• Stars
    star
    2,325
  • Rank 19,804 (Top 0.4 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 4 years ago
  • Updated 8 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA

Introduction

ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a GAN. At small scale, ELECTRA achieves strong results even when trained on a single GPU. At large scale, ELECTRA achieves state-of-the-art results on the SQuAD 2.0 dataset.

For a detailed description and experimental results, please refer to our ICLR 2020 paper ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.

This repository contains code to pre-train ELECTRA, including small ELECTRA models on a single GPU. It also supports fine-tuning ELECTRA on downstream tasks including classification tasks (e.g,. GLUE), QA tasks (e.g., SQuAD), and sequence tagging tasks (e.g., text chunking).

This repository also contains code for Electric, a version of ELECTRA inspired by energy-based models. Electric provides a more principled view of ELECTRA as a "negative sampling" cloze model. It can also efficiently produce pseudo-likelihood scores for text, which can be used to re-rank the outputs of speech recognition or machine translation systems. For details on Electric, please refer to out EMNLP 2020 paper Pre-Training Transformers as Energy-Based Cloze Models.

Released Models

We are initially releasing three pre-trained models:

Model Layers Hidden Size Params GLUE score (test set) Download
ELECTRA-Small 12 256 14M 77.4 link
ELECTRA-Base 12 768 110M 82.7 link
ELECTRA-Large 24 1024 335M 85.2 link

The models were trained on uncased English text. They correspond to ELECTRA-Small++, ELECTRA-Base++, ELECTRA-1.75M in our paper. We hope to release other models, such as multilingual models, in the future.

On GLUE, ELECTRA-Large scores slightly better than ALBERT/XLNET, ELECTRA-Base scores better than BERT-Large, and ELECTRA-Small scores slightly worst than TinyBERT (but uses no distillation). See the expected results section below for detailed performance numbers.

Requirements

Pre-training

Use build_pretraining_dataset.py to create a pre-training dataset from a dump of raw text. It has the following arguments:

  • --corpus-dir: A directory containing raw text files to turn into ELECTRA examples. A text file can contain multiple documents with empty lines separating them.
  • --vocab-file: File defining the wordpiece vocabulary.
  • --output-dir: Where to write out ELECTRA examples.
  • --max-seq-length: The number of tokens per example (128 by default).
  • --num-processes: If >1 parallelize across multiple processes (1 by default).
  • --blanks-separate-docs: Whether blank lines indicate document boundaries (True by default).
  • --do-lower-case/--no-lower-case: Whether to lower case the input text (True by default).

Use run_pretraining.py to pre-train an ELECTRA model. It has the following arguments:

  • --data-dir: a directory where pre-training data, model weights, etc. are stored. By default, the training loads examples from <data-dir>/pretrain_tfrecords and a vocabulary from <data-dir>/vocab.txt.
  • --model-name: a name for the model being trained. Model weights will be saved in <data-dir>/models/<model-name> by default.
  • --hparams (optional): a JSON dict or path to a JSON file containing model hyperparameters, data paths, etc. See configure_pretraining.py for the supported hyperparameters.

If training is halted, re-running the run_pretraining.py with the same arguments will continue the training where it left off.

You can continue pre-training from the released ELECTRA checkpoints by

  1. Setting the model-name to point to a downloaded model (e.g., --model-name electra_small if you downloaded weights to $DATA_DIR/electra_small).
  2. Setting num_train_steps by (for example) adding "num_train_steps": 4010000 to the --hparams. This will continue training the small model for 10000 more steps (it has already been trained for 4e6 steps).
  3. Increase the learning rate to account for the linear learning rate decay. For example, to start with a learning rate of 2e-4 you should set the learning_rate hparam to 2e-4 * (4e6 + 10000) / 10000.
  4. For ELECTRA-Small, you also need to specifiy "generator_hidden_size": 1.0 in the hparams because we did not use a small generator for that model.

Quickstart: Pre-train a small ELECTRA model.

These instructions pre-train a small ELECTRA model (12 layers, 256 hidden size). Unfortunately, the data we used in the paper is not publicly available, so we will use the OpenWebTextCorpus released by Aaron Gokaslan and Vanya Cohen instead. The fully-trained model (~4 days on a v100 GPU) should perform roughly in between GPT and BERT-Base in terms of GLUE performance. By default the model is trained on length-128 sequences, so it is not suitable for running on question answering. See the "expected results" section below for more details on model performance.

Setup

  1. Place a vocabulary file in $DATA_DIR/vocab.txt. Our ELECTRA models all used the exact same vocabulary as English uncased BERT, which you can download here.
  2. Download the OpenWebText corpus (12G) and extract it (i.e., run tar xf openwebtext.tar.xz). Place it in $DATA_DIR/openwebtext.
  3. Run python3 build_openwebtext_pretraining_dataset.py --data-dir $DATA_DIR --num-processes 5. It pre-processes/tokenizes the data and outputs examples as tfrecord files under $DATA_DIR/pretrain_tfrecords. The tfrecords require roughly 30G of disk space.

Pre-training the model.

Run python3 run_pretraining.py --data-dir $DATA_DIR --model-name electra_small_owt to train a small ELECTRA model for 1 million steps on the data. This takes slightly over 4 days on a Tesla V100 GPU. However, the model should achieve decent results after 200k steps (10 hours of training on the v100 GPU).

To customize the training, add --hparams '{"hparam1": value1, "hparam2": value2, ...}' to the run command. --hparams can also be a path to a .json file containing the hyperparameters. Some particularly useful options:

  • "debug": true trains a tiny ELECTRA model for a few steps.
  • "model_size": one of "small", "base", or "large": determines the size of the model
  • "electra_objective": false trains a model with masked language modeling instead of replaced token detection (essentially BERT with dynamic masking and no next-sentence prediction).
  • "num_train_steps": n controls how long the model is pre-trained for.
  • "pretrain_tfrecords": <paths> determines where the pre-training data is located. Note you need to specify the specific files not just the directory (e.g., <data-dir>/pretrain_tf_records/pretrain_data.tfrecord*)
  • "vocab_file": <path> and "vocab_size": n can be used to set a custom wordpiece vocabulary.
  • "learning_rate": lr, "train_batch_size": n, etc. can be used to change training hyperparameters
  • "model_hparam_overrides": {"hidden_size": n, "num_hidden_layers": m}, etc. can be used to changed the hyperparameters for the underlying transformer (the "model_size" flag sets the default values).

See configure_pretraining.py for the full set of supported hyperparameters.

Evaluating the pre-trained model.

To evaluate the model on a downstream task, see the below finetuning instructions. To evaluate the generator/discriminator on the openwebtext data run python3 run_pretraining.py --data-dir $DATA_DIR --model-name electra_small_owt --hparams '{"do_train": false, "do_eval": true}'. This will print out eval metrics such as the accuracy of the generator and discriminator, and also writing the metrics out to data-dir/model-name/results.

Fine-tuning

Use run_finetuning.py to fine-tune and evaluate an ELECTRA model on a downstream NLP task. It expects three arguments:

  • --data-dir: a directory where data, model weights, etc. are stored. By default, the script loads finetuning data from <data-dir>/finetuning_data/<task-name> and a vocabulary from <data-dir>/vocab.txt.
  • --model-name: a name of the pre-trained model: the pre-trained weights should exist in data-dir/models/model-name.
  • --hparams: a JSON dict containing model hyperparameters, data paths, etc. (e.g., --hparams '{"task_names": ["rte"], "model_size": "base", "learning_rate": 1e-4, ...}'). See configure_pretraining.py for the supported hyperparameters. Instead of a dict, this can also be a path to a .json file containing the hyperparameters. You must specify the "task_names" and "model_size" (see examples below).

Eval metrics will be saved in data-dir/model-name/results and model weights will be saved in data-dir/model-name/finetuning_models by default. Evaluation is done on the dev set by default. To customize the training, add --hparams '{"hparam1": value1, "hparam2": value2, ...}' to the run command. Some particularly useful options:

  • "debug": true fine-tunes a tiny ELECTRA model for a few steps.
  • "task_names": ["task_name"]: specifies the tasks to train on. A list because the codebase nominally supports multi-task learning, (although be warned this has not been thoroughly tested).
  • "model_size": one of "small", "base", or "large": determines the size of the model; you must set this to the same size as the pre-trained model.
  • "do_train" and "do_eval": train and/or evaluate a model (both are set to true by default). For using "do_eval": true with "do_train": false, you need to specify the init_checkpoint, e.g., python3 run_finetuning.py --data-dir $DATA_DIR --model-name electra_base --hparams '{"model_size": "base", "task_names": ["mnli"], "do_train": false, "do_eval": true, "init_checkpoint": "<data-dir>/models/electra_base/finetuning_models/mnli_model_1"}'
  • "num_trials": n: If >1, does multiple fine-tuning/evaluation runs with different random seeds.
  • "learning_rate": lr, "train_batch_size": n, etc. can be used to change training hyperparameters.
  • "model_hparam_overrides": {"hidden_size": n, "num_hidden_layers": m}, etc. can be used to changed the hyperparameters for the underlying transformer (the "model_size" flag sets the default values).

Setup

Get a pre-trained ELECTRA model either by training your own (see pre-training instructions above), or downloading the release ELECTRA weights and unziping them under $DATA_DIR/models (e.g., you should have a directory$DATA_DIR/models/electra_large if you are using the large model).

Finetune ELECTRA on a GLUE task

Download the GLUE data by running this script. Set up the data by running mv CoLA cola && mv MNLI mnli && mv MRPC mrpc && mv QNLI qnli && mv QQP qqp && mv RTE rte && mv SST-2 sst && mv STS-B sts && mv diagnostic/diagnostic.tsv mnli && mkdir -p $DATA_DIR/finetuning_data && mv * $DATA_DIR/finetuning_data.

Then run run_finetuning.py. For example, to fine-tune ELECTRA-Base on MNLI

python3 run_finetuning.py --data-dir $DATA_DIR --model-name electra_base --hparams '{"model_size": "base", "task_names": ["mnli"]}'

Or fine-tune a small model pre-trained using the above instructions on CoLA.

python3 run_finetuning.py --data-dir $DATA_DIR --model-name electra_small_owt --hparams '{"model_size": "small", "task_names": ["cola"]}'

Finetune ELECTRA on question answering

The code supports SQuAD 1.1 and 2.0, as well as datasets in the 2019 MRQA shared task

  • Squad 1.1: Download the train and dev datasets and move them under $DATA_DIR/finetuning_data/squadv1/(train|dev).json
  • Squad 2.0: Download the datasets from the SQuAD Website and move them under $DATA_DIR/finetuning_data/squad/(train|dev).json
  • MRQA tasks: Download the data from here. Move the data to $DATA_DIR/finetuning_data/(newsqa|naturalqs|triviaqa|searchqa)/(train|dev).jsonl.

Then run (for example)

python3 run_finetuning.py --data-dir $DATA_DIR --model-name electra_base --hparams '{"model_size": "base", "task_names": ["squad"]}'

This repository uses the official evaluation code released by the SQuAD authors and the MRQA shared task to compute metrics

Finetune ELECTRA on sequence tagging

Download the CoNLL-2000 text chunking dataset from here and put it under $DATA_DIR/finetuning_data/chunk/(train|dev).txt. Then run

python3 run_finetuning.py --data-dir $DATA_DIR --model-name electra_base --hparams '{"model_size": "base", "task_names": ["chunk"]}'

Adding a new task

The easiest way to run on a new task is to implement a new finetune.task.Task, add it to finetune.task_builder.py, and then use run_finetuning.py as normal. For classification/qa/sequence tagging, you can inherit from a finetune.classification.classification_tasks.ClassificationTask, finetune.qa.qa_tasks.QATask, or finetune.tagging.tagging_tasks.TaggingTask. For preprocessing data, we use the same tokenizer as BERT.

Expected Results

Here are expected results for ELECTRA on various tasks (test set for chunking, dev set for the other tasks). Note that variance in fine-tuning can be quite large, so for some tasks you may see big fluctuations in scores when fine-tuning from the same checkpoint multiple times. The below scores show median performance over a large number of random seeds. ELECTRA-Small/Base/Large are our released models. ELECTRA-Small-OWT is the OpenWebText-trained model from above (it performs a bit worse than ELECTRA-Small due to being trained for less time and on a smaller dataset).

CoLA SST MRPC STS QQP MNLI QNLI RTE SQuAD 1.1 SQuAD 2.0 Chunking
Metrics MCC Acc Acc Spearman Acc Acc Acc Acc EM EM F1
ELECTRA-Large 69.1 96.9 90.8 92.6 92.4 90.9 95.0 88.0 89.7 88.1 97.2
ELECTRA-Base 67.7 95.1 89.5 91.2 91.5 88.8 93.2 82.7 86.8 80.5 97.1
ELECTRA-Small 57.0 91.2 88.0 87.5 89.0 81.3 88.4 66.7 75.8 70.1 96.5
ELECTRA-Small-OWT 56.8 88.3 87.4 86.8 88.3 78.9 87.9 68.5 -- -- --

See here for losses / training curves of the models during pre-training.

Electric

To train Electric, use the same pre-training script and command as ELECTRA. Pass "electra_objective": false and "electric_objective": true to the hyperparameters. We plan to release pre-trained Electric models soon!

Citation

If you use this code for your publication, please cite the original paper:

@inproceedings{clark2020electra,
  title = {{ELECTRA}: Pre-training Text Encoders as Discriminators Rather Than Generators},
  author = {Kevin Clark and Minh-Thang Luong and Quoc V. Le and Christopher D. Manning},
  booktitle = {ICLR},
  year = {2020},
  url = {https://openreview.net/pdf?id=r1xMH1BtvB}
}

If you use the code for Electric, please cite the Electric paper:

@inproceedings{clark2020electric,
  title = {Pre-Training Transformers as Energy-Based Cloze Models},
  author = {Kevin Clark and Minh-Thang Luong and Quoc V. Le and Christopher D. Manning},
  booktitle = {EMNLP},
  year = {2020},
  url = {https://www.aclweb.org/anthology/2020.emnlp-main.20.pdf}
}

Contact Info

For help or issues using ELECTRA, please submit a GitHub issue.

For personal communication related to ELECTRA, please contact Kevin Clark ([email protected]).

More Repositories

1

bert

TensorFlow code and pre-trained models for BERT
Python
37,769
star
2

google-research

Google Research
Jupyter Notebook
33,759
star
3

tuning_playbook

A playbook for systematically maximizing the performance of deep learning models.
26,593
star
4

vision_transformer

Jupyter Notebook
10,251
star
5

text-to-text-transfer-transformer

Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"
Python
6,099
star
6

arxiv-latex-cleaner

arXiv LaTeX Cleaner: Easily clean the LaTeX code of your paper to submit to arXiv
Python
5,233
star
7

simclr

SimCLRv2 - Big Self-Supervised Models are Strong Semi-Supervised Learners
Jupyter Notebook
3,937
star
8

multinerf

A Code Release for Mip-NeRF 360, Ref-NeRF, and RawNeRF
Python
3,612
star
9

timesfm

TimesFM (Time Series Foundation Model) is a pretrained time-series foundation model developed by Google Research for time-series forecasting.
Python
3,576
star
10

scenic

Scenic: A Jax Library for Computer Vision Research and Beyond
Python
3,295
star
11

football

Check out the new game server:
Python
3,260
star
12

albert

ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
Python
3,209
star
13

frame-interpolation

FILM: Frame Interpolation for Large Motion, In ECCV 2022.
Python
2,818
star
14

t5x

Python
2,656
star
15

kubric

A data generation pipeline for creating semi-realistic synthetic multi-object videos with rich annotations such as instance segmentation masks, depth maps, and optical flow.
Jupyter Notebook
2,312
star
16

big_vision

Official codebase used to develop Vision Transformer, SigLIP, MLP-Mixer, LiT and more.
Jupyter Notebook
2,219
star
17

uda

Unsupervised Data Augmentation (UDA)
Python
2,131
star
18

language

Shared repository for open-sourced projects from the Google AI Language team.
Python
1,605
star
19

pegasus

Python
1,600
star
20

dex-lang

Research language for array processing in the Haskell/ML family
Haskell
1,581
star
21

torchsde

Differentiable SDE solvers with GPU support and efficient sensitivity analysis.
Python
1,548
star
22

parti

1,538
star
23

big_transfer

Official repository for the "Big Transfer (BiT): General Visual Representation Learning" paper.
Python
1,504
star
24

FLAN

Python
1,460
star
25

robotics_transformer

Python
1,337
star
26

disentanglement_lib

disentanglement_lib is an open-source library for research on learning disentangled representations.
Python
1,311
star
27

multilingual-t5

Python
1,197
star
28

circuit_training

Python
1,151
star
29

tapas

End-to-end neural table-text understanding models.
Python
1,143
star
30

planet

Learning Latent Dynamics for Planning from Pixels
Python
1,134
star
31

mixmatch

Python
1,130
star
32

deduplicate-text-datasets

Rust
1,104
star
33

fixmatch

A simple method to perform semi-supervised learning with limited data.
Python
1,094
star
34

morph-net

Fast & Simple Resource-Constrained Learning of Deep Network Structure
Python
1,016
star
35

maxim

[CVPR 2022 Oral] Official repository for "MAXIM: Multi-Axis MLP for Image Processing". SOTA for denoising, deblurring, deraining, dehazing, and enhancement.
Python
996
star
36

deeplab2

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.
Python
995
star
37

batch-ppo

Efficient Batched Reinforcement Learning in TensorFlow
Python
963
star
38

augmix

AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
Python
951
star
39

magvit

Official JAX implementation of MAGVIT: Masked Generative Video Transformer
Python
947
star
40

pix2seq

Pix2Seq codebase: multi-tasks with generative modeling (autoregressive and diffusion)
Jupyter Notebook
865
star
41

seed_rl

SEED RL: Scalable and Efficient Deep-RL with Accelerated Central Inference. Implements IMPALA and R2D2 algorithms in TF2 with SEED's architecture.
Python
793
star
42

meta-dataset

A dataset of datasets for learning to learn from few examples
Jupyter Notebook
762
star
43

noisystudent

Code for Noisy Student Training. https://arxiv.org/abs/1911.04252
Python
751
star
44

rliable

[NeurIPS'21 Outstanding Paper] Library for reliable evaluation on RL and ML benchmarks, even with only a handful of seeds.
Jupyter Notebook
747
star
45

recsim

A Configurable Recommender Systems Simulation Platform
Python
739
star
46

jax3d

Python
733
star
47

long-range-arena

Long Range Arena for Benchmarking Efficient Transformers
Python
719
star
48

lottery-ticket-hypothesis

A reimplementation of "The Lottery Ticket Hypothesis" (Frankle and Carbin) on MNIST.
Python
706
star
49

federated

A collection of Google research projects related to Federated Learning and Federated Analytics.
Python
675
star
50

bleurt

BLEURT is a metric for Natural Language Generation based on transfer learning.
Python
651
star
51

prompt-tuning

Original Implementation of Prompt Tuning from Lester, et al, 2021
Python
642
star
52

nasbench

NASBench: A Neural Architecture Search Dataset and Benchmark
Python
641
star
53

neuralgcm

Hybrid ML + physics model of the Earth's atmosphere
Python
641
star
54

xtreme

XTREME is a benchmark for the evaluation of the cross-lingual generalization ability of pre-trained multilingual models that covers 40 typologically diverse languages and includes nine tasks.
Python
631
star
55

lasertagger

Python
606
star
56

sound-separation

Python
603
star
57

pix2struct

Python
587
star
58

vmoe

Jupyter Notebook
569
star
59

dreamer

Dream to Control: Learning Behaviors by Latent Imagination
Python
568
star
60

robopianist

[CoRL '23] Dexterous piano playing with deep reinforcement learning.
Python
562
star
61

omniglue

Code release for CVPR'24 submission 'OmniGlue'
Python
561
star
62

fast-soft-sort

Fast Differentiable Sorting and Ranking
Python
561
star
63

ravens

Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet. Transporter Nets, CoRL 2020.
Python
560
star
64

sam

Python
551
star
65

batch_rl

Offline Reinforcement Learning (aka Batch Reinforcement Learning) on Atari 2600 games
Python
521
star
66

bigbird

Transformers for Longer Sequences
Python
518
star
67

tensor2robot

Distributed machine learning infrastructure for large-scale robotics research
Python
483
star
68

byt5

Python
477
star
69

adapter-bert

Python
476
star
70

mint

Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.
Python
465
star
71

leaf-audio

LEAF is a learnable alternative to audio features such as mel-filterbanks, that can be initialized as an approximation of mel-filterbanks, and then be trained for the task at hand, while using a very small number of parameters.
Python
446
star
72

robustness_metrics

Jupyter Notebook
442
star
73

maxvit

[ECCV 2022] Official repository for "MaxViT: Multi-Axis Vision Transformer". SOTA foundation models for classification, detection, segmentation, image quality, and generative modeling...
Jupyter Notebook
436
star
74

receptive_field

Compute receptive fields of your favorite convnets
Python
434
star
75

maskgit

Official Jax Implementation of MaskGIT
Jupyter Notebook
429
star
76

weatherbench2

A benchmark for the next generation of data-driven global weather models.
Python
420
star
77

l2p

Learning to Prompt (L2P) for Continual Learning @ CVPR22 and DualPrompt: Complementary Prompting for Rehearsal-free Continual Learning @ ECCV22
Python
408
star
78

distilling-step-by-step

Python
407
star
79

ssl_detection

Semi-supervised learning for object detection
Python
398
star
80

nerf-from-image

Shape, Pose, and Appearance from a Single Image via Bootstrapped Radiance Field Inversion
Python
377
star
81

computation-thru-dynamics

Understanding computation in artificial and biological recurrent networks through the lens of dynamical systems.
Jupyter Notebook
369
star
82

tf-slim

Python
368
star
83

realworldrl_suite

Real-World RL Benchmark Suite
Python
341
star
84

python-graphs

A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.
Python
325
star
85

rigl

End-to-end training of sparse deep neural networks with little-to-no performance loss.
Python
314
star
86

task_adaptation

Python
310
star
87

self-organising-systems

Jupyter Notebook
308
star
88

ibc

Official implementation of Implicit Behavioral Cloning, as described in our CoRL 2021 paper, see more at https://implicitbc.github.io/
Python
306
star
89

tensorflow_constrained_optimization

Python
300
star
90

syn-rep-learn

Learning from synthetic data - code and models
Python
294
star
91

arco-era5

Recipes for reproducing Analysis-Ready & Cloud Optimized (ARCO) ERA5 datasets.
Python
291
star
92

vdm

Jupyter Notebook
291
star
93

rlds

Jupyter Notebook
284
star
94

exoplanet-ml

Machine learning models and utilities for exoplanet science.
Python
283
star
95

retvec

RETVec is an efficient, multilingual, and adversarially-robust text vectorizer.
Jupyter Notebook
281
star
96

sparf

This is the official code release for SPARF: Neural Radiance Fields from Sparse and Noisy Poses [CVPR 2023-Highlight]
Python
279
star
97

tensorflow-coder

Python
275
star
98

lm-extraction-benchmark

Python
270
star
99

language-table

Suite of human-collected datasets and a multi-task continuous control benchmark for open vocabulary visuolinguomotor learning.
Jupyter Notebook
260
star
100

falken

Falken provides developers with a service that allows them to train AI that can play their games
Python
254
star