• Stars
    star
    1,011
  • Rank 43,686 (Top 0.9 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created about 5 years ago
  • Updated 5 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Fast & Simple Resource-Constrained Learning of Deep Network Structure

MorphNet: Fast & Simple Resource-Constrained Learning of Deep Network Structure

[TOC]

New: FiGS: Fine-Grained Stochastic Architecture Search

FiGS, is a probabilistic approach to channel regularization that we introduced in Fine-Grained Stochastic Architecture Search. It outperforms our previous regularizers and can be used as either a pruning algorithm or a full fledged Differentiable Architecture Search method. This is the recommended way to apply MorphNet. In the below documentation it is referred to as the LogisticSigmoid regularizer.

What is MorphNet?

MorphNet is a method for learning deep network structure during training. The key principle is continuous relaxation of the network-structure learning problem. In short, the MorphNet regularizer pushes the influence of filters down, and once they are small enough, the corresponding output channels are marked for removal from the network.

Specifically, activation sparsity is induced by adding regularizers that target the consumption of specific resources such as FLOPs or model size. When the regularizer loss is added to the training loss and their sum is minimized via stochastic gradient descent or a similar optimizer, the learning problem becomes a constrained optimization of the structure of the network, under the constraint represented by the regularizer. The method was first introduced in our CVPR 2018, paper "MorphNet: Fast & Simple Resource-Constrained Learning of Deep Network Structure". A overview of the approach as well as device-specific latency regularizers were prestend in GTC 2019. [slides, recording: YouTube, GTC on-demand]. Our new, probabilistic, approach to pruning is called FiGS, and is detailed in Fine-Grained Stochastic Architecture Search.

Usage

Suppose you have a working convolutional neural network for image classification but want to shrink the model to satisfy some constraints (e.g., memory, latency). Given an existing model (the “seed network”) and a target criterion, MorphNet will propose a new model by adjusting the number of output channels in each convolution layer.

Note that MorphNet does not change the topology of the network -- the proposed model will have the same number of layers and connectivity pattern as the seed network.

To use MorphNet, you must:

  1. Choose a regularizer from morphnet.network_regularizers. The choice is based on

    • your target cost (e.g., FLOPs, latency)
    • Your ability to add new layers to your model:
      • Add our probabilistic gating operation after any layer you wish to prune, and use the LogisticSigmoid regularizers. [recommended]
      • If you are unable to add new layers, select regularizer type based on your network architecture: use Gamma regularizer if the seed network has BatchNorm; use GroupLasso otherwise [deprecated].

    Note: If you use BatchNorm, you must enable the scale parameters (“gamma variables”), i.e., by setting scale=True if you are using tf.keras.layers.BatchNormalization.

    Note: If you are using LogisticSigmoid don't forget to add the probabilistic gating op! See below for example.

  2. Initialize the regularizer with a threshold and the output boundary ops and (optionally) the input boundary ops of your model.

    MorphNet regularizer crawls your graph starting from the output boundary, and applies regularization to some of the ops it encounters. When it encounters any of the input boundary ops, it does not crawl past them (the ops in the input boundary are not regularized). The threshold determines which output channels can be eliminated.

  3. Add the regularization term to your loss.

    As always, regularization loss must be scaled. We recommend to search for the scaling hyperparameter (regularization strength) along a logarithmic scale spanning a few orders of magnitude around 1/(initial cost). For example, if the seed network starts with 1e9 FLOPs, explore regularization strength around 1e-9.

    Note: MorphNet does not currently add the regularization loss to the tf.GraphKeys.REGULARIZATION_LOSSES collection; this choice is subject to revision.

    Note: Do not confuse get_regularization_term() (the loss you should add to your training) with get_cost() (the estimated cost of the network if the proposed structure is applied).

  4. Train the model.

    Note: We recommend using a fixed learning rate (no decay) for this step, though this is not strictly necessary.

  5. Save the proposed model structure with the StructureExporter.

    The exported files are in JSON format. Note that as the training progresses, the proposed model structure will change. There are no specific guidelines on the stopping time, although you would likely want to wait for the regularization loss (reported via summaries) to stabilize.

  6. (Optional) Create summary ops to monitor the training progress through TensorBoard.

  7. Modify your model using the StructureExporter output.

  8. Retrain the model from scratch without the MorphNet regularizer.

    Note: Use the standard values for all hyperparameters (such as the learning rate schedule).

  9. (Optional) Uniformly expand the network to adjust the accuracy vs. cost trade-off as desired. Alternatively, this step can be performed before the structure learning step.

We refer to the first round of training as structure learning and the second round as retraining.

To summarize, the key hyperparameters for MorphNet are:

  • Regularization strength
  • Alive threshold

Note that the regularizer type is not a hyperparameter because it's uniquely determined by the metric of interest (FLOPs, latency) and the presence of BatchNorm.

Regularizer Types

Regularizer classes can be found under network_regularizers/ directory. They are named by the algorithm they use and the target cost they attempt to minimize. For example, LogisticSigmoidFlopsRegularizer uses a Logistic-Sigmoid probabilistic method to to regularize the FLOP cost and GammaModelSizeRegularizer uses the batch norm gamma in order to regularize the model size cost.

Regularizer Algorithms

  • [NEW] LogisticSigmoid is designed to control any model type, but requires adding simple gating layers to your model.
  • GroupLasso is designed for models without batch norm.
  • Gamma is designed for models with batch norm; it requires that batch norm scale is enabled.

Regularizer Target Costs

  • Flops targets the FLOP count of the inference network.
  • Model Size targets the number of weights of the network.
  • Latency optimizes for the estimated inference latency of the network, based on the specific hardware characteristics.

Examples

Adding a FLOPs Regularizer

The example below demonstrates how to use MorphNet to reduce the number of FLOPs in your model. In this example, the regularizer will traverse the graph starting with logits, and will not go past any op that is earlier in the graph than the inputs or labels; this allows to specify the subgraph for MorphNet to optimize.

from morph_net.network_regularizers import flop_regularizer
from morph_net.tools import structure_exporter

def build_model(inputs, labels, is_training, ...):
  gated_relu = activation_gating.gated_relu_activation()

  net = tf.layers.conv2d(inputs, kernel=[5, 5], num_outputs=256)
  net = gated_relu(net, is_training=is_training)

  ...
  ...

  net = tf.layers.conv2d(net, kernel=[3, 3], num_outputs=1024)
  net = gated_relu(net, is_training=is_training)

  logits = tf.reduce_mean(net, [1, 2])
  logits = tf.layers.dense(logits, units=1024)
  return logits

inputs, labels = preprocessor()
logits = build_model(inputs, labels, is_training=True, ...)

network_regularizer = flop_regularizer.LogisticSigmoidFlopsRegularizer(
    output_boundary=[logits.op],
    input_boundary=[inputs.op, labels.op],
    alive_threshold=0.1  # Value in [0, 1]. This default works well for most cases.
)
regularization_strength = 1e-10
regularizer_loss = (network_regularizer.get_regularization_term() * regularization_strength)

model_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels, logits)

optimizer = tf.train.MomentumOptimizer(learning_rate=0.01, momentum=0.9)

train_op = optimizer.minimize(model_loss + regularizer_loss)

You should monitor the progress of structure learning training via Tensorboard. In particular, you should consider adding a summary that computes the current MorphNet regularization loss and the cost if the currently proposed structure is adopted.

tf.summary.scalar('RegularizationLoss', regularizer_loss)
tf.summary.scalar(network_regularizer.cost_name, network_regularizer.get_cost())

TensorBoardDisplayOfFlops

Larger values of regularization_strength will converge to smaller effective FLOP count. If regularization_strength is large enough, the FLOP count will collapse to zero. Conversely, if it is small enough, the FLOP count will remain at its initial value and the network structure will not vary. The regularization_strength parameter is your knob to control where you want to be on the price-performance curve. The alive_threshold parameter is used for determining when an activation is alive.

Extracting the Architecture Learned by MorphNet

During training, you should save a JSON file that contains the learned structure of the network, that is the count of activations in a given layer kept alive (as opposed to removed) by MorphNet.

exporter = structure_exporter.StructureExporter(
    network_regularizer.op_regularizer_manager)

with tf.Session() as sess:
  tf.global_variables_initializer().run()
  for step in range(max_steps):
    _, structure_exporter_tensors = sess.run([train_op, exporter.tensors])
    if (step % 1000 == 0):
      exporter.populate_tensor_values(structure_exporter_tensors)
      exporter.create_file_and_save_alive_counts(train_dir, step)

Misc

Contact: [email protected]

Maintainers

Contributors

More Repositories

1

bert

TensorFlow code and pre-trained models for BERT
Python
36,701
star
2

google-research

Google Research
Jupyter Notebook
32,494
star
3

tuning_playbook

A playbook for systematically maximizing the performance of deep learning models.
24,615
star
4

vision_transformer

Jupyter Notebook
9,288
star
5

text-to-text-transfer-transformer

Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"
Python
5,820
star
6

arxiv-latex-cleaner

arXiv LaTeX Cleaner: Easily clean the LaTeX code of your paper to submit to arXiv
Python
4,736
star
7

simclr

SimCLRv2 - Big Self-Supervised Models are Strong Semi-Supervised Learners
Jupyter Notebook
3,841
star
8

multinerf

A Code Release for Mip-NeRF 360, Ref-NeRF, and RawNeRF
Python
3,484
star
9

football

Check out the new game server:
Python
3,230
star
10

albert

ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
Python
3,209
star
11

scenic

Scenic: A Jax Library for Computer Vision Research and Beyond
Python
2,999
star
12

frame-interpolation

FILM: Frame Interpolation for Large Motion, In ECCV 2022.
Python
2,643
star
13

t5x

Python
2,494
star
14

electra

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
Python
2,284
star
15

kubric

A data generation pipeline for creating semi-realistic synthetic multi-object videos with rich annotations such as instance segmentation masks, depth maps, and optical flow.
Jupyter Notebook
2,180
star
16

uda

Unsupervised Data Augmentation (UDA)
Python
2,131
star
17

pegasus

Python
1,578
star
18

big_vision

Official codebase used to develop Vision Transformer, SigLIP, MLP-Mixer, LiT and more.
Jupyter Notebook
1,555
star
19

language

Shared repository for open-sourced projects from the Google AI Language team.
Python
1,553
star
20

dex-lang

Research language for array processing in the Haskell/ML family
Haskell
1,532
star
21

parti

1,513
star
22

big_transfer

Official repository for the "Big Transfer (BiT): General Visual Representation Learning" paper.
Python
1,491
star
23

torchsde

Differentiable SDE solvers with GPU support and efficient sensitivity analysis.
Python
1,444
star
24

FLAN

Python
1,373
star
25

disentanglement_lib

disentanglement_lib is an open-source library for research on learning disentangled representations.
Python
1,311
star
26

multilingual-t5

Python
1,197
star
27

robotics_transformer

Python
1,192
star
28

planet

Learning Latent Dynamics for Planning from Pixels
Python
1,134
star
29

mixmatch

Python
1,126
star
30

tapas

End-to-end neural table-text understanding models.
Python
1,080
star
31

fixmatch

A simple method to perform semi-supervised learning with limited data.
Python
1,053
star
32

deduplicate-text-datasets

Rust
982
star
33

deeplab2

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.
Python
976
star
34

batch-ppo

Efficient Batched Reinforcement Learning in TensorFlow
Python
963
star
35

augmix

AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
Python
951
star
36

maxim

[CVPR 2022 Oral] Official repository for "MAXIM: Multi-Axis MLP for Image Processing". SOTA for denoising, deblurring, deraining, dehazing, and enhancement.
Python
937
star
37

magvit

Official JAX implementation of MAGVIT: Masked Generative Video Transformer
Python
847
star
38

pix2seq

Pix2Seq codebase: multi-tasks with generative modeling (autoregressive and diffusion)
Jupyter Notebook
801
star
39

seed_rl

SEED RL: Scalable and Efficient Deep-RL with Accelerated Central Inference. Implements IMPALA and R2D2 algorithms in TF2 with SEED's architecture.
Python
790
star
40

meta-dataset

A dataset of datasets for learning to learn from few examples
Python
740
star
41

noisystudent

Code for Noisy Student Training. https://arxiv.org/abs/1911.04252
Python
736
star
42

jax3d

Python
718
star
43

recsim

A Configurable Recommender Systems Simulation Platform
Python
717
star
44

lottery-ticket-hypothesis

A reimplementation of "The Lottery Ticket Hypothesis" (Frankle and Carbin) on MNIST.
Python
704
star
45

rliable

[NeurIPS'21 Outstanding Paper] Library for reliable evaluation on RL and ML benchmarks, even with only a handful of seeds.
Jupyter Notebook
689
star
46

circuit_training

Python
685
star
47

long-range-arena

Long Range Arena for Benchmarking Efficient Transformers
Python
681
star
48

federated

A collection of Google research projects related to Federated Learning and Federated Analytics.
Python
646
star
49

nasbench

NASBench: A Neural Architecture Search Dataset and Benchmark
Python
641
star
50

prompt-tuning

Original Implementation of Prompt Tuning from Lester, et al, 2021
Python
617
star
51

bleurt

BLEURT is a metric for Natural Language Generation based on transfer learning.
Python
611
star
52

xtreme

XTREME is a benchmark for the evaluation of the cross-lingual generalization ability of pre-trained multilingual models that covers 40 typologically diverse languages and includes nine tasks.
Python
608
star
53

lasertagger

Python
603
star
54

sound-separation

Python
578
star
55

dreamer

Dream to Control: Learning Behaviors by Latent Imagination
Python
568
star
56

robopianist

[CoRL '23] Dexterous piano playing with deep reinforcement learning.
Python
531
star
57

pix2struct

Python
530
star
58

fast-soft-sort

Fast Differentiable Sorting and Ranking
Python
527
star
59

bigbird

Transformers for Longer Sequences
Python
518
star
60

ravens

Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet. Transporter Nets, CoRL 2020.
Python
517
star
61

sam

Python
512
star
62

vmoe

Jupyter Notebook
507
star
63

batch_rl

Offline Reinforcement Learning (aka Batch Reinforcement Learning) on Atari 2600 games
Python
489
star
64

tensor2robot

Distributed machine learning infrastructure for large-scale robotics research
Python
483
star
65

mint

Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.
Python
465
star
66

byt5

Python
464
star
67

adapter-bert

Python
459
star
68

leaf-audio

LEAF is a learnable alternative to audio features such as mel-filterbanks, that can be initialized as an approximation of mel-filterbanks, and then be trained for the task at hand, while using a very small number of parameters.
Python
446
star
69

robustness_metrics

Jupyter Notebook
442
star
70

maxvit

[ECCV 2022] Official repository for "MaxViT: Multi-Axis Vision Transformer". SOTA foundation models for classification, detection, segmentation, image quality, and generative modeling...
Jupyter Notebook
417
star
71

receptive_field

Compute receptive fields of your favorite convnets
Python
412
star
72

ssl_detection

Semi-supervised learning for object detection
Python
394
star
73

maskgit

Official Jax Implementation of MaskGIT
Jupyter Notebook
376
star
74

l2p

Learning to Prompt (L2P) for Continual Learning @ CVPR22 and DualPrompt: Complementary Prompting for Rehearsal-free Continual Learning @ ECCV22
Python
369
star
75

nerf-from-image

Shape, Pose, and Appearance from a Single Image via Bootstrapped Radiance Field Inversion
Python
366
star
76

computation-thru-dynamics

Understanding computation in artificial and biological recurrent networks through the lens of dynamical systems.
Jupyter Notebook
362
star
77

tf-slim

Python
360
star
78

realworldrl_suite

Real-World RL Benchmark Suite
Python
332
star
79

distilling-step-by-step

Python
325
star
80

rigl

End-to-end training of sparse deep neural networks with little-to-no performance loss.
Python
314
star
81

python-graphs

A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.
Python
312
star
82

weatherbench2

A benchmark for the next generation of data-driven global weather models.
Python
306
star
83

tensorflow_constrained_optimization

Python
301
star
84

task_adaptation

Python
295
star
85

exoplanet-ml

Machine learning models and utilities for exoplanet science.
Python
283
star
86

ibc

Official implementation of Implicit Behavioral Cloning, as described in our CoRL 2021 paper, see more at https://implicitbc.github.io/
Python
282
star
87

self-organising-systems

Jupyter Notebook
279
star
88

tensorflow-coder

Python
275
star
89

retvec

RETVec is an efficient, multilingual, and adversarially-robust text vectorizer.
Jupyter Notebook
269
star
90

vdm

Jupyter Notebook
267
star
91

sparf

This is the official code release for SPARF: Neural Radiance Fields from Sparse and Noisy Poses [CVPR 2023-Highlight]
Python
263
star
92

falken

Falken provides developers with a service that allows them to train AI that can play their games
Python
253
star
93

syn-rep-learn

Learning from synthetic data - code and models
Python
246
star
94

lm-extraction-benchmark

Python
244
star
95

meliad

Python
231
star
96

3d-moments

Code for CVPR 2022 paper '3D Moments from Near-Duplicate Photos'
Python
229
star
97

perceiver-ar

Python
224
star
98

rlds

Jupyter Notebook
216
star
99

ott

Python
215
star
100

language-table

Suite of human-collected datasets and a multi-task continuous control benchmark for open vocabulary visuolinguomotor learning.
Jupyter Notebook
213
star