• Stars
    star
    231
  • Rank 173,434 (Top 4 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 2 years ago
  • Updated 2 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Second Order Optimization and Curvature Estimation with K-FAC in JAX.

KFAC-JAX - Second Order Optimization with Approximate Curvature in JAX

Installation | Quickstart | Documentation | Examples | Citing KFAC-JAX

CI status docs pypi

KFAC-JAX is a library built on top of JAX for second-order optimization of neural networks and for computing scalable curvature approximations. The main goal of the library is to provide researchers with an easy-to-use implementation of the K-FAC optimizer and curvature estimator.

Installation

KFAC-JAX is written in pure Python, but depends on C++ code via JAX.

First, follow these instructions to install JAX with the relevant accelerator support.

Then, install KFAC-JAX using pip:

$ pip install git+https://github.com/deepmind/kfac-jax

Alternatively, you can install via PyPI:

$ pip install -U kfac-jax

Our examples rely on additional libraries, all of which you can install using:

$ pip install -r requirements_examples.txt

Quickstart

Let's take a look at a simple example of training a neural network, defined using Haiku, with the K-FAC optimizer:

import haiku as hk
import jax
import jax.numpy as jnp
import kfac_jax

# Hyper parameters
NUM_CLASSES = 10
L2_REG = 1e-3
NUM_BATCHES = 100


def make_dataset_iterator(batch_size):
  # Dummy dataset, in practice this should be your dataset pipeline
  for _ in range(NUM_BATCHES):
    yield jnp.zeros([batch_size, 100]), jnp.ones([batch_size], dtype="int32") 


def softmax_cross_entropy(logits: jnp.ndarray, targets: jnp.ndarray):
  """Softmax cross entropy loss."""
  # We assume integer labels
  assert logits.ndim == targets.ndim + 1
  
  # Tell KFAC-JAX this model represents a classifier
  # See https://kfac-jax.readthedocs.io/en/latest/overview.html#supported-losses
  kfac_jax.register_softmax_cross_entropy_loss(logits, targets)
  log_p = jax.nn.log_softmax(logits, axis=-1)
  return - jax.vmap(lambda x, y: x[y])(log_p, targets)


def model_fn(x):
  """A Haiku MLP model function - three hidden layer network with tanh."""
  return hk.nets.MLP(
    output_sizes=(50, 50, 50, NUM_CLASSES),
    with_bias=True,
    activation=jax.nn.tanh,
  )(x)


# The Haiku transformed model
hk_model = hk.without_apply_rng(hk.transform(model_fn))


def loss_fn(model_params, model_batch):
  """The loss function to optimize."""
  x, y = model_batch
  logits = hk_model.apply(model_params, x)
  loss = jnp.mean(softmax_cross_entropy(logits, y))
  
  # The optimizer assumes that the function you provide has already added
  # the L2 regularizer to its gradients.
  return loss + L2_REG * kfac_jax.utils.inner_product(params, params) / 2.0


# Create the optimizer
optimizer = kfac_jax.Optimizer(
  value_and_grad_func=jax.value_and_grad(loss_fn),
  l2_reg=L2_REG,
  value_func_has_aux=False,
  value_func_has_state=False,
  value_func_has_rng=False,
  use_adaptive_learning_rate=True,
  use_adaptive_momentum=True,
  use_adaptive_damping=True,
  initial_damping=1.0,
  multi_device=False,
)

input_dataset = make_dataset_iterator(128)
rng = jax.random.PRNGKey(42)
dummy_images, dummy_labels = next(input_dataset)
rng, key = jax.random.split(rng)
params = hk_model.init(key, dummy_images)
rng, key = jax.random.split(rng)
opt_state = optimizer.init(params, key, (dummy_images, dummy_labels))

# Training loop
for i, batch in enumerate(input_dataset):
  rng, key = jax.random.split(rng)
  params, opt_state, stats = optimizer.step(
      params, opt_state, key, batch=batch, global_step_int=i)
  print(i, stats)

Do not stage (jit or pmap) the optimizer

You should not apply jax.jit or jax.pmap to the call to Optimizer.step. This is already done for you automatically by the optimizer class. To control the staging behaviour of the optimizer set the flag multi_device to True for pmap and to False for jit.

Do not stage (jit or pmap) the loss function

The value_and_grad_func argument provided to the optimizer should compute the loss function value and its gradients. Since the optimizer already stages its step function internally, applying jax.jit to value_and_grad_func is NOT recommended. Importantly, applying jax.pmap is WRONG and most likely will lead to errors.

Registering the model loss function

In order for KFAC-JAX to be able to correctly approximate the curvature matrix of the model it needs to know the precise loss function that you want to optimize. This is done via registration with certain functions provided by the library. For instance, in the example above this is done via the call to kfac_jax.register_softmax_cross_entropy_loss, which tells the optimizer that the loss is the standard softmax cross-entropy. If you don't do this you will get an error when you try to call the optimizer. For all supported loss functions please read the documentation.

Important: The optimizer assumes that the loss is averaged over examples in the minibatch. It is crucial that you follow this convention.

Other model function options

Oftentimes, one will want to output some auxiliary statistics or metrics in addition to the loss value. This can already be done in the value_and_grad_func, in which case we follow the same conventions as JAX and expect the output to be (loss, aux), grads. Similarly, the loss function can take an additional function state (batch norm layers usually have this) or an PRNG key (used in stochastic layers). All of these, however, need to be explicitly told to the optimizer via its arguments value_func_has_aux, value_func_has_state and value_func_has_rng.

Verify optimizer registrations

We strongly encourage the user to pay attention to the logging messages produced by the automatic registration system, in order to ensure that it has correctly understood your model. For the example above this looks like this:

==================================================
Graph parameter registrations:
{'mlp/~/linear_0': {'b': 'Auto[dense_with_bias_3]',
                    'w': 'Auto[dense_with_bias_3]'},
 'mlp/~/linear_1': {'b': 'Auto[dense_with_bias_2]',
                    'w': 'Auto[dense_with_bias_2]'},
 'mlp/~/linear_2': {'b': 'Auto[dense_with_bias_1]',
                    'w': 'Auto[dense_with_bias_1]'},
 'mlp/~/linear_3': {'b': 'Auto[dense_with_bias_0]',
                    'w': 'Auto[dense_with_bias_0]'}}
==================================================

As can be seen from this message, the library has correctly detected all parameters of the model to be part of dense layers.

Further reading

For a high level overview of the optimizer, the different curvature approximations, and the supported layers, please see the documentation.

Citing KFAC-JAX

To cite this repository:

@software{kfac-jax2022github,
  author = {Aleksandar Botev and James Martens},
  title = {{KFAC-JAX}},
  url = {http://github.com/deepmind/kfac-jax},
  version = {0.0.2},
  year = {2022},
}

In this bibtex entry, the version number is intended to be from kfac_jax/__init__.py, and the year corresponds to the project's open-source release.

More Repositories

1

deepmind-research

This repository contains implementations and illustrative code to accompany DeepMind publications
Jupyter Notebook
13,132
star
2

alphafold

Open source code for AlphaFold.
Python
12,602
star
3

sonnet

TensorFlow-based neural network library
Python
9,769
star
4

mujoco

Multi-Joint dynamics with Contact. A general purpose physics simulator.
Jupyter Notebook
8,113
star
5

pysc2

StarCraft II Learning Environment
Python
8,001
star
6

lab

A customisable 3D platform for agent-based AI research
C
7,101
star
7

graph_nets

Build Graph Nets in Tensorflow
Python
5,352
star
8

graphcast

Python
4,517
star
9

open_spiel

OpenSpiel is a collection of environments and algorithms for research in general reinforcement learning and search/planning in games.
C++
4,231
star
10

alphageometry

Python
4,079
star
11

learning-to-learn

Learning to Learn in TensorFlow
Python
4,064
star
12

dm_control

Google DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo.
Python
3,793
star
13

acme

A library of reinforcement learning components and agents
Python
3,466
star
14

trfl

TensorFlow Reinforcement Learning
Python
3,136
star
15

dm-haiku

JAX-based neural network library
Python
2,848
star
16

alphatensor

Python
2,670
star
17

dnc

A TensorFlow implementation of the Differentiable Neural Computer.
Python
2,478
star
18

gemma

Open weights LLM from Google DeepMind.
Python
2,421
star
19

mctx

Monte Carlo tree search in JAX
Python
2,313
star
20

code_contests

C++
2,064
star
21

optax

Optax is a gradient processing and optimization library for JAX.
Python
1,670
star
22

kinetics-i3d

Convolutional neural network model for video classification trained on the Kinetics dataset.
Python
1,639
star
23

penzai

A JAX research toolkit for building, editing, and visualizing neural networks.
Python
1,639
star
24

mathematics_dataset

This dataset code generates mathematical question and answer pairs, from a range of question types at roughly school-level difficulty.
Python
1,621
star
25

bsuite

bsuite is a collection of carefully-designed experiments that investigate core capabilities of a reinforcement learning (RL) agent
Python
1,497
star
26

educational

Jupyter Notebook
1,398
star
27

jraph

A Graph Neural Network Library in Jax
Python
1,349
star
28

rc-data

Question answering dataset featured in "Teaching Machines to Read and Comprehend
Python
1,285
star
29

mujoco_menagerie

A collection of high-quality models for the MuJoCo physics engine, curated by Google DeepMind.
Jupyter Notebook
1,278
star
30

tapnet

Tracking Any Point (TAP)
Jupyter Notebook
1,266
star
31

rlax

Python
1,223
star
32

scalable_agent

A TensorFlow implementation of Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures.
Python
981
star
33

android_env

RL research on Android devices.
Python
977
star
34

neural-processes

This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).
Jupyter Notebook
969
star
35

mujoco_mpc

Real-time behaviour synthesis with MuJoCo, using Predictive Control
C++
959
star
36

dramatron

Dramatron uses large language models to generate coherent scripts and screenplays.
Jupyter Notebook
947
star
37

tree

tree is a library for working with nested data structures
Python
925
star
38

materials_discovery

Jupyter Notebook
866
star
39

xmanager

A platform for managing machine learning experiments
Python
815
star
40

open_x_embodiment

Jupyter Notebook
785
star
41

chex

Python
751
star
42

ferminet

An implementation of the Fermionic Neural Network for ab-initio electronic structure calculations
Python
707
star
43

reverb

Reverb is an efficient and easy-to-use data storage and transport system designed for machine learning research
C++
700
star
44

funsearch

Jupyter Notebook
699
star
45

alphadev

Python
688
star
46

pycolab

A highly-customisable gridworld game engine with some batteries included. Make your own gridworld games to test reinforcement learning agents!
Python
659
star
47

concordia

A library for generative social simulation
Python
634
star
48

hanabi-learning-environment

hanabi_learning_environment is a research platform for Hanabi experiments.
Python
614
star
49

recurrentgemma

Open weights language model from Google DeepMind, based on Griffin.
Python
603
star
50

ai-safety-gridworlds

This is a suite of reinforcement learning environments illustrating various safety properties of intelligent agents.
Python
577
star
51

meltingpot

A suite of test scenarios for multi-agent reinforcement learning.
Python
576
star
52

ithaca

Restoring and attributing ancient texts using deep neural networks
Jupyter Notebook
547
star
53

dqn

Lua/Torch implementation of DQN (Nature, 2015)
Lua
546
star
54

uncertain_ground_truth

Dermatology ddx dataset, Jax implementations of Monte Carlo conformal prediction, plausibility regions and statistical annotation aggregation from our recent work on uncertain ground truth (TMLR'23 and ArXiv pre-print).
Python
534
star
55

distrax

Python
527
star
56

long-form-factuality

Benchmarking long-form factuality in large language models. Original code for our paper "Long-form factuality in large language models".
Python
526
star
57

surface-distance

Library to compute surface distance based performance metrics for segmentation tasks.
Python
526
star
58

tracr

Python
496
star
59

alphamissense

Python
494
star
60

dsprites-dataset

Dataset to assess the disentanglement properties of unsupervised learning methods
Jupyter Notebook
476
star
61

narrativeqa

This repository contains the NarrativeQA dataset. It includes the list of documents with Wikipedia summaries, links to full stories, and questions and answers.
Shell
452
star
62

clrs

Jupyter Notebook
444
star
63

lab2d

A customisable 2D platform for agent-based AI research
C++
420
star
64

dqn_zoo

DQN Zoo is a collection of reference implementations of reinforcement learning agents developed at DeepMind based on the Deep Q-Network (DQN) agent.
Python
406
star
65

alphastar

Python
403
star
66

dm_pix

PIX is an image processing library in JAX, for JAX.
Python
386
star
67

opro

official code for "Large Language Models as Optimizers"
Python
383
star
68

mathematics_conjectures

Jupyter Notebook
367
star
69

spriteworld

Spriteworld: a flexible, configurable python-based reinforcement learning environment
Python
367
star
70

torax

TORAX: Tokamak transport simulation in JAX
Python
361
star
71

dm_env

A Python interface for reinforcement learning environments
Python
343
star
72

dm_robotics

Libraries, tools and tasks created and used at DeepMind Robotics.
Python
341
star
73

spiral

We provide a pre-trained model for unconditional 19-step generation of CelebA-HQ images
C++
327
star
74

launchpad

Python
310
star
75

leo

Implementation of Meta-Learning with Latent Embedding Optimization
Python
302
star
76

enn

Python
291
star
77

streetlearn

A C++/Python implementation of the StreetLearn environment based on images from Street View, as well as a TensorFlow implementation of goal-driven navigation agents solving the task published in “Learning to Navigate in Cities Without a Map”, NeurIPS 2018
C++
285
star
78

gqn-datasets

Datasets used to train Generative Query Networks (GQNs) in the ‘Neural Scene Representation and Rendering’ paper.
Python
269
star
79

treescope

An interactive HTML pretty-printer for machine learning research in IPython notebooks.
Python
256
star
80

multi_object_datasets

Multi-object image datasets with ground-truth segmentation masks and generative factors.
Python
254
star
81

AQuA

A algebraic word problem dataset, with multiple choice questions annotated with rationales.
238
star
82

synjax

Python
238
star
83

grid-cells

Implementation of the supervised learning experiments in Vector-based navigation using grid-like representations in artificial agents, as published at https://www.nature.com/articles/s41586-018-0102-6
Python
236
star
84

card2code

A code generation dataset for generating the code that implements Hearthstone and Magic The Gathering card effects.
236
star
85

arnheim

Jupyter Notebook
235
star
86

torch-hdf5

Torch interface to HDF5 library
Lua
234
star
87

dm_memorytasks

A set of 13 diverse machine-learning tasks that require memory to solve.
Python
221
star
88

Temporal-3D-Pose-Kinetics

Exploiting temporal context for 3D human pose estimation in the wild: 3D poses for the Kinetics dataset
Python
218
star
89

dm_alchemy

DeepMind Alchemy task environment: a meta-reinforcement learning benchmark
Python
197
star
90

neural_testbed

Jupyter Notebook
191
star
91

perception_test

Jupyter Notebook
184
star
92

jmp

JMP is a Mixed Precision library for JAX.
Python
183
star
93

neural_networks_chomsky_hierarchy

Neural Networks and the Chomsky Hierarchy
Python
183
star
94

xquad

180
star
95

nanodo

Python
180
star
96

pg19

179
star
97

spectral_inference_networks

Implementation of Spectral Inference Networks, ICLR 2019
Python
165
star
98

barkour_robot

Barkour Robot: Agile Quadruped Robots by Google DeepMind
C++
165
star
99

onetwo

Python
164
star
100

abstract-reasoning-matrices

Progressive matrices dataset, as described in: Measuring abstract reasoning in neural networks (Barrett*, Hill*, Santoro*, Morcos, Lillicrap), ICML2018
162
star