Big Transfer (BiT): General Visual Representation Learning" paper.
Python
1,491
star
23

torchsde

Differentiable SDE solvers with GPU support and efficient sensitivity analysis.
Python
1,444
star
24

FLAN

Python
1,373
star
25

multilingual-t5

Python
1,197
star
26

robotics_transformer

Python
1,192
star
27

planet

Learning Latent Dynamics for Planning from Pixels
Python
1,134
star
28

mixmatch

Python
1,126
star
29

tapas

End-to-end neural table-text understanding models.
Python
1,080
star
30

fixmatch

A simple method to perform semi-supervised learning with limited data.
Python
1,053
star
31

morph-net

Fast & Simple Resource-Constrained Learning of Deep Network Structure
Python
1,011
star
32

deduplicate-text-datasets

Rust
982
star
33

deeplab2

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.
Python
976
star
34

batch-ppo

Efficient Batched Reinforcement Learning in TensorFlow
Python
963
star
35

augmix

AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
Python
951
star
36

maxim

[CVPR 2022 Oral] Official repository for "MAXIM: Multi-Axis MLP for Image Processing". SOTA for denoising, deblurring, deraining, dehazing, and enhancement.
Python
937
star
37

magvit

Official JAX implementation of MAGVIT: Masked Generative Video Transformer
Python
847
star
38

pix2seq

Pix2Seq codebase: multi-tasks with generative modeling (autoregressive and diffusion)
Jupyter Notebook
801
star
39

seed_rl

SEED RL: Scalable and Efficient Deep-RL with Accelerated Central Inference. Implements IMPALA and R2D2 algorithms in TF2 with SEED's architecture.
Python
790
star
40

meta-dataset

A dataset of datasets for learning to learn from few examples
Python
740
star
41

noisystudent

Code for Noisy Student Training. https://arxiv.org/abs/1911.04252
Python
736
star
42

jax3d

Python
718
star
43

recsim

A Configurable Recommender Systems Simulation Platform
Python
717
star
44

lottery-ticket-hypothesis

A reimplementation of "The Lottery Ticket Hypothesis" (Frankle and Carbin) on MNIST.
Python
704
star
45

rliable

[NeurIPS'21 Outstanding Paper] Library for reliable evaluation on RL and ML benchmarks, even with only a handful of seeds.
Jupyter Notebook
689
star
46

circuit_training

Python
685
star
47

long-range-arena

Long Range Arena for Benchmarking Efficient Transformers
Python
681
star
48

federated

A collection of Google research projects related to Federated Learning and Federated Analytics.
Python
646
star
49

nasbench

NASBench: A Neural Architecture Search Dataset and Benchmark
Python
641
star
50

prompt-tuning

Original Implementation of Prompt Tuning from Lester, et al, 2021
Python
617
star
51

bleurt

BLEURT is a metric for Natural Language Generation based on transfer learning.
Python
611
star
52

xtreme

XTREME is a benchmark for the evaluation of the cross-lingual generalization ability of pre-trained multilingual models that covers 40 typologically diverse languages and includes nine tasks.
Python
608
star
53

lasertagger

Python
603
star
54

sound-separation

Python
578
star
55

dreamer

Dream to Control: Learning Behaviors by Latent Imagination
Python
568
star
56

robopianist

[CoRL '23] Dexterous piano playing with deep reinforcement learning.
Python
531
star
57

pix2struct

Python
530
star
58

fast-soft-sort

Fast Differentiable Sorting and Ranking
Python
527
star
59

bigbird

Transformers for Longer Sequences
Python
518
star
60

ravens

Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet. Transporter Nets, CoRL 2020.
Python
517
star
61

sam

Python
512
star
62

vmoe

Jupyter Notebook
507
star
63

batch_rl

Offline Reinforcement Learning (aka Batch Reinforcement Learning) on Atari 2600 games
Python
489
star
64

tensor2robot

Distributed machine learning infrastructure for large-scale robotics research
Python
483
star
65

mint

Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.
Python
465
star
66

byt5

Python
464
star
67

adapter-bert

Python
459
star
68

leaf-audio

LEAF is a learnable alternative to audio features such as mel-filterbanks, that can be initialized as an approximation of mel-filterbanks, and then be trained for the task at hand, while using a very small number of parameters.
Python
446
star
69

robustness_metrics

Jupyter Notebook
442
star
70

maxvit

[ECCV 2022] Official repository for "MaxViT: Multi-Axis Vision Transformer". SOTA foundation models for classification, detection, segmentation, image quality, and generative modeling...
Jupyter Notebook
417
star
71

receptive_field

Compute receptive fields of your favorite convnets
Python
412
star
72

ssl_detection

Semi-supervised learning for object detection
Python
394
star
73

maskgit

Official Jax Implementation of MaskGIT
Jupyter Notebook
376
star
74

l2p

Learning to Prompt (L2P) for Continual Learning @ CVPR22 and DualPrompt: Complementary Prompting for Rehearsal-free Continual Learning @ ECCV22
Python
369
star
75

nerf-from-image

Shape, Pose, and Appearance from a Single Image via Bootstrapped Radiance Field Inversion
Python
366
star
76

computation-thru-dynamics

Understanding computation in artificial and biological recurrent networks through the lens of dynamical systems.
Jupyter Notebook
362
star
77

tf-slim

Python
360
star
78

realworldrl_suite

Real-World RL Benchmark Suite
Python
332
star
79

distilling-step-by-step

Python
325
star
80

rigl

End-to-end training of sparse deep neural networks with little-to-no performance loss.
Python
314
star
81

python-graphs

A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.
Python
312
star
82

weatherbench2

A benchmark for the next generation of data-driven global weather models.
Python
306
star
83

tensorflow_constrained_optimization

Python
301
star
84

task_adaptation

Python
295
star
85

exoplanet-ml

Machine learning models and utilities for exoplanet science.
Python
283
star
86

ibc

Official implementation of Implicit Behavioral Cloning, as described in our CoRL 2021 paper, see more at https://implicitbc.github.io/
Python
282
star
87

self-organising-systems

Jupyter Notebook
279
star
88

tensorflow-coder

Python
275
star
89

retvec

RETVec is an efficient, multilingual, and adversarially-robust text vectorizer.
Jupyter Notebook
269
star
90

vdm

Jupyter Notebook
267
star
91

sparf

This is the official code release for SPARF: Neural Radiance Fields from Sparse and Noisy Poses [CVPR 2023-Highlight]
Python
263
star
92

falken

Falken provides developers with a service that allows them to train AI that can play their games
Python
253
star
93

syn-rep-learn

Learning from synthetic data - code and models
Python
246
star
94

lm-extraction-benchmark

Python
244
star
95

meliad

Python
231
star
96

3d-moments

Code for CVPR 2022 paper '3D Moments from Near-Duplicate Photos'
Python
229
star
97

perceiver-ar

Python
224
star
98

rlds

Jupyter Notebook
216
star
99

ott

Python
215
star
100

language-table

Suite of human-collected datasets and a multi-task continuous control benchmark for open vocabulary visuolinguomotor learning.
Jupyter Notebook
213
star