• Stars
    star
    7,904
  • Rank 4,523 (Top 0.1 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created almost 7 years ago
  • Updated 10 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

StarCraft II Learning Environment

PySC2 - StarCraft II Learning Environment

PySC2 is DeepMind's Python component of the StarCraft II Learning Environment (SC2LE). It exposes Blizzard Entertainment's StarCraft II Machine Learning API as a Python RL Environment. This is a collaboration between DeepMind and Blizzard to develop StarCraft II into a rich environment for RL research. PySC2 provides an interface for RL agents to interact with StarCraft 2, getting observations and sending actions.

We have published an accompanying blogpost and paper, which outlines our motivation for using StarCraft II for DeepRL research, and some initial research results using the environment.

About

Disclaimer: This is not an official Google product.

If you use the StarCraft II Machine Learning API and/or PySC2 in your research, please cite the StarCraft II Paper

You can reach us at [email protected].

Quick Start Guide

Get PySC2

PyPI

The easiest way to get PySC2 is to use pip:

$ pip install pysc2

That will install the pysc2 package along with all the required dependencies. virtualenv can help manage your dependencies. You may also need to upgrade pip: pip install --upgrade pip for the pysc2 install to work. If you're running on an older system you may need to install libsdl libraries for the pygame dependency.

Pip will install a few of the binaries to your bin directory. pysc2_play can be used as a shortcut to python -m pysc2.bin.play.

From Source

Alternatively you can install latest PySC2 codebase from git master branch:

$ pip install --upgrade https://github.com/deepmind/pysc2/archive/master.zip

or from a local clone of the git repo:

$ git clone https://github.com/deepmind/pysc2.git
$ pip install --upgrade pysc2/

Get StarCraft II

PySC2 depends on the full StarCraft II game and only works with versions that include the API, which is 3.16.1 and above.

Linux

Follow Blizzard's documentation to get the linux version. By default, PySC2 expects the game to live in ~/StarCraftII/. You can override this path by setting the SC2PATH environment variable or creating your own run_config.

Windows/MacOS

Install of the game as normal from Battle.net. Even the Starter Edition will work. If you used the default install location PySC2 should find the latest binary. If you changed the install location, you might need to set the SC2PATH environment variable with the correct location.

PySC2 should work on MacOS and Windows systems running Python 3.8+, but has only been thoroughly tested on Linux. We welcome suggestions and patches for better compatibility with other systems.

Get the maps

PySC2 has many maps pre-configured, but they need to be downloaded into the SC2 Maps directory before they can be played.

Download the ladder maps and the mini games and extract them to your StarCraftII/Maps/ directory.

Run an agent

You can run an agent to test the environment. The UI shows you the actions of the agent and is helpful for debugging and visualization purposes.

$ python -m pysc2.bin.agent --map Simple64

It runs a random agent by default, but you can specify others if you'd like, including your own.

$ python -m pysc2.bin.agent --map CollectMineralShards --agent pysc2.agents.scripted_agent.CollectMineralShards

You can also run two agents against each other.

$ python -m pysc2.bin.agent --map Simple64 --agent2 pysc2.agents.random_agent.RandomAgent

To specify the agent's race, the opponent's difficulty, and more, you can pass additional flags. Run with --help to see what you can change.

Play the game as a human

There is a human agent interface which is mainly used for debugging, but it can also be used to play the game. The UI is fairly simple and incomplete, but it's enough to understand the basics of the game. Also, it runs on Linux.

$ python -m pysc2.bin.play --map Simple64

In the UI, hit ? for a list of the hotkeys. The most basic ones are: F4 to quit, F5 to restart, F8 to save a replay, and Pgup/Pgdn to control the speed of the game. Otherwise use the mouse for selection and keyboard for commands listed on the left.

The left side is a basic rendering. The right side is the feature layers that the agent receives, with some coloring to make it more useful to us. You can enable or disable RGB or feature layer rendering and their resolutions with command-line flags.

Watch a replay

Running an agent and playing as a human save a replay by default. You can watch that replay by running:

$ python -m pysc2.bin.play --replay <path-to-replay>

This works for any replay as long as the map can be found by the game.

The same controls work as for playing the game, so F4 to exit, pgup/pgdn to control the speed, etc.

You can save a video of the replay with the --video flag.

List the maps

Maps need to be configured before they're known to the environment. You can see the list of known maps by running:

$ python -m pysc2.bin.map_list

Run the tests

If you want to submit a pull request, please make sure the tests pass on both python 2 and 3.

$ python -m pysc2.bin.run_tests

Environment Details

For a full description of the specifics of how the environment is configured, the observations and action spaces work read the environment documentation.

Note that an alternative to this environment is now available which provides an enriched action and observation format using the C++ wrappers developed for AlphaStar. See the converter documentation for more information.

Mini-game maps

The mini-game map files referenced in the paper are stored under pysc2/maps/ but must be installed in $SC2PATH/Maps. Make sure to follow the download instructions above.

Maps are configured in the Python files in pysc2/maps/. The configs can set player and time limits, whether to use the game outcome or curriculum score, and a handful of other things. For more information about the maps, and how to configure your own, read the maps documentation.

Replays

A replay lets you review what happened during a game. You can see the actions and observations that each player made as they played.

Blizzard is releasing a large number of anonymized 1v1 replays played on the ladder. You can find instructions for how to get the replay files on their site. You can also review your own replays.

Replays can be played back to get the observations and actions made during that game. The observations are rendered at the resolution you request, so may differ from what the human actually saw. Similarly the actions specify a point, which could reflect a different pixel on the human's screen, so may not have an exact match in our observations, though they should be fairly similar.

Replays are version dependent, so a 3.16 replay will fail in a 3.16.1 or 3.17 binary.

You can visualize the replays with the full game, or with pysc2.bin.play. Alternatively you can run pysc2.bin.replay_actions to process many replays in parallel.

More Repositories

1

deepmind-research

This repository contains implementations and illustrative code to accompany DeepMind publications
Jupyter Notebook
12,817
star
2

alphafold

Open source code for AlphaFold.
Python
11,700
star
3

sonnet

TensorFlow-based neural network library
Python
9,691
star
4

mujoco

Multi-Joint dynamics with Contact. A general purpose physics simulator.
Jupyter Notebook
7,202
star
5

lab

A customisable 3D platform for agent-based AI research
C
7,012
star
6

graph_nets

Build Graph Nets in Tensorflow
Python
5,325
star
7

graphcast

Python
4,242
star
8

learning-to-learn

Learning to Learn in TensorFlow
Python
4,063
star
9

open_spiel

OpenSpiel is a collection of environments and algorithms for research in general reinforcement learning and search/planning in games.
C++
4,019
star
10

alphageometry

Python
3,580
star
11

dm_control

Google DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo.
Python
3,473
star
12

acme

A library of reinforcement learning components and agents
Python
3,372
star
13

trfl

TensorFlow Reinforcement Learning
Python
3,139
star
14

dm-haiku

JAX-based neural network library
Python
2,697
star
15

alphatensor

Python
2,616
star
16

dnc

A TensorFlow implementation of the Differentiable Neural Computer.
Python
2,478
star
17

mctx

Monte Carlo tree search in JAX
Python
2,209
star
18

gemma

Open weights LLM from Google DeepMind.
Jupyter Notebook
2,061
star
19

code_contests

C++
2,010
star
20

kinetics-i3d

Convolutional neural network model for video classification trained on the Kinetics dataset.
Python
1,639
star
21

mathematics_dataset

This dataset code generates mathematical question and answer pairs, from a range of question types at roughly school-level difficulty.
Python
1,621
star
22

optax

Optax is a gradient processing and optimization library for JAX.
Python
1,492
star
23

bsuite

bsuite is a collection of carefully-designed experiments that investigate core capabilities of a reinforcement learning (RL) agent
Python
1,465
star
24

penzai

A JAX research toolkit for building, editing, and visualizing neural networks.
Python
1,405
star
25

educational

Jupyter Notebook
1,382
star
26

jraph

A Graph Neural Network Library in Jax
Python
1,306
star
27

rc-data

Question answering dataset featured in "Teaching Machines to Read and Comprehend
Python
1,285
star
28

rlax

Python
1,185
star
29

tapnet

Tracking Any Point (TAP)
Python
1,033
star
30

scalable_agent

A TensorFlow implementation of Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures.
Python
972
star
31

neural-processes

This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).
Jupyter Notebook
966
star
32

android_env

RL research on Android devices.
Python
946
star
33

mujoco_menagerie

A collection of high-quality models for the MuJoCo physics engine, curated by Google DeepMind.
Jupyter Notebook
926
star
34

dramatron

Dramatron uses large language models to generate coherent scripts and screenplays.
Jupyter Notebook
904
star
35

tree

tree is a library for working with nested data structures
Python
891
star
36

xmanager

A platform for managing machine learning experiments
Python
796
star
37

mujoco_mpc

Real-time behaviour synthesis with MuJoCo, using Predictive Control
C++
771
star
38

materials_discovery

Python
770
star
39

chex

Python
716
star
40

reverb

Reverb is an efficient and easy-to-use data storage and transport system designed for machine learning research
C++
692
star
41

alphadev

Python
662
star
42

pycolab

A highly-customisable gridworld game engine with some batteries included. Make your own gridworld games to test reinforcement learning agents!
Python
654
star
43

ferminet

An implementation of the Fermionic Neural Network for ab-initio electronic structure calculations
Python
643
star
44

hanabi-learning-environment

hanabi_learning_environment is a research platform for Hanabi experiments.
Python
614
star
45

funsearch

Jupyter Notebook
611
star
46

ai-safety-gridworlds

This is a suite of reinforcement learning environments illustrating various safety properties of intelligent agents.
Python
577
star
47

dqn

Lua/Torch implementation of DQN (Nature, 2015)
Lua
546
star
48

ithaca

Restoring and attributing ancient texts using deep neural networks
Jupyter Notebook
540
star
49

meltingpot

A suite of test scenarios for multi-agent reinforcement learning.
Python
516
star
50

distrax

Python
509
star
51

recurrentgemma

Open weights language model from Google DeepMind, based on Griffin.
Python
505
star
52

surface-distance

Library to compute surface distance based performance metrics for segmentation tasks.
Python
493
star
53

tracr

Python
467
star
54

dsprites-dataset

Dataset to assess the disentanglement properties of unsupervised learning methods
Jupyter Notebook
463
star
55

alphamissense

Python
455
star
56

narrativeqa

This repository contains the NarrativeQA dataset. It includes the list of documents with Wikipedia summaries, links to full stories, and questions and answers.
Shell
432
star
57

lab2d

A customisable 2D platform for agent-based AI research
C++
415
star
58

open_x_embodiment

Jupyter Notebook
409
star
59

dqn_zoo

DQN Zoo is a collection of reference implementations of reinforcement learning agents developed at DeepMind based on the Deep Q-Network (DQN) agent.
Python
406
star
60

clrs

Python
376
star
61

spriteworld

Spriteworld: a flexible, configurable python-based reinforcement learning environment
Python
366
star
62

dm_pix

PIX is an image processing library in JAX, for JAX.
Python
363
star
63

concordia

A library for generative social simulation
Python
351
star
64

mathematics_conjectures

Jupyter Notebook
348
star
65

alphastar

Python
346
star
66

spiral

We provide a pre-trained model for unconditional 19-step generation of CelebA-HQ images
C++
327
star
67

dm_env

A Python interface for reinforcement learning environments
Python
326
star
68

dm_robotics

Libraries, tools and tasks created and used at DeepMind Robotics.
Python
315
star
69

uncertain_ground_truth

Dermatology ddx dataset, Jax implementations of Monte Carlo conformal prediction, plausibility regions and statistical annotation aggregation from our recent work on uncertain ground truth (TMLR'23 and ArXiv pre-print).
Python
315
star
70

long-form-factuality

Benchmarking long-form factuality in large language models. Original code for our paper "Long-form factuality in large language models".
Python
314
star
71

launchpad

Python
305
star
72

leo

Implementation of Meta-Learning with Latent Embedding Optimization
Python
302
star
73

streetlearn

A C++/Python implementation of the StreetLearn environment based on images from Street View, as well as a TensorFlow implementation of goal-driven navigation agents solving the task published in “Learning to Navigate in Cities Without a Map”, NeurIPS 2018
C++
279
star
74

gqn-datasets

Datasets used to train Generative Query Networks (GQNs) in the ‘Neural Scene Representation and Rendering’ paper.
Python
269
star
75

enn

Python
265
star
76

multi_object_datasets

Multi-object image datasets with ground-truth segmentation masks and generative factors.
Python
247
star
77

AQuA

A algebraic word problem dataset, with multiple choice questions annotated with rationales.
238
star
78

card2code

A code generation dataset for generating the code that implements Hearthstone and Magic The Gathering card effects.
236
star
79

grid-cells

Implementation of the supervised learning experiments in Vector-based navigation using grid-like representations in artificial agents, as published at https://www.nature.com/articles/s41586-018-0102-6
Python
236
star
80

arnheim

Jupyter Notebook
235
star
81

synjax

Python
233
star
82

torch-hdf5

Torch interface to HDF5 library
Lua
231
star
83

dm_memorytasks

A set of 13 diverse machine-learning tasks that require memory to solve.
Python
220
star
84

Temporal-3D-Pose-Kinetics

Exploiting temporal context for 3D human pose estimation in the wild: 3D poses for the Kinetics dataset
Python
214
star
85

opro

official code for "Large Language Models as Optimizers"
Python
199
star
86

dm_alchemy

DeepMind Alchemy task environment: a meta-reinforcement learning benchmark
Python
197
star
87

neural_testbed

Jupyter Notebook
187
star
88

kfac-jax

Second Order Optimization and Curvature Estimation with K-FAC in JAX.
Python
187
star
89

pg19

179
star
90

xquad

173
star
91

jmp

JMP is a Mixed Precision library for JAX.
Python
171
star
92

spectral_inference_networks

Implementation of Spectral Inference Networks, ICLR 2019
Python
165
star
93

abstract-reasoning-matrices

Progressive matrices dataset, as described in: Measuring abstract reasoning in neural networks (Barrett*, Hill*, Santoro*, Morcos, Lillicrap), ICML2018
162
star
94

neural_networks_chomsky_hierarchy

Neural Networks and the Chomsky Hierarchy
Python
162
star
95

xitari

This is the 0.4 release of the Arcade Learning Environment (ALE), a platform designed for AI research. ALE is based on Stella, an Atari 2600 VCS emulator.
C++
159
star
96

tensor_annotations

Annotating tensor shapes using Python types
Python
158
star
97

symplectic-gradient-adjustment

A colab that implements the Symplectic Gradient Adjustment optimizer from "The mechanics of n-player differentiable games"
Jupyter Notebook
150
star
98

mc_gradients

Jupyter Notebook
149
star
99

interval-bound-propagation

This repository contains a simple implementation of Interval Bound Propagation (IBP) using TensorFlow: https://arxiv.org/abs/1810.12715
Python
148
star
100

s6

C++
146
star