• Stars
    star
    3,484
  • Rank 12,215 (Top 0.3 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created almost 2 years ago
  • Updated 5 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A Code Release for Mip-NeRF 360, Ref-NeRF, and RawNeRF

MultiNeRF: A Code Release for Mip-NeRF 360, Ref-NeRF, and RawNeRF

This is not an officially supported Google product.

This repository contains the code release for three CVPR 2022 papers: Mip-NeRF 360, Ref-NeRF, and RawNeRF. This codebase was written by integrating our internal implementations of Ref-NeRF and RawNeRF into our mip-NeRF 360 implementation. As such, this codebase should exactly reproduce the results shown in mip-NeRF 360, but may differ slightly when reproducing Ref-NeRF or RawNeRF results.

This implementation is written in JAX, and is a fork of mip-NeRF. This is research code, and should be treated accordingly.

Setup

# Clone the repo.
git clone https://github.com/google-research/multinerf.git
cd multinerf

# Make a conda environment.
conda create --name multinerf python=3.9
conda activate multinerf

# Prepare pip.
conda install pip
pip install --upgrade pip

# Install requirements.
pip install -r requirements.txt

# Manually install rmbrualla's `pycolmap` (don't use pip's! It's different).
git clone https://github.com/rmbrualla/pycolmap.git ./internal/pycolmap

# Confirm that all the unit tests pass.
./scripts/run_all_unit_tests.sh

You'll probably also need to update your JAX installation to support GPUs or TPUs.

Running

Example scripts for training, evaluating, and rendering can be found in scripts/. You'll need to change the paths to point to wherever the datasets are located. Gin configuration files for our model and some ablations can be found in configs/. After evaluating on the test set of each scene in one of the datasets, you can use scripts/generate_tables.ipynb to produce error metrics across all scenes in the same format as was used in tables in the paper.

OOM errors

You may need to reduce the batch size (Config.batch_size) to avoid out of memory errors. If you do this, but want to preserve quality, be sure to increase the number of training iterations and decrease the learning rate by whatever scale factor you decrease batch size by.

Using your own data

Summary: first, calculate poses. Second, train MultiNeRF. Third, render a result video from the trained NeRF model.

  1. Calculating poses (using COLMAP):
DATA_DIR=my_dataset_dir
bash scripts/local_colmap_and_resize.sh ${DATA_DIR}
  1. Training MultiNeRF:
python -m train \
  --gin_configs=configs/360.gin \
  --gin_bindings="Config.data_dir = '${DATA_DIR}'" \
  --gin_bindings="Config.checkpoint_dir = '${DATA_DIR}/checkpoints'" \
  --logtostderr
  1. Rendering MultiNeRF:
python -m render \
  --gin_configs=configs/360.gin \
  --gin_bindings="Config.data_dir = '${DATA_DIR}'" \
  --gin_bindings="Config.checkpoint_dir = '${DATA_DIR}/checkpoints'" \
  --gin_bindings="Config.render_dir = '${DATA_DIR}/render'" \
  --gin_bindings="Config.render_path = True" \
  --gin_bindings="Config.render_path_frames = 480" \
  --gin_bindings="Config.render_video_fps = 60" \
  --logtostderr

Your output video should now exist in the directory my_dataset_dir/render/.

See below for more detailed instructions on either using COLMAP to calculate poses or writing your own dataset loader (if you already have pose data from another source, like SLAM or RealityCapture).

Running COLMAP to get camera poses

In order to run MultiNeRF on your own captured images of a scene, you must first run COLMAP to calculate camera poses. You can do this using our provided script scripts/local_colmap_and_resize.sh. Just make a directory my_dataset_dir/ and copy your input images into a folder my_dataset_dir/images/, then run:

bash scripts/local_colmap_and_resize.sh my_dataset_dir

This will run COLMAP and create 2x, 4x, and 8x downsampled versions of your images. These lower resolution images can be used in NeRF by setting, e.g., the Config.factor = 4 gin flag.

By default, local_colmap_and_resize.sh uses the OPENCV camera model, which is a perspective pinhole camera with k1, k2 radial and t1, t2 tangential distortion coefficients. To switch to another COLMAP camera model, for example OPENCV_FISHEYE, you can run

bash scripts/local_colmap_and_resize.sh my_dataset_dir OPENCV_FISHEYE

If you have a very large capture of more than around 500 images, we recommend switching from the exhaustive matcher to the vocabulary tree matcher in COLMAP (see the script for a commented-out example).

Our script is simply a thin wrapper for COLMAP--if you have run COLMAP yourself, all you need to do to load your scene in NeRF is ensure it has the following format:

my_dataset_dir/images/    <--- all input images
my_dataset_dir/sparse/0/  <--- COLMAP sparse reconstruction files (cameras, images, points)

Writing a custom dataloader

If you already have poses for your own data, you may prefer to write your own custom dataloader.

MultiNeRF includes a variety of dataloaders, all of which inherit from the base Dataset class.

The job of this class is to load all image and pose information from disk, then create batches of ray and color data for training or rendering a NeRF model.

Any inherited subclass is responsible for loading images and camera poses from disk by implementing the _load_renderings method (which is marked as abstract by the decorator @abc.abstractmethod). This data is then used to generate train and test batches of ray + color data for feeding through the NeRF model. The ray parameters are calculated in _make_ray_batch.

Existing data loaders

To work from an example, you can see how this function is overloaded for the different dataloaders we have already implemented:

The main data loader we rely on is LLFF (named for historical reasons), which is the loader for a dataset that has been posed by COLMAP.

Making your own loader by implementing _load_renderings

To make a new dataset, make a class inheriting from Dataset and overload the _load_renderings method:

class MyNewDataset(Dataset):
  def _load_renderings(self, config):
    ...

In this function, you must set the following public attributes:

  • images
  • camtoworlds
  • pixtocams
  • height, width

Many of our dataset loaders also set other useful attributes, but these are the critical ones for generating rays. You can see how they are used (along with a batch of pixel coordinates) to create rays in camera_utils.pixels_to_rays.

Images

images = [N, height, width, 3] numpy array of RGB images. Currently we require all images to have the same resolution.

Extrinsic camera poses

camtoworlds = [N, 3, 4] numpy array of extrinsic pose matrices. camtoworlds[i] should be in camera-to-world format, such that we can run

pose = camtoworlds[i]
x_world = pose[:3, :3] @ x_camera + pose[:3, 3:4]

to convert a 3D camera space point x_camera into a world space point x_world.

These matrices must be stored in the OpenGL coordinate system convention for camera rotation: x-axis to the right, y-axis upward, and z-axis backward along the camera's focal axis.

The most common conventions are

  • [right, up, backwards]: OpenGL, NeRF, most graphics code.
  • [right, down, forwards]: OpenCV, COLMAP, most computer vision code.

Fortunately switching from OpenCV/COLMAP to NeRF is simple: you just need to right-multiply the OpenCV pose matrices by np.diag([1, -1, -1, 1]), which will flip the sign of the y-axis (from down to up) and z-axis (from forwards to backwards):

camtoworlds_opengl = camtoworlds_opencv @ np.diag([1, -1, -1, 1])

You may also want to scale your camera pose translations such that they all lie within the [-1, 1]^3 cube for best performance with the default mipnerf360 config files.

We provide a useful helper function camera_utils.transform_poses_pca that computes a translation/rotation/scaling transform for the input poses that aligns the world space x-y plane with the ground (based on PCA) and scales the scene so that all input pose positions lie within [-1, 1]^3. (This function is applied by default when loading mip-NeRF 360 scenes with the LLFF data loader.) For a scene where this transformation has been applied, camera_utils.generate_ellipse_path can be used to generate a nice elliptical camera path for rendering videos.

Intrinsic camera poses

pixtocams= [N, 3, 4] numpy array of inverse intrinsic matrices, OR [3, 4] numpy array of a single shared inverse intrinsic matrix. These should be in OpenCV format, e.g.

camtopix = np.array([
  [focal,     0,  width/2],
  [    0, focal, height/2],
  [    0,     0,        1],
])
pixtocam = np.linalg.inv(camtopix)

Given a focal length and image size (and assuming a centered principal point, this matrix can be created using camera_utils.get_pixtocam.

Alternatively, it can be created by using camera_utils.intrinsic_matrix and inverting the resulting matrix.

Resolution

height = int, height of images.

width = int, width of images.

Distortion parameters (optional)

distortion_params = dict, camera lens distortion model parameters. This dictionary must map from strings -> floats, and the allowed keys are ['k1', 'k2', 'k3', 'k4', 'p1', 'p2'] (up to four radial coefficients and up to two tangential coefficients). By default, this is set to the empty dictionary {}, in which case undistortion is not run.

Details of the inner workings of Dataset

The public interface mimics the behavior of a standard machine learning pipeline dataset provider that can provide infinite batches of data to the training/testing pipelines without exposing any details of how the batches are loaded/created or how this is parallelized. Therefore, the initializer runs all setup, including data loading from disk using _load_renderings, and begins the thread using its parent start() method. After the initializer returns, the caller can request batches of data straight away.

The internal self._queue is initialized as queue.Queue(3), so the infinite loop in run() will block on the call self._queue.put(self._next_fn()) once there are 3 elements. The main thread training job runs in a loop that pops 1 element at a time off the front of the queue. The Dataset thread's run() loop will populate the queue with 3 elements, then wait until a batch has been removed and push one more onto the end.

This repeats indefinitely until the main thread's training loop completes (typically hundreds of thousands of iterations), then the main thread will exit and the Dataset thread will automatically be killed since it is a daemon.

Citation

If you use this software package, please cite whichever constituent paper(s) you build upon, or feel free to cite this entire codebase as:

@misc{multinerf2022,
      title={{MultiNeRF}: {A} {Code} {Release} for {Mip-NeRF} 360, {Ref-NeRF}, and {RawNeRF}},
      author={Ben Mildenhall and Dor Verbin and Pratul P. Srinivasan and Peter Hedman and Ricardo Martin-Brualla and Jonathan T. Barron},
      year={2022},
      url={https://github.com/google-research/multinerf},
}

More Repositories

1

bert

TensorFlow code and pre-trained models for BERT
Python
36,701
star
2

google-research

Google Research
Jupyter Notebook
32,494
star
3

tuning_playbook

A playbook for systematically maximizing the performance of deep learning models.
24,615
star
4

vision_transformer

Jupyter Notebook
9,288
star
5

text-to-text-transfer-transformer

Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"
Python
5,820
star
6

arxiv-latex-cleaner

arXiv LaTeX Cleaner: Easily clean the LaTeX code of your paper to submit to arXiv
Python
4,736
star
7

simclr

SimCLRv2 - Big Self-Supervised Models are Strong Semi-Supervised Learners
Jupyter Notebook
3,841
star
8

football

Check out the new game server:
Python
3,230
star
9

albert

ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
Python
3,209
star
10

scenic

Scenic: A Jax Library for Computer Vision Research and Beyond
Python
2,999
star
11

frame-interpolation

FILM: Frame Interpolation for Large Motion, In ECCV 2022.
Python
2,643
star
12

t5x

Python
2,494
star
13

electra

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
Python
2,284
star
14

kubric

A data generation pipeline for creating semi-realistic synthetic multi-object videos with rich annotations such as instance segmentation masks, depth maps, and optical flow.
Jupyter Notebook
2,180
star
15

uda

Unsupervised Data Augmentation (UDA)
Python
2,131
star
16

pegasus

Python
1,578
star
17

big_vision

Official codebase used to develop Vision Transformer, SigLIP, MLP-Mixer, LiT and more.
Jupyter Notebook
1,555
star
18

language

Shared repository for open-sourced projects from the Google AI Language team.
Python
1,553
star
19

dex-lang

Research language for array processing in the Haskell/ML family
Haskell
1,532
star
20

parti

1,513
star
21

big_transfer

Official repository for the "Big Transfer (BiT): General Visual Representation Learning" paper.
Python
1,491
star
22

torchsde

Differentiable SDE solvers with GPU support and efficient sensitivity analysis.
Python
1,444
star
23

FLAN

Python
1,373
star
24

disentanglement_lib

disentanglement_lib is an open-source library for research on learning disentangled representations.
Python
1,311
star
25

multilingual-t5

Python
1,197
star
26

robotics_transformer

Python
1,192
star
27

planet

Learning Latent Dynamics for Planning from Pixels
Python
1,134
star
28

mixmatch

Python
1,126
star
29

tapas

End-to-end neural table-text understanding models.
Python
1,080
star
30

fixmatch

A simple method to perform semi-supervised learning with limited data.
Python
1,053
star
31

morph-net

Fast & Simple Resource-Constrained Learning of Deep Network Structure
Python
1,011
star
32

deduplicate-text-datasets

Rust
982
star
33

deeplab2

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.
Python
976
star
34

batch-ppo

Efficient Batched Reinforcement Learning in TensorFlow
Python
963
star
35

augmix

AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
Python
951
star
36

maxim

[CVPR 2022 Oral] Official repository for "MAXIM: Multi-Axis MLP for Image Processing". SOTA for denoising, deblurring, deraining, dehazing, and enhancement.
Python
937
star
37

magvit

Official JAX implementation of MAGVIT: Masked Generative Video Transformer
Python
847
star
38

pix2seq

Pix2Seq codebase: multi-tasks with generative modeling (autoregressive and diffusion)
Jupyter Notebook
801
star
39

seed_rl

SEED RL: Scalable and Efficient Deep-RL with Accelerated Central Inference. Implements IMPALA and R2D2 algorithms in TF2 with SEED's architecture.
Python
790
star
40

meta-dataset

A dataset of datasets for learning to learn from few examples
Python
740
star
41

noisystudent

Code for Noisy Student Training. https://arxiv.org/abs/1911.04252
Python
736
star
42

jax3d

Python
718
star
43

recsim

A Configurable Recommender Systems Simulation Platform
Python
717
star
44

lottery-ticket-hypothesis

A reimplementation of "The Lottery Ticket Hypothesis" (Frankle and Carbin) on MNIST.
Python
704
star
45

rliable

[NeurIPS'21 Outstanding Paper] Library for reliable evaluation on RL and ML benchmarks, even with only a handful of seeds.
Jupyter Notebook
689
star
46

circuit_training

Python
685
star
47

long-range-arena

Long Range Arena for Benchmarking Efficient Transformers
Python
681
star
48

federated

A collection of Google research projects related to Federated Learning and Federated Analytics.
Python
646
star
49

nasbench

NASBench: A Neural Architecture Search Dataset and Benchmark
Python
641
star
50

prompt-tuning

Original Implementation of Prompt Tuning from Lester, et al, 2021
Python
617
star
51

bleurt

BLEURT is a metric for Natural Language Generation based on transfer learning.
Python
611
star
52

xtreme

XTREME is a benchmark for the evaluation of the cross-lingual generalization ability of pre-trained multilingual models that covers 40 typologically diverse languages and includes nine tasks.
Python
608
star
53

lasertagger

Python
603
star
54

sound-separation

Python
578
star
55

dreamer

Dream to Control: Learning Behaviors by Latent Imagination
Python
568
star
56

robopianist

[CoRL '23] Dexterous piano playing with deep reinforcement learning.
Python
531
star
57

pix2struct

Python
530
star
58

fast-soft-sort

Fast Differentiable Sorting and Ranking
Python
527
star
59

bigbird

Transformers for Longer Sequences
Python
518
star
60

ravens

Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet. Transporter Nets, CoRL 2020.
Python
517
star
61

sam

Python
512
star
62

vmoe

Jupyter Notebook
507
star
63

batch_rl

Offline Reinforcement Learning (aka Batch Reinforcement Learning) on Atari 2600 games
Python
489
star
64

tensor2robot

Distributed machine learning infrastructure for large-scale robotics research
Python
483
star
65

mint

Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.
Python
465
star
66

byt5

Python
464
star
67

adapter-bert

Python
459
star
68

leaf-audio

LEAF is a learnable alternative to audio features such as mel-filterbanks, that can be initialized as an approximation of mel-filterbanks, and then be trained for the task at hand, while using a very small number of parameters.
Python
446
star
69

robustness_metrics

Jupyter Notebook
442
star
70

maxvit

[ECCV 2022] Official repository for "MaxViT: Multi-Axis Vision Transformer". SOTA foundation models for classification, detection, segmentation, image quality, and generative modeling...
Jupyter Notebook
417
star
71

receptive_field

Compute receptive fields of your favorite convnets
Python
412
star
72

ssl_detection

Semi-supervised learning for object detection
Python
394
star
73

maskgit

Official Jax Implementation of MaskGIT
Jupyter Notebook
376
star
74

l2p

Learning to Prompt (L2P) for Continual Learning @ CVPR22 and DualPrompt: Complementary Prompting for Rehearsal-free Continual Learning @ ECCV22
Python
369
star
75

nerf-from-image

Shape, Pose, and Appearance from a Single Image via Bootstrapped Radiance Field Inversion
Python
366
star
76

computation-thru-dynamics

Understanding computation in artificial and biological recurrent networks through the lens of dynamical systems.
Jupyter Notebook
362
star
77

tf-slim

Python
360
star
78

realworldrl_suite

Real-World RL Benchmark Suite
Python
332
star
79

distilling-step-by-step

Python
325
star
80

rigl

End-to-end training of sparse deep neural networks with little-to-no performance loss.
Python
314
star
81

python-graphs

A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.
Python
312
star
82

weatherbench2

A benchmark for the next generation of data-driven global weather models.
Python
306
star
83

tensorflow_constrained_optimization

Python
301
star
84

task_adaptation

Python
295
star
85

exoplanet-ml

Machine learning models and utilities for exoplanet science.
Python
283
star
86

ibc

Official implementation of Implicit Behavioral Cloning, as described in our CoRL 2021 paper, see more at https://implicitbc.github.io/
Python
282
star
87

self-organising-systems

Jupyter Notebook
279
star
88

tensorflow-coder

Python
275
star
89

retvec

RETVec is an efficient, multilingual, and adversarially-robust text vectorizer.
Jupyter Notebook
269
star
90

vdm

Jupyter Notebook
267
star
91

sparf

This is the official code release for SPARF: Neural Radiance Fields from Sparse and Noisy Poses [CVPR 2023-Highlight]
Python
263
star
92

falken

Falken provides developers with a service that allows them to train AI that can play their games
Python
253
star
93

syn-rep-learn

Learning from synthetic data - code and models
Python
246
star
94

lm-extraction-benchmark

Python
244
star
95

meliad

Python
231
star
96

3d-moments

Code for CVPR 2022 paper '3D Moments from Near-Duplicate Photos'
Python
229
star
97

perceiver-ar

Python
224
star
98

rlds

Jupyter Notebook
216
star
99

ott

Python
215
star
100

language-table

Suite of human-collected datasets and a multi-task continuous control benchmark for open vocabulary visuolinguomotor learning.
Jupyter Notebook
213
star