• Stars
    star
    1,555
  • Rank 28,947 (Top 0.6 %)
  • Language
    Jupyter Notebook
  • License
    Apache License 2.0
  • Created about 2 years ago
  • Updated 20 days ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Official codebase used to develop Vision Transformer, SigLIP, MLP-Mixer, LiT and more.

Big Vision

This codebase is designed for training large-scale vision models using Cloud TPU VMs or GPU machines. It is based on Jax/Flax libraries, and uses tf.data and TensorFlow Datasets for scalable and reproducible input pipelines.

The open-sourcing of this codebase has two main purposes:

  1. Publishing the code of research projects developed in this codebase (see a list below).
  2. Providing a strong starting point for running large-scale vision experiments on GPU machines and Google Cloud TPUs, which should scale seamlessly and out-of-the box from a single TPU core to a distributed setup with up to 2048 TPU cores.

big_vision aims to support research projects at Google. We are unlikely to work on feature requests or accept external contributions, unless they were pre-approved (ask in an issue first). For a well-supported transfer-only codebase, see also vision_transformer.

The following research projects were originally conducted in the big_vision codebase:

Architecture research

Multimodal research

Knowledge distillation

Training

Misc

  • Are we done with ImageNet?, by Lucas Beyer*, Olivier J. Hénaff*, Alexander Kolesnikov*, Xiaohua Zhai*, and Aäron van den Oord*

Codebase high-level organization and principles in a nutshell

The main entry point is a trainer module, which typically does all the boilerplate related to creating a model and an optimizer, loading the data, checkpointing and training/evaluating the model inside a loop. We provide the canonical trainer train.py in the root folder. Normally, individual projects within big_vision fork and customize this trainer.

All models, evaluators and preprocessing operations live in the corresponding subdirectories and can often be reused between different projects. We encourage compatible APIs within these directories to facilitate reusability, but it is not strictly enforced, as individual projects may need to introduce their custom APIs.

We have a powerful configuration system, with the configs living in the configs/ directory. Custom trainers and modules can directly extend/modify the configuration options.

Project-specific code resides in the .../proj/... namespace. It is not always possible to keep project-specific in sync with the core big_vision libraries, Below we provide the last known commit for each project where the project code is expected to work.

Training jobs are robust to interruptions and will resume seamlessly from the last saved checkpoint (assuming a user provides the correct --workdir path).

Each configuration file contains a comment at the top with a COMMAND snippet to run it, and some hint of expected runtime and results. See below for more details, but generally speaking, running on a GPU machine involves calling python -m COMMAND while running on TPUs, including multi-host, involves

gcloud alpha compute tpus tpu-vm ssh $NAME --zone=$ZONE --worker=all
  --command "bash big_vision/run_tpu.sh COMMAND"

See instructions below for more details on how to run big_vision code on a GPU machine or Google Cloud TPU.

By default we write checkpoints and logfiles. The logfiles are a list of JSON objects, and we provide a short and straightforward example colab to read and display the logs and checkpoints.

Current and future contents

The first release contains the core part of pre-training, transferring, and evaluating classification models at scale on Cloud TPU VMs.

We have since added the following key features and projects:

  • Contrastive Image-Text model training and evaluation as in LiT and CLIP.
  • Patient and consistent distillation.
  • Scaling ViT.
  • MLP-Mixer.
  • UViM.

Features and projects we plan to release in the near future, in no particular order:

  • ImageNet-21k in TFDS.
  • Loading misc public models used in our publications (NFNet, MoCov3, DINO).
  • Memory-efficient Polyak-averaging implementation.
  • Advanced JAX compute and memory profiling. We are using internal tools for this, but may eventually add support for the publicly available ones.

We will continue releasing code of our future publications developed within big_vision here.

Non-content

The following exist in the internal variant of this codebase, and there is no plan for their release:

  • Regular regression tests for both quality and speed. They rely heavily on internal infrastructure.
  • Advanced logging, monitoring, and plotting of experiments. This also relies heavily on internal infrastructure. However, we are open to ideas on this and may add some in the future, especially if implemented in a self-contained manner.
  • Not yet published, ongoing research projects.

GPU Setup

We first discuss how to setup and run big_vision on a (local) GPU machine, and then discuss the setup for Cloud TPUs. Note that data preparation step for (local) GPU setup can be largely reused for the Cloud TPU setup. While the instructions skip this for brevity, we highly recommend using a virtual environment when installing python dependencies.

Setting up python packages

The first step is to checkout big_vision and install relevant python dependencies:

git clone https://github.com/google-research/big_vision
cd big_vision/
pip3 install --upgrade pip
pip3 install -r big_vision/requirements.txt

The latest version of jax library can be fetched as

pip3 install --upgrade "jax[cuda]" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html

You may need a different jax package, depending on CUDA and cuDNN libraries installed on your machine. Please consult official jax documentation for more information.

Preparing tfds data

For unified and reproducible access to standard datasets we opted to use the tensorflow_datasets (tfds) library. It requires each dataset to be downloaded, preprocessed and then to be stored on a hard drive (or, if you use "Google Cloud", preferably stored in a "GCP bucket".).

Many datasets can be downloaded and preprocessed automatically when used for the first time. Nevertheless, we intentionally disable this feature and recommend doing dataset preparation step separately, ahead of the first run. It will make debugging easier if problems arise and some datasets, like imagenet2012, require manually downloaded data.

Most of the datasets, e.g. cifar100, oxford_iiit_pet or imagenet_v2 can be fully automatically downloaded and prepared by running

cd big_vision/
python3 -m big_vision.tools.download_tfds_datasets cifar100 oxford_iiit_pet imagenet_v2

A full list of datasets is available at this link.

Some datasets, like imagenet2012 or imagenet2012_real, require the data to be downloaded manually and placed into $TFDS_DATA_DIR/downloads/manual/, which defaults to ~/tensorflow_datasets/downloads/manual/. For example, for imagenet2012 and imagenet2012_real one needs to place the official ILSVRC2012_img_train.tar and ILSVRC2012_img_val.tar files in that directory and then run python3 -m big_vision.tools.download_tfds_datasets imagenet2012 imagenet2012_real (which may take ~1 hour).

If you use Google Cloud and, TPUs in particular, you can then upload the preprocessed data (stored in $TFDS_DATA_DIR) to "Google Cloud Bucket" and use the bucket on any of your (TPU) virtual machines to access the data.

Running on a GPU machine

Finally, after installing all python dependencies and preparing tfds data, the user can run the job using config of their choice, e.g. to train ViT-S/16 model on ImageNet data, one should run the following command:

python3 -m big_vision.train --config big_vision/configs/vit_s16_i1k.py --workdir workdirs/`date '+%m-%d_%H%M'`

or to train MLP-Mixer-B/16, run (note the gpu8 config param that reduces the default batch size and epoch count):

python3 -m big_vision.train --config big_vision/configs/mlp_mixer_i1k.py:gpu8 --workdir workdirs/`date '+%m-%d_%H%M'`

Cloud TPU VM setup

Create TPU VMs

To create a single machine with 8 TPU cores, follow the following Cloud TPU JAX document: https://cloud.google.com/tpu/docs/run-calculation-jax

To support large-scale vision research, more cores with multiple hosts are recommended. Below we provide instructions on how to do it.

First, create some useful variables, which we be reused:

export NAME="a name of the TPU deployment, e.g. my-tpu-machine"
export ZONE="GCP geographical zone, e.g. europe-west4-a"
export GS_BUCKET_NAME="Name of the storage bucket, e.g. my_bucket"

The following command line will create TPU VMs with 32 cores, 4 hosts.

gcloud alpha compute tpus tpu-vm create $NAME --zone $ZONE --accelerator-type v3-32 --version v2-tf-stable

Install big_vision on TPU VMs

Fetch the big_vision repository, copy it to all TPU VM hosts, and install dependencies.

git clone https://github.com/google-research/big_vision
gcloud alpha compute tpus tpu-vm scp --recurse big_vision/big_vision $NAME: --zone=$ZONE --worker=all
gcloud alpha compute tpus tpu-vm ssh $NAME --zone=$ZONE --worker=all --command "bash big_vision/run_tpu.sh"

Download and prepare TFDS datasets

We recommend preparing tfds data locally as described above and then uploading the data to Google Cloud bucket. However, if you prefer, the datasets which do not require manual downloads can be prepared automatically using a TPU machine as described below.

Specifically, the seven TFDS datasets used during evaluations will be generated under ~/tensorflow_datasets on TPU machine with this command:

gcloud alpha compute tpus tpu-vm ssh $NAME --zone=$ZONE --worker=0 --command "TFDS_DATA_DIR=~/tensorflow_datasets bash big_vision/run_tpu.sh big_vision.tools.download_tfds_datasets cifar10 cifar100 oxford_iiit_pet oxford_flowers102 cars196 dtd uc_merced"

You can then copy the datasets to GS bucket, to make them accessible to all TPU workers.

gcloud alpha compute tpus tpu-vm ssh $NAME --zone=$ZONE --worker=0 --command "rm -r ~/tensorflow_datasets/downloads && gsutil cp -r ~/tensorflow_datasets gs://$GS_BUCKET_NAME"

If you want to integrate other public or custom datasets, i.e. imagenet2012, please follow the official guideline.

Pre-trained models

For the full list of pre-trained models check out the load function defined in the same module as the model code. And for example config on how to use these models, see configs/transfer.py.

Run the transfer script on TPU VMs

The following command line fine-tunes a pre-trained vit-i21k-augreg-b/32 model on cifar10 dataset.

gcloud alpha compute tpus tpu-vm ssh $NAME --zone=$ZONE --worker=all --command "TFDS_DATA_DIR=gs://$GS_BUCKET_NAME/tensorflow_datasets bash big_vision/run_tpu.sh big_vision.train --config big_vision/configs/transfer.py:model=vit-i21k-augreg-b/32,dataset=cifar10,crop=resmall_crop --workdir gs://$GS_BUCKET_NAME/big_vision/workdir/`date '+%m-%d_%H%M'` --config.lr=0.03"

Run the train script on TPU VMs

To train your own big_vision models on a large dataset, e.g. imagenet2012 (prepare the TFDS dataset), run the following command line.

gcloud alpha compute tpus tpu-vm ssh $NAME --zone=$ZONE --worker=all --command "TFDS_DATA_DIR=gs://$GS_BUCKET_NAME/tensorflow_datasets bash big_vision/run_tpu.sh big_vision.train --config big_vision/configs/bit_i1k.py  --workdir gs://$GS_BUCKET_NAME/big_vision/workdir/`date '+%m-%d_%H%M'`"

Sometimes useful gcloud commands

  • Destroy the TPU machines: gcloud alpha compute tpus tpu-vm delete $NAME --zone $ZONE
  • Remove all big_vision-related folders on all hosts: gcloud alpha compute tpus tpu-vm ssh $NAME --zone $ZONE --worker=all --command 'rm -rf ~/big_vision ~/bv_venv'

ViT baseline

We provide a well-tuned ViT-S/16 baseline in the config file named vit_s16_i1k.py. It achieves 76.5% accuracy on ImageNet validation split in 90 epochs of training, being a strong and simple starting point for research on the ViT models.

Please see our arXiv note for more details and if this baseline happens to by useful for your research, consider citing

@article{vit_baseline,
  url = {https://arxiv.org/abs/2205.01580},
  author = {Beyer, Lucas and Zhai, Xiaohua and Kolesnikov, Alexander},
  title = {Better plain ViT baselines for ImageNet-1k},
  journal={arXiv preprint arXiv:2205.01580},
  year = {2022},
}

Project specific commits

The last known commit where the specific project code is expected to work. The core code and configs are expected to work at head.

Project Commit
UViM https://github.com/google-research/big_vision/commit/21bd6ebe253f070f584d8b777ad76f4abce51bef
image_text https://github.com/google-research/big_vision/commit/8921d5141504390a8a4f7b2dacb3b3c042237290
distill https://github.com/google-research/big_vision/commit/2f3f493af048dbfd97555ff6060f31a0e686f17f
GSAM WIP
CLIPPO https://github.com/google-research/big_vision/commit/fd2d3bd2efc9d89ea959f16cd2f58ae8a495cd44

Citing the codebase

If you found this codebase useful for your research, please consider using the following BibTEX to cite it:

@misc{big_vision,
  author = {Beyer, Lucas and Zhai, Xiaohua and Kolesnikov, Alexander},
  title = {Big Vision},
  year = {2022},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/google-research/big_vision}}
}

Disclaimer

This is not an official Google Product.

More Repositories

1

bert

TensorFlow code and pre-trained models for BERT
Python
36,701
star
2

google-research

Google Research
Jupyter Notebook
32,494
star
3

tuning_playbook

A playbook for systematically maximizing the performance of deep learning models.
24,615
star
4

vision_transformer

Jupyter Notebook
9,288
star
5

text-to-text-transfer-transformer

Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"
Python
5,820
star
6

arxiv-latex-cleaner

arXiv LaTeX Cleaner: Easily clean the LaTeX code of your paper to submit to arXiv
Python
4,736
star
7

simclr

SimCLRv2 - Big Self-Supervised Models are Strong Semi-Supervised Learners
Jupyter Notebook
3,841
star
8

multinerf

A Code Release for Mip-NeRF 360, Ref-NeRF, and RawNeRF
Python
3,484
star
9

football

Check out the new game server:
Python
3,230
star
10

albert

ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
Python
3,209
star
11

scenic

Scenic: A Jax Library for Computer Vision Research and Beyond
Python
2,999
star
12

frame-interpolation

FILM: Frame Interpolation for Large Motion, In ECCV 2022.
Python
2,643
star
13

t5x

Python
2,494
star
14

electra

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
Python
2,284
star
15

kubric

A data generation pipeline for creating semi-realistic synthetic multi-object videos with rich annotations such as instance segmentation masks, depth maps, and optical flow.
Jupyter Notebook
2,180
star
16

uda

Unsupervised Data Augmentation (UDA)
Python
2,131
star
17

pegasus

Python
1,578
star
18

language

Shared repository for open-sourced projects from the Google AI Language team.
Python
1,553
star
19

dex-lang

Research language for array processing in the Haskell/ML family
Haskell
1,532
star
20

parti

1,513
star
21

big_transfer

Official repository for the "Big Transfer (BiT): General Visual Representation Learning" paper.
Python
1,491
star
22

torchsde

Differentiable SDE solvers with GPU support and efficient sensitivity analysis.
Python
1,444
star
23

FLAN

Python
1,373
star
24

disentanglement_lib

disentanglement_lib is an open-source library for research on learning disentangled representations.
Python
1,311
star
25

multilingual-t5

Python
1,197
star
26

robotics_transformer

Python
1,192
star
27

planet

Learning Latent Dynamics for Planning from Pixels
Python
1,134
star
28

mixmatch

Python
1,126
star
29

tapas

End-to-end neural table-text understanding models.
Python
1,080
star
30

fixmatch

A simple method to perform semi-supervised learning with limited data.
Python
1,053
star
31

morph-net

Fast & Simple Resource-Constrained Learning of Deep Network Structure
Python
1,011
star
32

deduplicate-text-datasets

Rust
982
star
33

deeplab2

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.
Python
976
star
34

batch-ppo

Efficient Batched Reinforcement Learning in TensorFlow
Python
963
star
35

augmix

AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
Python
951
star
36

maxim

[CVPR 2022 Oral] Official repository for "MAXIM: Multi-Axis MLP for Image Processing". SOTA for denoising, deblurring, deraining, dehazing, and enhancement.
Python
937
star
37

magvit

Official JAX implementation of MAGVIT: Masked Generative Video Transformer
Python
847
star
38

pix2seq

Pix2Seq codebase: multi-tasks with generative modeling (autoregressive and diffusion)
Jupyter Notebook
801
star
39

seed_rl

SEED RL: Scalable and Efficient Deep-RL with Accelerated Central Inference. Implements IMPALA and R2D2 algorithms in TF2 with SEED's architecture.
Python
790
star
40

meta-dataset

A dataset of datasets for learning to learn from few examples
Python
740
star
41

noisystudent

Code for Noisy Student Training. https://arxiv.org/abs/1911.04252
Python
736
star
42

jax3d

Python
718
star
43

recsim

A Configurable Recommender Systems Simulation Platform
Python
717
star
44

lottery-ticket-hypothesis

A reimplementation of "The Lottery Ticket Hypothesis" (Frankle and Carbin) on MNIST.
Python
704
star
45

rliable

[NeurIPS'21 Outstanding Paper] Library for reliable evaluation on RL and ML benchmarks, even with only a handful of seeds.
Jupyter Notebook
689
star
46

circuit_training

Python
685
star
47

long-range-arena

Long Range Arena for Benchmarking Efficient Transformers
Python
681
star
48

federated

A collection of Google research projects related to Federated Learning and Federated Analytics.
Python
646
star
49

nasbench

NASBench: A Neural Architecture Search Dataset and Benchmark
Python
641
star
50

prompt-tuning

Original Implementation of Prompt Tuning from Lester, et al, 2021
Python
617
star
51

bleurt

BLEURT is a metric for Natural Language Generation based on transfer learning.
Python
611
star
52

xtreme

XTREME is a benchmark for the evaluation of the cross-lingual generalization ability of pre-trained multilingual models that covers 40 typologically diverse languages and includes nine tasks.
Python
608
star
53

lasertagger

Python
603
star
54

sound-separation

Python
578
star
55

dreamer

Dream to Control: Learning Behaviors by Latent Imagination
Python
568
star
56

robopianist

[CoRL '23] Dexterous piano playing with deep reinforcement learning.
Python
531
star
57

pix2struct

Python
530
star
58

fast-soft-sort

Fast Differentiable Sorting and Ranking
Python
527
star
59

bigbird

Transformers for Longer Sequences
Python
518
star
60

ravens

Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet. Transporter Nets, CoRL 2020.
Python
517
star
61

sam

Python
512
star
62

vmoe

Jupyter Notebook
507
star
63

batch_rl

Offline Reinforcement Learning (aka Batch Reinforcement Learning) on Atari 2600 games
Python
489
star
64

tensor2robot

Distributed machine learning infrastructure for large-scale robotics research
Python
483
star
65

mint

Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.
Python
465
star
66

byt5

Python
464
star
67

adapter-bert

Python
459
star
68

leaf-audio

LEAF is a learnable alternative to audio features such as mel-filterbanks, that can be initialized as an approximation of mel-filterbanks, and then be trained for the task at hand, while using a very small number of parameters.
Python
446
star
69

robustness_metrics

Jupyter Notebook
442
star
70

maxvit

[ECCV 2022] Official repository for "MaxViT: Multi-Axis Vision Transformer". SOTA foundation models for classification, detection, segmentation, image quality, and generative modeling...
Jupyter Notebook
417
star
71

receptive_field

Compute receptive fields of your favorite convnets
Python
412
star
72

ssl_detection

Semi-supervised learning for object detection
Python
394
star
73

maskgit

Official Jax Implementation of MaskGIT
Jupyter Notebook
376
star
74

l2p

Learning to Prompt (L2P) for Continual Learning @ CVPR22 and DualPrompt: Complementary Prompting for Rehearsal-free Continual Learning @ ECCV22
Python
369
star
75

nerf-from-image

Shape, Pose, and Appearance from a Single Image via Bootstrapped Radiance Field Inversion
Python
366
star
76

computation-thru-dynamics

Understanding computation in artificial and biological recurrent networks through the lens of dynamical systems.
Jupyter Notebook
362
star
77

tf-slim

Python
360
star
78

realworldrl_suite

Real-World RL Benchmark Suite
Python
332
star
79

distilling-step-by-step

Python
325
star
80

rigl

End-to-end training of sparse deep neural networks with little-to-no performance loss.
Python
314
star
81

python-graphs

A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.
Python
312
star
82

weatherbench2

A benchmark for the next generation of data-driven global weather models.
Python
306
star
83

tensorflow_constrained_optimization

Python
301
star
84

task_adaptation

Python
295
star
85

exoplanet-ml

Machine learning models and utilities for exoplanet science.
Python
283
star
86

ibc

Official implementation of Implicit Behavioral Cloning, as described in our CoRL 2021 paper, see more at https://implicitbc.github.io/
Python
282
star
87

self-organising-systems

Jupyter Notebook
279
star
88

tensorflow-coder

Python
275
star
89

retvec

RETVec is an efficient, multilingual, and adversarially-robust text vectorizer.
Jupyter Notebook
269
star
90

vdm

Jupyter Notebook
267
star
91

sparf

This is the official code release for SPARF: Neural Radiance Fields from Sparse and Noisy Poses [CVPR 2023-Highlight]
Python
263
star
92

falken

Falken provides developers with a service that allows them to train AI that can play their games
Python
253
star
93

syn-rep-learn

Learning from synthetic data - code and models
Python
246
star
94

lm-extraction-benchmark

Python
244
star
95

meliad

Python
231
star
96

3d-moments

Code for CVPR 2022 paper '3D Moments from Near-Duplicate Photos'
Python
229
star
97

perceiver-ar

Python
224
star
98

rlds

Jupyter Notebook
216
star
99

ott

Python
215
star
100

language-table

Suite of human-collected datasets and a multi-task continuous control benchmark for open vocabulary visuolinguomotor learning.
Jupyter Notebook
213
star