• Stars
    star
    530
  • Rank 80,508 (Top 2 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 1 year ago
  • Updated 6 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Pix2Struct

This repository contains code for Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding.

We release pretrained checkpoints for the Base and Large models and code for finetuning them on the nine downstream tasks discussed in the paper. We are unable to release the pretraining data, but they can be replicated using the publicly available URLs released in the C4 dataset.

Getting Started

Clone the github repository, install the pix2struct package, and run the tests to ensure that all dependencies were successfully installed.

git clone https://github.com/google-research/pix2struct.git
cd pix2struct
conda create -n pix2struct python=3.9
conda activate pix2struct
pip install -e ."[dev]" -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
pytest

You may first need to install Java (sudo apt install default-jre) and conda if not already installed.

We will be using Google Cloud Storage (GCS) for data and model storage. For the remaining documentation we will assume that the path to your own bucket and directory is in the PIX2STRUCT_DIR environment variable:

export PIX2STRUCT_DIR="gs://<your_bucket>/<path_to_pix2struct_dir>"

The code for running experiments assumes this environment variable when looking for the preprocessed data.

Data Preprocessing

Our data preprocessing scripts are run with Dataflow by default using the Apache Beam library. They can also be run locally by turning off flags appearing after --.

For the remaining documentation we will assume that GCP project information is in the following environment variables:

export GCP_PROJECT=<your_project_id>
export GCP_REGION=<your_region>

Below are the commands required to preprocess each dataset. The results will be written to $PIX2STRUCT_DIR/data/<task_name>/preprocessed/, which is the file structure assumed in tasks.py.

TextCaps

mkdir -p data/textcaps
cd data/textcaps
curl -O https://dl.fbaipublicfiles.com/textvqa/data/textcaps/TextCaps_0.1_train.json
curl -O https://dl.fbaipublicfiles.com/textvqa/data/textcaps/TextCaps_0.1_val.json
curl -O https://dl.fbaipublicfiles.com/textvqa/data/textcaps/TextCaps_0.1_test.json
curl -O https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip
curl -O https://dl.fbaipublicfiles.com/textvqa/images/test_images.zip
unzip train_val_images.zip
rm train_val_images.zip
unzip test_images.zip
rm test_images.zip
cd ..
gsutil -m cp -r textcaps_data $PIX2STRUCT_DIR/data/textcaps
python -m pix2struct.preprocessing.convert_textcaps \
  --textcaps_dir=$PIX2STRUCT_DIR/data/textcaps \
  --output_dir=$PIX2STRUCT_DIR/data/textcaps/processed \
  -- \
  --runner=DataflowRunner \
  --save_main_session \
  --project=$GCP_PROJECT \
  --region=$GCP_REGION \
  --temp_location=$PIX2STRUCT_DIR/data/temp \
  --staging_location=$PIX2STRUCT_DIR/data/staging \
  --setup_file=./setup.py

ChartQA

mkdir -p data/chartqa
cd data/chartqa
git clone https://github.com/vis-nlp/ChartQA.git
cp -r ChartQA/ChartQA\ Dataset/* ./
rm -rf ChartQA
cd ..
gsutil -m cp -r chartqa $PIX2STRUCT_DIR/data/chartqa
python -m pix2struct.preprocessing.convert_chartqa \
  --data_dir=$PIX2STRUCT_DIR/data/chartqa \
  -- \
  --runner=DataflowRunner \
  --save_main_session \
  --project=$GCP_PROJECT \
  --region=$GCP_REGION \
  --temp_location=$PIX2STRUCT_DIR/data/temp \
  --staging_location=$PIX2STRUCT_DIR/data/staging \
  --setup_file=./setup.py

RICO Images

Screen2Words, RefExp, and Widget Captioning all require images from the RICO dataset. If you'd like to use any of these datasets, please process RICO images before proceeding.

cd data
wget https://storage.googleapis.com/crowdstf-rico-uiuc-4540/rico_dataset_v0.1/unique_uis.tar.gz
tar xvfz unique_uis.tar.gz
rm unique_uis.tar.gz
gsutil -m cp -r combined $PIX2STRUCT_DIR/data/rico_images

Widget Captioning

If you haven't already setup RICO, please do so before you proceed.

mkdir -p data/widget_captioning
cd data/widget_captioning
git clone https://github.com/google-research-datasets/widget-caption.git
cp widget-caption/widget_captions.csv ./
cp widget-caption/split/*.txt ./
mv dev.txt val.txt
rm -rf widget-caption
cd ..
gsutil -m cp -r widget_captioning $PIX2STRUCT_DIR/data/widget_captioning
python -m pix2struct.preprocessing.convert_widget_captioning \
  --data_dir=$PIX2STRUCT_DIR/data/widget_captioning \
  --image_dir=$PIX2STRUCT_DIR/data/rico_images \
  -- \
  --runner=DataflowRunner \
  --save_main_session \
  --project=$GCP_PROJECT \
  --region=$GCP_REGION \
  --temp_location=$PIX2STRUCT_DIR/data/temp \
  --staging_location=$PIX2STRUCT_DIR/data/staging \
  --setup_file=./setup.py

Screen2Words

If you haven't already setup RICO, please do so before you proceed.

cd data
git clone https://github.com/google-research-datasets/screen2words.git
gsutil -m cp -r screen2words $PIX2STRUCT_DIR/data/screen2words
python -m pix2struct.preprocessing.convert_screen2words \
  --screen2words_dir=$PIX2STRUCT_DIR/data/screen2words \
  --rico_dir=$PIX2STRUCT_DIR/data/rico_images \
  -- \
  --runner=DataflowRunner \
  --save_main_session \
  --project=$GCP_PROJECT \
  --region=$GCP_REGION \
  --temp_location=$PIX2STRUCT_DIR/data/temp \
  --staging_location=$PIX2STRUCT_DIR/data/staging \
  --setup_file=./setup.py

RefExp

If you haven't already setup RICO, please do so before you proceed.

mkdir -p data/refexp
cd data/refexp
wget https://github.com/google-research-datasets/uibert/raw/main/ref_exp/train.tfrecord
wget https://github.com/google-research-datasets/uibert/raw/main/ref_exp/dev.tfrecord
wget https://github.com/google-research-datasets/uibert/raw/main/ref_exp/test.tfrecord
mv dev.tfrecord val.tfrecord
cd ..
gsutil -m cp -r refexp $PIX2STRUCT_DIR/data/refexp
python -m pix2struct.preprocessing.convert_refexp \
  --data_dir=$PIX2STRUCT_DIR/data/refexp \
  --image_dir=$PIX2STRUCT_DIR/data/rico_images \
  -- \
  --runner=DataflowRunner \
  --save_main_session \
  --project=$GCP_PROJECT \
  --region=$GCP_REGION \
  --temp_location=$PIX2STRUCT_DIR/data/temp \
  --staging_location=$PIX2STRUCT_DIR/data/staging \
  --setup_file=./setup.py

DocVQA

mkdir -p data/docvqa
cd data/docvqa

Download DocVQA (Single Document Visual Question Answering) from the official source (requires registration). The following steps assume that the train/val/test.tar.gz files are in data/docvqa.

tar xvf train.tar.gz
tar xvf val.tar.gz
tar xvf test.tar.gz
rm -r *.tar.gz */ocr_results

cd ..
gsutil -m cp -r docvqa $PIX2STRUCT_DIR/data/docvqa
python -m pix2struct.preprocessing.convert_docvqa \
  --data_dir=$PIX2STRUCT_DIR/data/docvqa \
  -- \
  --runner=DataflowRunner \
  --save_main_session \
  --project=$GCP_PROJECT \
  --region=$GCP_REGION \
  --temp_location=$PIX2STRUCT_DIR/data/temp \
  --staging_location=$PIX2STRUCT_DIR/data/staging \
  --setup_file=./setup.py

InfographicVQA

mkdir -p data/infographicvqa
cd data/infographicvqa

Download InfographicVQA Task 1 from this website (requires registration). The following steps assume that the train/val/test.json and the zip files are in data/infographicvqa.

for split in train val test
do
  unzip infographicVQA_${split}_v1.0_images.zip
  mv infographicVQA_${split}_v1.0_images $split
  mv infographicVQA_${split}_v1.0.json $split/${split}_v1.0.json
done
rm *.zip

cd ..
gsutil -m cp -r infographicvqa $PIX2STRUCT_DIR/data/infographicvqa
python -m pix2struct.preprocessing.convert_docvqa \
  --data_dir=$PIX2STRUCT_DIR/data/infographicvqa \
  -- \
  --runner=DataflowRunner \
  --save_main_session \
  --project=$GCP_PROJECT \
  --region=$GCP_REGION \
  --temp_location=$PIX2STRUCT_DIR/data/temp \
  --staging_location=$PIX2STRUCT_DIR/data/staging \
  --setup_file=./setup.py

OCR-VQA

mkdir -p data/ocrvqa
cd data/ocrvqa

Follow instructions on the OCR-VQA website to download the data into data/ocrvqa (requires crawling). The following steps assume that data/ocrvqa contains a directory called images and a file called dataset.json.

cd ..
gsutil -m cp -r ocrvqa $PIX2STRUCT_DIR/data/ocrvqa
python -m pix2struct.preprocessing.convert_ocrvqa \
  --data_dir=$PIX2STRUCT_DIR/data/ocrvqa \
  -- \
  --runner=DataflowRunner \
  --save_main_session \
  --project=$GCP_PROJECT \
  --region=$GCP_REGION \
  --temp_location=$PIX2STRUCT_DIR/data/temp \
  --staging_location=$PIX2STRUCT_DIR/data/staging \
  --setup_file=./setup.py

AI2D

mkdir -p data/
cd data/
wget https://ai2-public-datasets.s3.amazonaws.com/diagrams/ai2d-all.zip
unzip ai2d-all.zip
rm ai2d-all.zip
gsutil -m cp -r ai2d $PIX2STRUCT_DIR/data/ai2d
python -m pix2struct.preprocessing.convert_ai2d \
  --data_dir=$PIX2STRUCT_DIR/data/ai2d \
  --test_ids_path=gs://pix2struct-data/ai2d_test_ids.csv \
  -- \
  --runner=DataflowRunner \
  --save_main_session \
  --project=$GCP_PROJECT \
  --region=$GCP_REGION \
  --temp_location=$PIX2STRUCT_DIR/data/temp \
  --staging_location=$PIX2STRUCT_DIR/data/staging \
  --setup_file=./setup.py

Running experiments

The main experiments are implemented as a light wrapper around the T5X library. For brevity, we illustrate an example workflow of finetuning the pretrained base Pix2Struct model on the Screen2Words dataset. To scale up to larger setups, please see to the T5X documentation.

Setting up the TPU

Following official instructions for running JAX on a Cloud TPU VM, which allows you to directly ssh into the TPU host.

In this example, we are using a v3-8 TPU:

TPU_TYPE=v3-8
TPU_NAME=pix2struct-$TPU_TYPE
TPU_ZONE=europe-west4-a
gcloud compute tpus tpu-vm create $TPU_NAME \
  --zone=$TPU_ZONE \
  --accelerator-type=$TPU_TYPE \
  --version=tpu-vm-base
gcloud compute tpus tpu-vm ssh $TPU_NAME --zone=$TPU_ZONE

Once you have sshed into the TPU host, follow the "Getting Started" instructions to install the pix2struct package.

Training

The following command will initiate the training loop, which consists of train steps interleaved with evaluations on the validation set.

python -m t5x.train \
  --gin_search_paths="pix2struct/configs" \
  --gin_file="models/pix2struct.gin" \
  --gin_file="runs/train.gin" \
  --gin_file="sizes/base.gin" \
  --gin_file="optimizers/adafactor.gin" \
  --gin_file="schedules/screen2words.gin" \
  --gin_file="init/pix2struct_base_init.gin" \
  --gin.MIXTURE_OR_TASK_NAME="'screen2words'" \
  --gin.MODEL_DIR="'$PIX2STRUCT_DIR/experiments/screen2words_base'" \
  --gin.TASK_FEATURE_LENGTHS="{'inputs': 4096, 'targets': 128}" \
  --gin.BATCH_SIZE=32

Evaluation

The following command evaluates the model on the test set. You will need to replace the checkpoint path with the one that was actually selected based on the validation performance.

python -m t5x.eval \
  --gin_search_paths="pix2struct/configs" \
  --gin_file="models/pix2struct.gin" \
  --gin_file="runs/eval.gin" \
  --gin_file="sizes/base.gin" \
  --gin.MIXTURE_OR_TASK_NAME="'screen2words'" \
  --gin.CHECKPOINT_PATH="'$PIX2STRUCT_DIR/experiments/screen2words_base/checkpoint_286600'" \
  --gin.EVAL_OUTPUT_DIR="'$PIX2STRUCT_DIR/experiments/test_exp/test_eval'" \
  --gin.EVAL_SPLIT="'test'" \
  --gin.TASK_FEATURE_LENGTHS="{'inputs': 4096, 'targets': 128}" \
  --gin.BATCH_SIZE=32

Finetuned Checkpoints

In addition to the pretrained checkpoints released and specified in the configs/init directory. We also release checkpoints for the finetuned models on all tasks below.

Task GCS Path (Base) GCS Path (Large)
TextCaps gs://pix2struct-data/textcaps_base/checkpoint_280400 gs://pix2struct-data/textcaps_large/checkpoint_180600
ChartQA gs://pix2struct-data/chartqa_base/checkpoint_287600 gs://pix2struct-data/charqa_large/checkpoint_182600
WidgetCaptioning gs://pix2struct-data/widget_captioning_base/checkpoint_281600 gs://pix2struct-data/widget_captioning_large/checkpoint_181600
Screen2Words gs://pix2struct-data/screen2words_base/checkpoint_282600 gs://pix2struct-data/screen2words_large/checkpoint_183000
RefExp gs://pix2struct-data/refexp_base/checkpoint_290000 gs://pix2struct-data/refexp_large/checkpoint_187800
DocVQA gs://pix2struct-data/docvqa_base/checkpoint_284400 gs://pix2struct-data/docvqa_large/checkpoint_184000
InfographicVQA gs://pix2struct-data/infographicvqa_base/checkpoint_284000 gs://pix2struct-data/infographicvqa_large/checkpoint_182000
OCR-VQA gs://pix2struct-data/ocrvqa_base/checkpoint_290000 gs://pix2struct-data/ocrvqa_large/checkpoint_188400
AI2D gs://pix2struct-data/ai2d_base/checkpoint_284400 gs://pix2struct-data/ai2d_large/checkpoint_184000

These checkpoints are compatible with the eval command documented above and the two ways of performing inference mentioned below. Please ensure that the config file under configs/sizes is set to be consistent with the checkpoint.

Inference

We provide two ways of performing inference. For testing and demoing purposes, these may be run on CPU. In that case, please set the JAX_PLATFORMS environment variable to cpu.

Command-line example

We provide a minimal script for performing inference on a single example. This path has only been tested at extremely small scale and is not meant for larger-scale inference. For large-scale inference, we recommend setting a custom task with placeholder labels and running the evaluation script (t5x.eval) as documented above.

In the following example, we show the command for predicting the caption of an image using a base-sized checkpoint finetuned on the TextCaps task. For a task that also accepts textual prompts such as questions in VQA, you can also supply the question via the text flag (in addition to specifying the image with the image flag).

python -m pix2struct.example_inference \
  --gin_search_paths="pix2struct/configs" \
  --gin_file=models/pix2struct.gin \
  --gin_file=runs/inference.gin \
  --gin_file=sizes/base.gin \
  --gin.MIXTURE_OR_TASK_NAME="'placeholder_pix2struct'" \
  --gin.TASK_FEATURE_LENGTHS="{'inputs': 2048, 'targets': 128}" \
  --gin.BATCH_SIZE=1 \
  --gin.CHECKPOINT_PATH="'gs://pix2struct-data/textcaps_base/checkpoint_280400'" \
  --image=$HOME/test_image.jpg

Web Demo

For a more user-friendly demo, we also provide a web-based alternative of inference script above. While running this command, the web demo can be accessed at localhost:8080 (or any port specified via the port flag), assuming you are running the demo locally. You can then upload your custom image and optional prompt instead of specifying it via the command line.

python -m pix2struct.demo \
  --gin_search_paths="pix2struct/configs" \
  --gin_file=models/pix2struct.gin \
  --gin_file=runs/inference.gin \
  --gin_file=sizes/base.gin \
  --gin.MIXTURE_OR_TASK_NAME="'placeholder_pix2struct'" \
  --gin.TASK_FEATURE_LENGTHS="{'inputs': 2048, 'targets': 128}" \
  --gin.BATCH_SIZE=1 \
  --gin.CHECKPOINT_PATH="'gs://pix2struct-data/textcaps_base/checkpoint_280400'"

Clean up

When you are done with your TPU VM, remember to delete the instance:

gcloud compute tpus tpu-vm delete $TPU_NAME --zone=$TPU_ZONE

Note

This is not an officially supported Google product.

More Repositories

1

bert

TensorFlow code and pre-trained models for BERT
Python
36,701
star
2

google-research

Google Research
Jupyter Notebook
32,494
star
3

tuning_playbook

A playbook for systematically maximizing the performance of deep learning models.
24,615
star
4

vision_transformer

Jupyter Notebook
9,288
star
5

text-to-text-transfer-transformer

Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"
Python
5,820
star
6

arxiv-latex-cleaner

arXiv LaTeX Cleaner: Easily clean the LaTeX code of your paper to submit to arXiv
Python
4,736
star
7

simclr

SimCLRv2 - Big Self-Supervised Models are Strong Semi-Supervised Learners
Jupyter Notebook
3,841
star
8

multinerf

A Code Release for Mip-NeRF 360, Ref-NeRF, and RawNeRF
Python
3,484
star
9

football

Check out the new game server:
Python
3,230
star
10

albert

ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
Python
3,209
star
11

scenic

Scenic: A Jax Library for Computer Vision Research and Beyond
Python
2,999
star
12

frame-interpolation

FILM: Frame Interpolation for Large Motion, In ECCV 2022.
Python
2,643
star
13

t5x

Python
2,494
star
14

electra

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
Python
2,284
star
15

kubric

A data generation pipeline for creating semi-realistic synthetic multi-object videos with rich annotations such as instance segmentation masks, depth maps, and optical flow.
Jupyter Notebook
2,180
star
16

uda

Unsupervised Data Augmentation (UDA)
Python
2,131
star
17

pegasus

Python
1,578
star
18

big_vision

Official codebase used to develop Vision Transformer, SigLIP, MLP-Mixer, LiT and more.
Jupyter Notebook
1,555
star
19

language

Shared repository for open-sourced projects from the Google AI Language team.
Python
1,553
star
20

dex-lang

Research language for array processing in the Haskell/ML family
Haskell
1,532
star
21

parti

1,513
star
22

big_transfer

Official repository for the "Big Transfer (BiT): General Visual Representation Learning" paper.
Python
1,491
star
23

torchsde

Differentiable SDE solvers with GPU support and efficient sensitivity analysis.
Python
1,444
star
24

FLAN

Python
1,373
star
25

disentanglement_lib

disentanglement_lib is an open-source library for research on learning disentangled representations.
Python
1,311
star
26

multilingual-t5

Python
1,197
star
27

robotics_transformer

Python
1,192
star
28

planet

Learning Latent Dynamics for Planning from Pixels
Python
1,134
star
29

mixmatch

Python
1,126
star
30

tapas

End-to-end neural table-text understanding models.
Python
1,080
star
31

fixmatch

A simple method to perform semi-supervised learning with limited data.
Python
1,053
star
32

morph-net

Fast & Simple Resource-Constrained Learning of Deep Network Structure
Python
1,011
star
33

deduplicate-text-datasets

Rust
982
star
34

deeplab2

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.
Python
976
star
35

batch-ppo

Efficient Batched Reinforcement Learning in TensorFlow
Python
963
star
36

augmix

AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
Python
951
star
37

maxim

[CVPR 2022 Oral] Official repository for "MAXIM: Multi-Axis MLP for Image Processing". SOTA for denoising, deblurring, deraining, dehazing, and enhancement.
Python
937
star
38

magvit

Official JAX implementation of MAGVIT: Masked Generative Video Transformer
Python
847
star
39

pix2seq

Pix2Seq codebase: multi-tasks with generative modeling (autoregressive and diffusion)
Jupyter Notebook
801
star
40

seed_rl

SEED RL: Scalable and Efficient Deep-RL with Accelerated Central Inference. Implements IMPALA and R2D2 algorithms in TF2 with SEED's architecture.
Python
790
star
41

meta-dataset

A dataset of datasets for learning to learn from few examples
Python
740
star
42

noisystudent

Code for Noisy Student Training. https://arxiv.org/abs/1911.04252
Python
736
star
43

jax3d

Python
718
star
44

recsim

A Configurable Recommender Systems Simulation Platform
Python
717
star
45

lottery-ticket-hypothesis

A reimplementation of "The Lottery Ticket Hypothesis" (Frankle and Carbin) on MNIST.
Python
704
star
46

rliable

[NeurIPS'21 Outstanding Paper] Library for reliable evaluation on RL and ML benchmarks, even with only a handful of seeds.
Jupyter Notebook
689
star
47

circuit_training

Python
685
star
48

long-range-arena

Long Range Arena for Benchmarking Efficient Transformers
Python
681
star
49

federated

A collection of Google research projects related to Federated Learning and Federated Analytics.
Python
646
star
50

nasbench

NASBench: A Neural Architecture Search Dataset and Benchmark
Python
641
star
51

prompt-tuning

Original Implementation of Prompt Tuning from Lester, et al, 2021
Python
617
star
52

bleurt

BLEURT is a metric for Natural Language Generation based on transfer learning.
Python
611
star
53

xtreme

XTREME is a benchmark for the evaluation of the cross-lingual generalization ability of pre-trained multilingual models that covers 40 typologically diverse languages and includes nine tasks.
Python
608
star
54

lasertagger

Python
603
star
55

sound-separation

Python
578
star
56

dreamer

Dream to Control: Learning Behaviors by Latent Imagination
Python
568
star
57

robopianist

[CoRL '23] Dexterous piano playing with deep reinforcement learning.
Python
531
star
58

fast-soft-sort

Fast Differentiable Sorting and Ranking
Python
527
star
59

bigbird

Transformers for Longer Sequences
Python
518
star
60

ravens

Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet. Transporter Nets, CoRL 2020.
Python
517
star
61

sam

Python
512
star
62

vmoe

Jupyter Notebook
507
star
63

batch_rl

Offline Reinforcement Learning (aka Batch Reinforcement Learning) on Atari 2600 games
Python
489
star
64

tensor2robot

Distributed machine learning infrastructure for large-scale robotics research
Python
483
star
65

mint

Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.
Python
465
star
66

byt5

Python
464
star
67

adapter-bert

Python
459
star
68

leaf-audio

LEAF is a learnable alternative to audio features such as mel-filterbanks, that can be initialized as an approximation of mel-filterbanks, and then be trained for the task at hand, while using a very small number of parameters.
Python
446
star
69

robustness_metrics

Jupyter Notebook
442
star
70

maxvit

[ECCV 2022] Official repository for "MaxViT: Multi-Axis Vision Transformer". SOTA foundation models for classification, detection, segmentation, image quality, and generative modeling...
Jupyter Notebook
417
star
71

receptive_field

Compute receptive fields of your favorite convnets
Python
412
star
72

ssl_detection

Semi-supervised learning for object detection
Python
394
star
73

maskgit

Official Jax Implementation of MaskGIT
Jupyter Notebook
376
star
74

l2p

Learning to Prompt (L2P) for Continual Learning @ CVPR22 and DualPrompt: Complementary Prompting for Rehearsal-free Continual Learning @ ECCV22
Python
369
star
75

nerf-from-image

Shape, Pose, and Appearance from a Single Image via Bootstrapped Radiance Field Inversion
Python
366
star
76

computation-thru-dynamics

Understanding computation in artificial and biological recurrent networks through the lens of dynamical systems.
Jupyter Notebook
362
star
77

tf-slim

Python
360
star
78

realworldrl_suite

Real-World RL Benchmark Suite
Python
332
star
79

distilling-step-by-step

Python
325
star
80

rigl

End-to-end training of sparse deep neural networks with little-to-no performance loss.
Python
314
star
81

python-graphs

A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.
Python
312
star
82

weatherbench2

A benchmark for the next generation of data-driven global weather models.
Python
306
star
83

tensorflow_constrained_optimization

Python
301
star
84

task_adaptation

Python
295
star
85

exoplanet-ml

Machine learning models and utilities for exoplanet science.
Python
283
star
86

ibc

Official implementation of Implicit Behavioral Cloning, as described in our CoRL 2021 paper, see more at https://implicitbc.github.io/
Python
282
star
87

self-organising-systems

Jupyter Notebook
279
star
88

tensorflow-coder

Python
275
star
89

retvec

RETVec is an efficient, multilingual, and adversarially-robust text vectorizer.
Jupyter Notebook
269
star
90

vdm

Jupyter Notebook
267
star
91

sparf

This is the official code release for SPARF: Neural Radiance Fields from Sparse and Noisy Poses [CVPR 2023-Highlight]
Python
263
star
92

falken

Falken provides developers with a service that allows them to train AI that can play their games
Python
253
star
93

syn-rep-learn

Learning from synthetic data - code and models
Python
246
star
94

lm-extraction-benchmark

Python
244
star
95

meliad

Python
231
star
96

3d-moments

Code for CVPR 2022 paper '3D Moments from Near-Duplicate Photos'
Python
229
star
97

perceiver-ar

Python
224
star
98

rlds

Jupyter Notebook
216
star
99

ott

Python
215
star
100

language-table

Suite of human-collected datasets and a multi-task continuous control benchmark for open vocabulary visuolinguomotor learning.
Jupyter Notebook
213
star