• Stars
    star
    306
  • Rank 136,456 (Top 3 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created about 3 years ago
  • Updated 10 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Official implementation of Implicit Behavioral Cloning, as described in our CoRL 2021 paper, see more at https://implicitbc.github.io/

Implicit Behavioral Cloning

This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper:

Implicit Behavioral Cloning (website link) (arXiv link)
Pete Florence, Corey Lynch, Andy Zeng, Oscar Ramirez, Ayzaan Wahid, Laura Downs, Adrian Wong, Johnny Lee, Igor Mordatch, Jonathan Tompson
Conference on Robot Learning (CoRL) 2021

Abstract

We find that across a wide range of robot policy learning scenarios, treating supervised policy learning with an implicit model generally performs better, on average, than commonly used explicit models. We present extensive experiments on this finding, and we provide both intuitive insight and theoretical arguments distinguishing the properties of implicit models compared to their explicit counterparts, particularly with respect to approximating complex, potentially discontinuous and multi-valued (set-valued) functions. On robotic policy learning tasks we show that implicit behavioral cloning policies with energy-based models (EBM) often outperform common explicit (Mean Square Error, or Mixture Density) behavioral cloning policies, including on tasks with high-dimensional action spaces and visual image inputs. We find these policies provide competitive results or outperform state-of-the-art offline reinforcement learning methods on the challenging human-expert tasks from the D4RL benchmark suite, despite using no reward information. In the real world, robots with implicit policies can learn complex and remarkably subtle behaviors on contact-rich tasks from human demonstrations, including tasks with high combinatorial complexity and tasks requiring 1mm precision.

Prerequisites

The code for this project uses python 3.7+ and the following pip packages:

python3 -m pip install --upgrade pip
pip install \
  absl-py==0.12.0 \
  gin-config==0.4.0 \
  matplotlib==3.4.3 \
  mediapy==1.0.3 \
  opencv-python==4.5.3.56 \
  pybullet==3.1.6 \
  scipy==1.7.1 \
  tensorflow==2.6.0 \
  keras==2.6.0 \
  tf-agents==0.11.0rc0 \
  tqdm==4.62.2

(Optional): For Mujoco support, see docs/mujoco_setup.md. Recommended to skip it unless you specifically want to run the Adroit and Kitchen environments.

Quickstart: from 0 to a trained IBC policy in 10 minutes.

Step 1: Install listed Python packages above in Prerequisites.

Step 2: Run unit tests (should take less than a minute), and do this from the directory just above the top-level ibc directory:

./ibc/run_tests.sh

Step 3: Check that Tensorflow has GPU access:

python3 -c "import tensorflow as tf; print(tf.test.is_gpu_available())"

If the above prints False, see the following requirements, notably CUDA 11.2 and cuDNN 8.1.0: https://www.tensorflow.org/install/gpu#software_requirements.

Step 4: Let's do an example Block Pushing task, so first let's download oracle data (or see Tasks for how to generate it):

cd ibc/data
wget https://storage.googleapis.com/brain-reach-public/ibc_data/block_push_states_location.zip
unzip block_push_states_location.zip && rm block_push_states_location.zip
cd ../..

Step 5: Set PYTHONPATH to include the directory just above top-level ibc, so if you've been following the commands above it is:

export PYTHONPATH=$PYTHONPATH:${PWD}

Step 6: On that example Block Pushing task, we'll next do a training + evaluation with Implicit BC:

./ibc/ibc/configs/pushing_states/run_mlp_ebm.sh

Some notes:

  • On an example single-GPU machine (GTX 2080 Ti), the above trains at about 18 steps/sec, and should get to high success rates in 5,000 or 10,000 steps (roughly 5-10 minutes of training).
  • The mlp_ebm.gin is just one config, which is meant to be reasonably fast to train, with only 20 evals at each interval, and is not suitable for all tasks. See Tasks for more configs.
  • Due to the --video flag above, you can watch a video of the learned policy in action at: /tmp/ibc_logs/mlp_ebm/ibc_dfo/... navigate to the videos/ttl=7d subfolder, and by default there should be one example .mp4 video saved every time you do an evaluation interval.

(Optional) Step 7: For the pybullet-based tasks, we also have real-time interactive visualization set up through a visualization server, so in one terminal:

cd <path_to>/ibc/..
export PYTHONPATH=$PYTHONPATH:${PWD}
python3 -m pybullet_utils.runServer

And in a different terminal run the oracle a few times with the --shared_memory flag:

cd <path_to>/ibc/..
export PYTHONPATH=$PYTHONPATH:${PWD}
python3 ibc/data/policy_eval.py -- \
  --alsologtostderr \
  --shared_memory \
  --num_episodes=3 \
  --policy=oracle_push \
  --task=PUSH

You're done with Quickstart! See below for more Tasks, and also see docs/codebase_overview.md and docs/workflow.md for additional info.

Tasks

Task: Particle

In this task, the goal is for the agent (black dot) to first go to the green dot, then the blue dot.

Example IBC policy Example MSE policy

Get Data

We can either generate data from scratch, for example for 2D (takes 15 seconds):

./ibc/ibc/configs/particle/collect_data.sh

Or just download all the data for all different dimensions:

cd ibc/data/
wget https://storage.googleapis.com/brain-reach-public/ibc_data/particle.zip
unzip particle.zip && rm particle.zip
cd ../..

Train and Evaluate

Let's start with some small networks, on just the 2D version since it's easiest to visualize, and compare MSE and IBC. Here's a small-network (256x2) IBC-with-Langevin config, where 2 is the argument for the environment dimensionality.

./ibc/ibc/configs/particle/run_mlp_ebm_langevin.sh 2

And here's an idenitcally sized network (256x2) but with MSE config:

./ibc/ibc/configs/particle/run_mlp_mse.sh 2

For the above configurations, we suggest comparing the rollout videos, which you can find at /tmp/ibc_logs/...corresponding_directory../videos/. At the top of this section is shown a comparison at 10,000 training steps for the two different above configs.

And here are the best configs respectfully for IBC (with langevin) and MSE, in this case run on the 16-dimensional environment:

./ibc/ibc/configs/particle/run_mlp_ebm_langevin_best.sh 16
./ibc/ibc/configs/particle/run_mlp_mse_best.sh 16

Note: the _best config is kind of slow for Langevin to train, but even just ./ibc/ibc/configs/particle/run_mlp_ebm_langevin.sh 16 (smaller network) seems to solve the 16-D environment pretty well, and is much faster to train.

Task: Block Pushing (from state observations)

Get Data

We can either generate data from scratch (~2 minutes for 2,000 episodes: 200 each across 10 replicas):

./ibc/ibc/configs/pushing_states/collect_data.sh

Or we can download data from the web:

cd ibc/data/
wget https://storage.googleapis.com/brain-reach-public/ibc_data/block_push_states_location.zip
unzip 'block_push_states_location.zip' && rm block_push_states_location.zip
cd ../..

Train and Evaluate

Here's reasonably fast-to-train config for IBC with DFO:

./ibc/ibc/configs/pushing_states/run_mlp_ebm.sh

Or here's a config for IBC with Langevin:

./ibc/ibc/configs/pushing_states/run_mlp_ebm_langevin.sh

Or here's a comparable, reasonably fast-to-train config for MSE:

./ibc/ibc/configs/pushing_states/run_mlp_mse.sh

Or to run the best configs respectfully for IBC, MSE, and MDN (some of these might be slower to train than the above):

./ibc/ibc/configs/pushing_states/run_mlp_ebm_best.sh
./ibc/ibc/configs/pushing_states/run_mlp_mse_best.sh
./ibc/ibc/configs/pushing_states/run_mlp_mdn_best.sh

Task: Block Pushing (from image observations)

Get Data

Download data from the web:

cd ibc/data/
wget https://storage.googleapis.com/brain-reach-public/ibc_data/block_push_visual_location.zip
unzip 'block_push_visual_location.zip' && rm block_push_visual_location.zip
cd ../..

Train and Evaluate

Here is an IBC with Langevin configuration which should actually converge faster than the IBC-with-DFO that we reported in the paper:

./ibc/ibc/configs/pushing_pixels/run_pixel_ebm_langevin.sh

And here are the best configs respectfully for IBC (with DFO), MSE, and MDN:

./ibc/ibc/configs/pushing_pixels/run_pixel_ebm_best.sh
./ibc/ibc/configs/pushing_pixels/run_pixel_mse_best.sh
./ibc/ibc/configs/pushing_pixels/run_pixel_mdn_best.sh

Task: D4RL Adroit and Kitchen

Get Data

The D4RL human demonstration training data used for the paper submission can be downloaded using the commands below. This data has been processed into a .tfrecord format from the original D4RL data format:

cd ibc/data && mkdir -p d4rl_trajectories && cd d4rl_trajectories
wget https://storage.googleapis.com/brain-reach-public/ibc_data/door-human-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/hammer-human-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/kitchen-complete-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/kitchen-mixed-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/kitchen-partial-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/pen-human-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/relocate-human-v0.zip
unzip '*.zip' && rm *.zip
cd ../../..

Run Train Eval:

Here are the best configs respectfully for IBC (with Langevin), and MSE: On a 2080 Ti GPU test, this IBC config trains at only 1.7 steps/sec, but it is about 10x faster on TPUv3.

./ibc/ibc/configs/d4rl/run_mlp_ebm_langevin_best.sh pen-human-v0
./ibc/ibc/configs/d4rl/run_mlp_mse_best.sh pen-human-v0

The above commands will run on the pen-human-v0 environment, but you can swap this arg for whichever of the provided Adroit/Kitchen environments.

Here also is an MDN config you can try. The network size is tiny but if you increase it heavily then it seems to get NaNs during training. In general MDNs can be finicky. A solution should be possible though.

./ibc/ibc/configs/d4rl/run_mlp_mdn.sh pen-human-v0

Summary for Reproducing Results

For the tasks that we've been able to open-source, results from the paper should be reproducible by using the linked data and command-line args below.

Task Figure/Table in paper Data Train + Eval commands
Coordinate regression Figure 4 See colab See colab
D4RL Adroit + Kitchen Table 2 Link Link
N-D particle Figure 6 Link Link
Simulated pushing, single target, states Table 3 Link Link
Simulated pushing, single target, pixels Table 3 Link Link

Citation

If you found our paper/code useful in your research, please consider citing:

@article{florence2021implicit,
    title={Implicit Behavioral Cloning},
    author={Florence, Pete and Lynch, Corey and Zeng, Andy and Ramirez, Oscar and Wahid, Ayzaan and Downs, Laura and Wong, Adrian and Lee, Johnny and Mordatch, Igor and Tompson, Jonathan},
    journal={Conference on Robot Learning (CoRL)},
    month = {November},
    year={2021}
}

More Repositories

1

bert

TensorFlow code and pre-trained models for BERT
Python
37,769
star
2

google-research

Google Research
Jupyter Notebook
33,759
star
3

tuning_playbook

A playbook for systematically maximizing the performance of deep learning models.
26,593
star
4

vision_transformer

Jupyter Notebook
10,251
star
5

text-to-text-transfer-transformer

Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"
Python
6,099
star
6

arxiv-latex-cleaner

arXiv LaTeX Cleaner: Easily clean the LaTeX code of your paper to submit to arXiv
Python
5,233
star
7

simclr

SimCLRv2 - Big Self-Supervised Models are Strong Semi-Supervised Learners
Jupyter Notebook
3,937
star
8

multinerf

A Code Release for Mip-NeRF 360, Ref-NeRF, and RawNeRF
Python
3,612
star
9

timesfm

TimesFM (Time Series Foundation Model) is a pretrained time-series foundation model developed by Google Research for time-series forecasting.
Python
3,576
star
10

scenic

Scenic: A Jax Library for Computer Vision Research and Beyond
Python
3,295
star
11

football

Check out the new game server:
Python
3,260
star
12

albert

ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
Python
3,209
star
13

frame-interpolation

FILM: Frame Interpolation for Large Motion, In ECCV 2022.
Python
2,818
star
14

t5x

Python
2,656
star
15

electra

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
Python
2,325
star
16

kubric

A data generation pipeline for creating semi-realistic synthetic multi-object videos with rich annotations such as instance segmentation masks, depth maps, and optical flow.
Jupyter Notebook
2,312
star
17

big_vision

Official codebase used to develop Vision Transformer, SigLIP, MLP-Mixer, LiT and more.
Jupyter Notebook
2,219
star
18

uda

Unsupervised Data Augmentation (UDA)
Python
2,131
star
19

language

Shared repository for open-sourced projects from the Google AI Language team.
Python
1,605
star
20

pegasus

Python
1,600
star
21

dex-lang

Research language for array processing in the Haskell/ML family
Haskell
1,581
star
22

torchsde

Differentiable SDE solvers with GPU support and efficient sensitivity analysis.
Python
1,548
star
23

parti

1,538
star
24

big_transfer

Official repository for the "Big Transfer (BiT): General Visual Representation Learning" paper.
Python
1,504
star
25

FLAN

Python
1,460
star
26

robotics_transformer

Python
1,337
star
27

disentanglement_lib

disentanglement_lib is an open-source library for research on learning disentangled representations.
Python
1,311
star
28

multilingual-t5

Python
1,197
star
29

circuit_training

Python
1,151
star
30

tapas

End-to-end neural table-text understanding models.
Python
1,143
star
31

planet

Learning Latent Dynamics for Planning from Pixels
Python
1,134
star
32

mixmatch

Python
1,130
star
33

deduplicate-text-datasets

Rust
1,104
star
34

fixmatch

A simple method to perform semi-supervised learning with limited data.
Python
1,094
star
35

morph-net

Fast & Simple Resource-Constrained Learning of Deep Network Structure
Python
1,016
star
36

maxim

[CVPR 2022 Oral] Official repository for "MAXIM: Multi-Axis MLP for Image Processing". SOTA for denoising, deblurring, deraining, dehazing, and enhancement.
Python
996
star
37

deeplab2

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.
Python
995
star
38

batch-ppo

Efficient Batched Reinforcement Learning in TensorFlow
Python
963
star
39

augmix

AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
Python
951
star
40

magvit

Official JAX implementation of MAGVIT: Masked Generative Video Transformer
Python
947
star
41

pix2seq

Pix2Seq codebase: multi-tasks with generative modeling (autoregressive and diffusion)
Jupyter Notebook
865
star
42

seed_rl

SEED RL: Scalable and Efficient Deep-RL with Accelerated Central Inference. Implements IMPALA and R2D2 algorithms in TF2 with SEED's architecture.
Python
793
star
43

meta-dataset

A dataset of datasets for learning to learn from few examples
Jupyter Notebook
762
star
44

noisystudent

Code for Noisy Student Training. https://arxiv.org/abs/1911.04252
Python
751
star
45

rliable

[NeurIPS'21 Outstanding Paper] Library for reliable evaluation on RL and ML benchmarks, even with only a handful of seeds.
Jupyter Notebook
747
star
46

recsim

A Configurable Recommender Systems Simulation Platform
Python
739
star
47

jax3d

Python
733
star
48

long-range-arena

Long Range Arena for Benchmarking Efficient Transformers
Python
719
star
49

lottery-ticket-hypothesis

A reimplementation of "The Lottery Ticket Hypothesis" (Frankle and Carbin) on MNIST.
Python
706
star
50

federated

A collection of Google research projects related to Federated Learning and Federated Analytics.
Python
675
star
51

bleurt

BLEURT is a metric for Natural Language Generation based on transfer learning.
Python
651
star
52

prompt-tuning

Original Implementation of Prompt Tuning from Lester, et al, 2021
Python
642
star
53

nasbench

NASBench: A Neural Architecture Search Dataset and Benchmark
Python
641
star
54

neuralgcm

Hybrid ML + physics model of the Earth's atmosphere
Python
641
star
55

xtreme

XTREME is a benchmark for the evaluation of the cross-lingual generalization ability of pre-trained multilingual models that covers 40 typologically diverse languages and includes nine tasks.
Python
631
star
56

lasertagger

Python
606
star
57

sound-separation

Python
603
star
58

pix2struct

Python
587
star
59

vmoe

Jupyter Notebook
569
star
60

dreamer

Dream to Control: Learning Behaviors by Latent Imagination
Python
568
star
61

robopianist

[CoRL '23] Dexterous piano playing with deep reinforcement learning.
Python
562
star
62

omniglue

Code release for CVPR'24 submission 'OmniGlue'
Python
561
star
63

fast-soft-sort

Fast Differentiable Sorting and Ranking
Python
561
star
64

ravens

Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet. Transporter Nets, CoRL 2020.
Python
560
star
65

sam

Python
551
star
66

batch_rl

Offline Reinforcement Learning (aka Batch Reinforcement Learning) on Atari 2600 games
Python
521
star
67

bigbird

Transformers for Longer Sequences
Python
518
star
68

tensor2robot

Distributed machine learning infrastructure for large-scale robotics research
Python
483
star
69

byt5

Python
477
star
70

adapter-bert

Python
476
star
71

mint

Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.
Python
465
star
72

leaf-audio

LEAF is a learnable alternative to audio features such as mel-filterbanks, that can be initialized as an approximation of mel-filterbanks, and then be trained for the task at hand, while using a very small number of parameters.
Python
446
star
73

robustness_metrics

Jupyter Notebook
442
star
74

maxvit

[ECCV 2022] Official repository for "MaxViT: Multi-Axis Vision Transformer". SOTA foundation models for classification, detection, segmentation, image quality, and generative modeling...
Jupyter Notebook
436
star
75

receptive_field

Compute receptive fields of your favorite convnets
Python
434
star
76

maskgit

Official Jax Implementation of MaskGIT
Jupyter Notebook
429
star
77

weatherbench2

A benchmark for the next generation of data-driven global weather models.
Python
420
star
78

l2p

Learning to Prompt (L2P) for Continual Learning @ CVPR22 and DualPrompt: Complementary Prompting for Rehearsal-free Continual Learning @ ECCV22
Python
408
star
79

distilling-step-by-step

Python
407
star
80

ssl_detection

Semi-supervised learning for object detection
Python
398
star
81

nerf-from-image

Shape, Pose, and Appearance from a Single Image via Bootstrapped Radiance Field Inversion
Python
377
star
82

computation-thru-dynamics

Understanding computation in artificial and biological recurrent networks through the lens of dynamical systems.
Jupyter Notebook
369
star
83

tf-slim

Python
368
star
84

realworldrl_suite

Real-World RL Benchmark Suite
Python
341
star
85

python-graphs

A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.
Python
325
star
86

rigl

End-to-end training of sparse deep neural networks with little-to-no performance loss.
Python
314
star
87

task_adaptation

Python
310
star
88

self-organising-systems

Jupyter Notebook
308
star
89

tensorflow_constrained_optimization

Python
300
star
90

syn-rep-learn

Learning from synthetic data - code and models
Python
294
star
91

arco-era5

Recipes for reproducing Analysis-Ready & Cloud Optimized (ARCO) ERA5 datasets.
Python
291
star
92

vdm

Jupyter Notebook
291
star
93

rlds

Jupyter Notebook
284
star
94

exoplanet-ml

Machine learning models and utilities for exoplanet science.
Python
283
star
95

retvec

RETVec is an efficient, multilingual, and adversarially-robust text vectorizer.
Jupyter Notebook
281
star
96

sparf

This is the official code release for SPARF: Neural Radiance Fields from Sparse and Noisy Poses [CVPR 2023-Highlight]
Python
279
star
97

tensorflow-coder

Python
275
star
98

lm-extraction-benchmark

Python
270
star
99

language-table

Suite of human-collected datasets and a multi-task continuous control benchmark for open vocabulary visuolinguomotor learning.
Jupyter Notebook
260
star
100

falken

Falken provides developers with a service that allows them to train AI that can play their games
Python
254
star