• Stars
    star
    1,094
  • Rank 42,362 (Top 0.9 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created almost 5 years ago
  • Updated 4 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A simple method to perform semi-supervised learning with limited data.

FixMatch

Code for the paper: "FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence" by Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin, Han Zhang, and Colin Raffel.

This is not an officially supported Google product.

FixMatch diagram

Setup

Important: ML_DATA is a shell environment variable that should point to the location where the datasets are installed. See the Install datasets section for more details.

Install dependencies

sudo apt install python3-dev python3-virtualenv python3-tk imagemagick
virtualenv -p python3 --system-site-packages env3
. env3/bin/activate
pip install -r requirements.txt

Install datasets

export ML_DATA="path to where you want the datasets saved"
export PYTHONPATH=$PYTHONPATH:"path to the FixMatch"

# Download datasets
CUDA_VISIBLE_DEVICES= ./scripts/create_datasets.py
cp $ML_DATA/svhn-test.tfrecord $ML_DATA/svhn_noextra-test.tfrecord

# Create unlabeled datasets
CUDA_VISIBLE_DEVICES= scripts/create_unlabeled.py $ML_DATA/SSL2/svhn $ML_DATA/svhn-train.tfrecord $ML_DATA/svhn-extra.tfrecord &
CUDA_VISIBLE_DEVICES= scripts/create_unlabeled.py $ML_DATA/SSL2/svhn_noextra $ML_DATA/svhn-train.tfrecord &
CUDA_VISIBLE_DEVICES= scripts/create_unlabeled.py $ML_DATA/SSL2/cifar10 $ML_DATA/cifar10-train.tfrecord &
CUDA_VISIBLE_DEVICES= scripts/create_unlabeled.py $ML_DATA/SSL2/cifar100 $ML_DATA/cifar100-train.tfrecord &
CUDA_VISIBLE_DEVICES= scripts/create_unlabeled.py $ML_DATA/SSL2/stl10 $ML_DATA/stl10-train.tfrecord $ML_DATA/stl10-unlabeled.tfrecord &
wait

# Create semi-supervised subsets
for seed in 0 1 2 3 4 5; do
    for size in 10 20 30 40 100 250 1000 4000; do
        CUDA_VISIBLE_DEVICES= scripts/create_split.py --seed=$seed --size=$size $ML_DATA/SSL2/svhn $ML_DATA/svhn-train.tfrecord $ML_DATA/svhn-extra.tfrecord &
        CUDA_VISIBLE_DEVICES= scripts/create_split.py --seed=$seed --size=$size $ML_DATA/SSL2/svhn_noextra $ML_DATA/svhn-train.tfrecord &
        CUDA_VISIBLE_DEVICES= scripts/create_split.py --seed=$seed --size=$size $ML_DATA/SSL2/cifar10 $ML_DATA/cifar10-train.tfrecord &
    done
    for size in 400 1000 2500 10000; do
        CUDA_VISIBLE_DEVICES= scripts/create_split.py --seed=$seed --size=$size $ML_DATA/SSL2/cifar100 $ML_DATA/cifar100-train.tfrecord &
    done
    CUDA_VISIBLE_DEVICES= scripts/create_split.py --seed=$seed --size=1000 $ML_DATA/SSL2/stl10 $ML_DATA/stl10-train.tfrecord $ML_DATA/stl10-unlabeled.tfrecord &
    wait
done
CUDA_VISIBLE_DEVICES= scripts/create_split.py --seed=1 --size=5000 $ML_DATA/SSL2/stl10 $ML_DATA/stl10-train.tfrecord $ML_DATA/stl10-unlabeled.tfrecord

ImageNet

Codebase for ImageNet experiments located in the imagenet subdirectory.

Running

Setup

All commands must be ran from the project root. The following environment variables must be defined:

export ML_DATA="path to where you want the datasets saved"
export PYTHONPATH=$PYTHONPATH:.

Example

For example, training a FixMatch with 32 filters on cifar10 shuffled with seed=3, 40 labeled samples and 1 validation sample:

CUDA_VISIBLE_DEVICES=0 python fixmatch.py --filters=32 --dataset=cifar10.3@40-1 --train_dir ./experiments/fixmatch

Available labelled sizes are 10, 20, 30, 40, 100, 250, 1000, 4000. For validation, available sizes are 1, 5000. Possible shuffling seeds are 1, 2, 3, 4, 5 and 0 for no shuffling (0 is not used in practiced since data requires to be shuffled for gradient descent to work properly).

Multi-GPU training

Just pass more GPUs and fixmatch automatically scales to them, here we assign GPUs 4-7 to the program:

CUDA_VISIBLE_DEVICES=4,5,6,7 python fixmatch.py --filters=32 --dataset=cifar10.3@40-1 --train_dir ./experiments/fixmatch

Flags

python fixmatch.py --help
# The following option might be too slow to be really practical.
# python fixmatch.py --helpfull
# So instead I use this hack to find the flags:
fgrep -R flags.DEFINE libml fixmatch.py

The --augment flag can use a little more explanation. It is composed of 3 values, for example d.d.d (d=default augmentation, for example shift/mirror, x=identity, e.g. no augmentation, ra=rand-augment, rac=rand-augment + cutout):

  • the first d refers to data augmentation to apply to the labeled example.
  • the second d refers to data augmentation to apply to the weakly augmented unlabeled example.
  • the third d refers to data augmentation to apply to the strongly augmented unlabeled example. For the strong augmentation, d is followed by CTAugment for fixmatch.py and code inside cta/ folder.

Valid dataset names

for dataset in cifar10 svhn svhn_noextra; do
for seed in 0 1 2 3 4 5; do
for valid in 1 5000; do
for size in 10 20 30 40 100 250 1000 4000; do
    echo "${dataset}.${seed}@${size}-${valid}"
done; done; done; done

for seed in 1 2 3 4 5; do
for valid in 1 5000; do
    echo "cifar100.${seed}@10000-${valid}"
done; done

for seed in 1 2 3 4 5; do
for valid in 1 5000; do
    echo "stl10.${seed}@1000-${valid}"
done; done
echo "stl10.1@5000-1"

Monitoring training progress

You can point tensorboard to the training folder (by default it is --train_dir=./experiments) to monitor the training process:

tensorboard.sh --port 6007 --logdir ./experiments

Checkpoint accuracy

We compute the median accuracy of the last 20 checkpoints in the paper, this is done through this code:

# Following the previous example in which we trained cifar10.3@250-5000, extracting accuracy:
./scripts/extract_accuracy.py ./experiments/fixmatch/cifar10.d.d.d.3@40-1/CTAugment_depth2_th0.80_decay0.990/FixMatch_archresnet_batch64_confidence0.95_filters32_lr0.03_nclass10_repeat4_scales3_uratio7_wd0.0005_wu1.0/

# The command above will create a stats/accuracy.json file in the model folder.
# The format is JSON so you can either see its content as a text file or process it to your liking.

Adding datasets

You can add custom datasets into the codebase by taking the following steps:

  1. Add a function to acquire the dataset to scripts/create_datasets.py similar to the present ones, e.g. _load_cifar10. You need to call _encode_png to create encoded strings from the original images. The created function should return a dictionary of the format {'train' : {'images': <encoded 4D NHWC>, 'labels': <1D int array>}, 'test' : {'images': <encoded 4D NHWC>, 'labels': <1D int array>}} .
  2. Add the dataset to the variable CONFIGS in scripts/create_datasets.py with the previous function as loader. You can now run the create_datasets script to obtain a tf record for it.
  3. Use the create_unlabeled and create_split script to create unlabeled and differently split tf records as above in the Install Datasets section.
  4. In libml/data.py add your dataset in the create_datasets function. The specified "label" for the dataset has to match the created splits for your dataset. You will need to specify the corresponding variables if your dataset has a different # of classes than 10 and different resolution and # of channels than 32x32x3
  5. In libml/augment.py add your dataset to the DEFAULT_AUGMENT variable. Primitives "s", "m", "ms" represent mirror, shift and mirror+shift.

Citing this work

@article{sohn2020fixmatch,
    title={FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence},
    author={Kihyuk Sohn and David Berthelot and Chun-Liang Li and Zizhao Zhang and Nicholas Carlini and Ekin D. Cubuk and Alex Kurakin and Han Zhang and Colin Raffel},
    journal={arXiv preprint arXiv:2001.07685},
    year={2020},
}

More Repositories

1

bert

TensorFlow code and pre-trained models for BERT
Python
37,769
star
2

google-research

Google Research
Jupyter Notebook
33,759
star
3

tuning_playbook

A playbook for systematically maximizing the performance of deep learning models.
26,593
star
4

vision_transformer

Jupyter Notebook
10,251
star
5

text-to-text-transfer-transformer

Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"
Python
6,099
star
6

arxiv-latex-cleaner

arXiv LaTeX Cleaner: Easily clean the LaTeX code of your paper to submit to arXiv
Python
5,233
star
7

simclr

SimCLRv2 - Big Self-Supervised Models are Strong Semi-Supervised Learners
Jupyter Notebook
3,937
star
8

multinerf

A Code Release for Mip-NeRF 360, Ref-NeRF, and RawNeRF
Python
3,612
star
9

timesfm

TimesFM (Time Series Foundation Model) is a pretrained time-series foundation model developed by Google Research for time-series forecasting.
Python
3,576
star
10

scenic

Scenic: A Jax Library for Computer Vision Research and Beyond
Python
3,295
star
11

football

Check out the new game server:
Python
3,260
star
12

albert

ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
Python
3,209
star
13

frame-interpolation

FILM: Frame Interpolation for Large Motion, In ECCV 2022.
Python
2,818
star
14

t5x

Python
2,656
star
15

electra

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
Python
2,325
star
16

kubric

A data generation pipeline for creating semi-realistic synthetic multi-object videos with rich annotations such as instance segmentation masks, depth maps, and optical flow.
Jupyter Notebook
2,312
star
17

big_vision

Official codebase used to develop Vision Transformer, SigLIP, MLP-Mixer, LiT and more.
Jupyter Notebook
2,219
star
18

uda

Unsupervised Data Augmentation (UDA)
Python
2,131
star
19

language

Shared repository for open-sourced projects from the Google AI Language team.
Python
1,605
star
20

pegasus

Python
1,600
star
21

dex-lang

Research language for array processing in the Haskell/ML family
Haskell
1,581
star
22

torchsde

Differentiable SDE solvers with GPU support and efficient sensitivity analysis.
Python
1,548
star
23

parti

1,538
star
24

big_transfer

Official repository for the "Big Transfer (BiT): General Visual Representation Learning" paper.
Python
1,504
star
25

FLAN

Python
1,460
star
26

robotics_transformer

Python
1,337
star
27

disentanglement_lib

disentanglement_lib is an open-source library for research on learning disentangled representations.
Python
1,311
star
28

multilingual-t5

Python
1,197
star
29

circuit_training

Python
1,151
star
30

tapas

End-to-end neural table-text understanding models.
Python
1,143
star
31

planet

Learning Latent Dynamics for Planning from Pixels
Python
1,134
star
32

mixmatch

Python
1,130
star
33

deduplicate-text-datasets

Rust
1,104
star
34

morph-net

Fast & Simple Resource-Constrained Learning of Deep Network Structure
Python
1,016
star
35

maxim

[CVPR 2022 Oral] Official repository for "MAXIM: Multi-Axis MLP for Image Processing". SOTA for denoising, deblurring, deraining, dehazing, and enhancement.
Python
996
star
36

deeplab2

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.
Python
995
star
37

batch-ppo

Efficient Batched Reinforcement Learning in TensorFlow
Python
963
star
38

augmix

AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
Python
951
star
39

magvit

Official JAX implementation of MAGVIT: Masked Generative Video Transformer
Python
947
star
40

pix2seq

Pix2Seq codebase: multi-tasks with generative modeling (autoregressive and diffusion)
Jupyter Notebook
865
star
41

seed_rl

SEED RL: Scalable and Efficient Deep-RL with Accelerated Central Inference. Implements IMPALA and R2D2 algorithms in TF2 with SEED's architecture.
Python
793
star
42

meta-dataset

A dataset of datasets for learning to learn from few examples
Jupyter Notebook
762
star
43

noisystudent

Code for Noisy Student Training. https://arxiv.org/abs/1911.04252
Python
751
star
44

rliable

[NeurIPS'21 Outstanding Paper] Library for reliable evaluation on RL and ML benchmarks, even with only a handful of seeds.
Jupyter Notebook
747
star
45

recsim

A Configurable Recommender Systems Simulation Platform
Python
739
star
46

jax3d

Python
733
star
47

long-range-arena

Long Range Arena for Benchmarking Efficient Transformers
Python
719
star
48

lottery-ticket-hypothesis

A reimplementation of "The Lottery Ticket Hypothesis" (Frankle and Carbin) on MNIST.
Python
706
star
49

federated

A collection of Google research projects related to Federated Learning and Federated Analytics.
Python
675
star
50

bleurt

BLEURT is a metric for Natural Language Generation based on transfer learning.
Python
651
star
51

prompt-tuning

Original Implementation of Prompt Tuning from Lester, et al, 2021
Python
642
star
52

nasbench

NASBench: A Neural Architecture Search Dataset and Benchmark
Python
641
star
53

neuralgcm

Hybrid ML + physics model of the Earth's atmosphere
Python
641
star
54

xtreme

XTREME is a benchmark for the evaluation of the cross-lingual generalization ability of pre-trained multilingual models that covers 40 typologically diverse languages and includes nine tasks.
Python
631
star
55

lasertagger

Python
606
star
56

sound-separation

Python
603
star
57

pix2struct

Python
587
star
58

vmoe

Jupyter Notebook
569
star
59

dreamer

Dream to Control: Learning Behaviors by Latent Imagination
Python
568
star
60

robopianist

[CoRL '23] Dexterous piano playing with deep reinforcement learning.
Python
562
star
61

omniglue

Code release for CVPR'24 submission 'OmniGlue'
Python
561
star
62

fast-soft-sort

Fast Differentiable Sorting and Ranking
Python
561
star
63

ravens

Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet. Transporter Nets, CoRL 2020.
Python
560
star
64

sam

Python
551
star
65

batch_rl

Offline Reinforcement Learning (aka Batch Reinforcement Learning) on Atari 2600 games
Python
521
star
66

bigbird

Transformers for Longer Sequences
Python
518
star
67

tensor2robot

Distributed machine learning infrastructure for large-scale robotics research
Python
483
star
68

byt5

Python
477
star
69

adapter-bert

Python
476
star
70

mint

Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.
Python
465
star
71

leaf-audio

LEAF is a learnable alternative to audio features such as mel-filterbanks, that can be initialized as an approximation of mel-filterbanks, and then be trained for the task at hand, while using a very small number of parameters.
Python
446
star
72

robustness_metrics

Jupyter Notebook
442
star
73

maxvit

[ECCV 2022] Official repository for "MaxViT: Multi-Axis Vision Transformer". SOTA foundation models for classification, detection, segmentation, image quality, and generative modeling...
Jupyter Notebook
436
star
74

receptive_field

Compute receptive fields of your favorite convnets
Python
434
star
75

maskgit

Official Jax Implementation of MaskGIT
Jupyter Notebook
429
star
76

weatherbench2

A benchmark for the next generation of data-driven global weather models.
Python
420
star
77

l2p

Learning to Prompt (L2P) for Continual Learning @ CVPR22 and DualPrompt: Complementary Prompting for Rehearsal-free Continual Learning @ ECCV22
Python
408
star
78

distilling-step-by-step

Python
407
star
79

ssl_detection

Semi-supervised learning for object detection
Python
398
star
80

nerf-from-image

Shape, Pose, and Appearance from a Single Image via Bootstrapped Radiance Field Inversion
Python
377
star
81

computation-thru-dynamics

Understanding computation in artificial and biological recurrent networks through the lens of dynamical systems.
Jupyter Notebook
369
star
82

tf-slim

Python
368
star
83

realworldrl_suite

Real-World RL Benchmark Suite
Python
341
star
84

python-graphs

A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.
Python
325
star
85

rigl

End-to-end training of sparse deep neural networks with little-to-no performance loss.
Python
314
star
86

task_adaptation

Python
310
star
87

self-organising-systems

Jupyter Notebook
308
star
88

ibc

Official implementation of Implicit Behavioral Cloning, as described in our CoRL 2021 paper, see more at https://implicitbc.github.io/
Python
306
star
89

tensorflow_constrained_optimization

Python
300
star
90

syn-rep-learn

Learning from synthetic data - code and models
Python
294
star
91

arco-era5

Recipes for reproducing Analysis-Ready & Cloud Optimized (ARCO) ERA5 datasets.
Python
291
star
92

vdm

Jupyter Notebook
291
star
93

rlds

Jupyter Notebook
284
star
94

exoplanet-ml

Machine learning models and utilities for exoplanet science.
Python
283
star
95

retvec

RETVec is an efficient, multilingual, and adversarially-robust text vectorizer.
Jupyter Notebook
281
star
96

sparf

This is the official code release for SPARF: Neural Radiance Fields from Sparse and Noisy Poses [CVPR 2023-Highlight]
Python
279
star
97

tensorflow-coder

Python
275
star
98

lm-extraction-benchmark

Python
270
star
99

language-table

Suite of human-collected datasets and a multi-task continuous control benchmark for open vocabulary visuolinguomotor learning.
Jupyter Notebook
260
star
100

falken

Falken provides developers with a service that allows them to train AI that can play their games
Python
254
star