• Stars
    star
    183
  • Rank 210,154 (Top 5 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 3 years ago
  • Updated 6 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

JMP is a Mixed Precision library for JAX.

Mixed precision training in JAX

Test status PyPI version

Installation | Examples | Policies | Loss scaling | Citing JMP | References

Mixed precision training [0] is a technique that mixes the use of full and half precision floating point numbers during training to reduce the memory bandwidth requirements and improve the computational efficiency of a given model.

This library implements support for mixed precision training in JAX by providing two key abstractions (mixed precision "policies" and loss scaling). Neural network libraries (such as Haiku) can integrate with jmp and provide "Automatic Mixed Precision (AMP)" support (automating or simplifying applying policies to modules).

All code examples below assume the following:

import jax
import jax.numpy as jnp
import jmp

half = jnp.float16  # On TPU this should be jnp.bfloat16.
full = jnp.float32

Installation

JMP is written in pure Python, but depends on C++ code via JAX and NumPy.

Because JAX installation is different depending on your CUDA version, JMP does not list JAX as a dependency in requirements.txt.

First, follow these instructions to install JAX with the relevant accelerator support.

Then, install JMP using pip:

$ pip install git+https://github.com/deepmind/jmp

Examples

You can find a fully worked JMP example in Haiku which shows how to use mixed f32/f16 precision to halve training time on GPU and mixed f32/bf16 to reduce training time on TPU by a third.

Policies

A mixed precision policy encapsulates the configuration in a mixed precision experiment.

# Our policy specifies that we will store parameters in full precision but will
# compute and return output in half precision.
my_policy = jmp.Policy(compute_dtype=half,
                       param_dtype=full,
                       output_dtype=half)

The policy object can be used to cast pytrees:

def layer(params, x):
  params, x = my_policy.cast_to_compute((params, x))
  w, b = params
  y = x @ w + b
  return my_policy.cast_to_output(y)

params = {"w": jnp.ones([], dtype=my_policy.param_dtype)}
y = layer(params, x)
assert y.dtype == half

You can replace the output type of a given policy:

my_policy = my_policy.with_output_dtype(full)

You can also define a policy via a string, which may be useful for specifying a policy as a command-line argument or as a hyperparameter to your experiment:

my_policy = jmp.get_policy("params=float32,compute=float16,output=float32")
float16 = jmp.get_policy("float16")  # Everything in f16.
half = jmp.get_policy("half")        # Everything in half (f16 or bf16).

Loss scaling

When training with reduced precision, consider whether gradients will need to be shifted into the representable range of the format that you are using. This is particularly important when training with float16 and less important for bfloat16. See the NVIDIA mixed precision user guide [1] for more details.

The easiest way to shift gradients is with loss scaling, which scales your loss and gradients by S and 1/S respectively.

def my_loss_fn(params, loss_scale: jmp.LossScale, ...):
  loss = ...
  # You should apply regularization etc before scaling.
  loss = loss_scale.scale(loss)
  return loss

def train_step(params, loss_scale: jmp.LossScale, ...):
  grads = jax.grad(my_loss_fn)(...)
  grads = loss_scale.unscale(grads)
  # You should put gradient clipping etc after unscaling.
  params = apply_optimizer(params, grads)
  return params

loss_scale = jmp.StaticLossScale(2 ** 15)
for _ in range(num_steps):
  params = train_step(params, loss_scale, ...)

The appropriate value for S depends on your model, loss, batch size and potentially other factors. You can determine this with trial and error. As a rule of thumb you want the largest value of S that does not introduce overflow during backprop. NVIDIA [1] recommend computing statistics about the gradients of your model (in full precision) and picking S such that its product with the maximum norm of your gradients is below 65,504.

We provide a dynamic loss scale, which adjusts the loss scale periodically during training to find the largest value for S that produces finite gradients. This is more convenient and robust compared with picking a static loss scale, but has a small performance impact (between 1 and 5%).

def my_loss_fn(params, loss_scale: jmp.LossScale, ...):
  loss = ...
  # You should apply regularization etc before scaling.
  loss = loss_scale.scale(loss)
  return loss

def train_step(params, loss_scale: jmp.LossScale, ...):
  grads = jax.grad(my_loss_fn)(...)
  grads = loss_scale.unscale(grads)
  # You should put gradient clipping etc after unscaling.

  # You definitely want to skip non-finite updates with the dynamic loss scale,
  # but you might also want to consider skipping them when using a static loss
  # scale if you experience NaN's when training.
  skip_nonfinite_updates = isinstance(loss_scale, jmp.DynamicLossScale)

  if skip_nonfinite_updates:
    grads_finite = jmp.all_finite(grads)
    # Adjust our loss scale depending on whether gradients were finite. The
    # loss scale will be periodically increased if gradients remain finite and
    # will be decreased if not.
    loss_scale = loss_scale.adjust(grads_finite)
    # Only apply our optimizer if grads are finite, if any element of any
    # gradient is non-finite the whole update is discarded.
    params = jmp.select_tree(grads_finite, apply_optimizer(params, grads), params)
  else:
    # With static or no loss scaling just apply our optimizer.
    params = apply_optimizer(params, grads)

  # Since our loss scale is dynamic we need to return the new value from
  # each step. All loss scales are `PyTree`s.
  return params, loss_scale

loss_scale = jmp.DynamicLossScale(jmp.half_dtype()(2 ** 15))
for _ in range(num_steps):
  params, loss_scale = train_step(params, loss_scale, ...)

In general using a static loss scale should offer the best speed, but we have optimized dynamic loss scaling to make it competitive. We recommend you start with dynamic loss scaling and move to static loss scaling if performance is an issue.

We finally offer a no-op loss scale which you can use as a drop in replacement. It does nothing (apart from implement the jmp.LossScale API):

loss_scale = jmp.NoOpLossScale()
assert loss is loss_scale.scale(loss)
assert grads is loss_scale.unscale(grads)
assert loss_scale is loss_scale.adjust(grads_finite)
assert loss_scale.loss_scale == 1

Citing JMP

This repository is part of the DeepMind JAX Ecosystem, to cite JMP please use the DeepMind JAX Ecosystem citation.

References

[0] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, Hao Wu: "Mixed Precision Training", 2017; arXiv:1710.03740 https://arxiv.org/abs/1710.03740.

[1] "Training With Mixed Precision :: NVIDIA Deep Learning Performance Documentation". Docs.Nvidia.Com, 2020, https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/.

More Repositories

1

deepmind-research

This repository contains implementations and illustrative code to accompany DeepMind publications
Jupyter Notebook
13,132
star
2

alphafold

Open source code for AlphaFold.
Python
12,602
star
3

sonnet

TensorFlow-based neural network library
Python
9,769
star
4

mujoco

Multi-Joint dynamics with Contact. A general purpose physics simulator.
Jupyter Notebook
8,113
star
5

pysc2

StarCraft II Learning Environment
Python
8,001
star
6

lab

A customisable 3D platform for agent-based AI research
C
7,101
star
7

graph_nets

Build Graph Nets in Tensorflow
Python
5,352
star
8

graphcast

Python
4,517
star
9

open_spiel

OpenSpiel is a collection of environments and algorithms for research in general reinforcement learning and search/planning in games.
C++
4,231
star
10

alphageometry

Python
4,079
star
11

learning-to-learn

Learning to Learn in TensorFlow
Python
4,064
star
12

dm_control

Google DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo.
Python
3,793
star
13

acme

A library of reinforcement learning components and agents
Python
3,466
star
14

trfl

TensorFlow Reinforcement Learning
Python
3,136
star
15

dm-haiku

JAX-based neural network library
Python
2,848
star
16

alphatensor

Python
2,670
star
17

dnc

A TensorFlow implementation of the Differentiable Neural Computer.
Python
2,478
star
18

gemma

Open weights LLM from Google DeepMind.
Python
2,421
star
19

mctx

Monte Carlo tree search in JAX
Python
2,313
star
20

code_contests

C++
2,064
star
21

optax

Optax is a gradient processing and optimization library for JAX.
Python
1,670
star
22

kinetics-i3d

Convolutional neural network model for video classification trained on the Kinetics dataset.
Python
1,639
star
23

penzai

A JAX research toolkit for building, editing, and visualizing neural networks.
Python
1,639
star
24

mathematics_dataset

This dataset code generates mathematical question and answer pairs, from a range of question types at roughly school-level difficulty.
Python
1,621
star
25

bsuite

bsuite is a collection of carefully-designed experiments that investigate core capabilities of a reinforcement learning (RL) agent
Python
1,497
star
26

educational

Jupyter Notebook
1,398
star
27

jraph

A Graph Neural Network Library in Jax
Python
1,349
star
28

rc-data

Question answering dataset featured in "Teaching Machines to Read and Comprehend
Python
1,285
star
29

mujoco_menagerie

A collection of high-quality models for the MuJoCo physics engine, curated by Google DeepMind.
Jupyter Notebook
1,278
star
30

tapnet

Tracking Any Point (TAP)
Jupyter Notebook
1,266
star
31

rlax

Python
1,223
star
32

scalable_agent

A TensorFlow implementation of Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures.
Python
981
star
33

android_env

RL research on Android devices.
Python
977
star
34

neural-processes

This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).
Jupyter Notebook
969
star
35

mujoco_mpc

Real-time behaviour synthesis with MuJoCo, using Predictive Control
C++
959
star
36

dramatron

Dramatron uses large language models to generate coherent scripts and screenplays.
Jupyter Notebook
947
star
37

tree

tree is a library for working with nested data structures
Python
925
star
38

materials_discovery

Jupyter Notebook
866
star
39

xmanager

A platform for managing machine learning experiments
Python
815
star
40

open_x_embodiment

Jupyter Notebook
785
star
41

chex

Python
751
star
42

ferminet

An implementation of the Fermionic Neural Network for ab-initio electronic structure calculations
Python
707
star
43

reverb

Reverb is an efficient and easy-to-use data storage and transport system designed for machine learning research
C++
700
star
44

funsearch

Jupyter Notebook
699
star
45

alphadev

Python
688
star
46

pycolab

A highly-customisable gridworld game engine with some batteries included. Make your own gridworld games to test reinforcement learning agents!
Python
659
star
47

concordia

A library for generative social simulation
Python
634
star
48

hanabi-learning-environment

hanabi_learning_environment is a research platform for Hanabi experiments.
Python
614
star
49

recurrentgemma

Open weights language model from Google DeepMind, based on Griffin.
Python
603
star
50

ai-safety-gridworlds

This is a suite of reinforcement learning environments illustrating various safety properties of intelligent agents.
Python
577
star
51

meltingpot

A suite of test scenarios for multi-agent reinforcement learning.
Python
576
star
52

ithaca

Restoring and attributing ancient texts using deep neural networks
Jupyter Notebook
547
star
53

dqn

Lua/Torch implementation of DQN (Nature, 2015)
Lua
546
star
54

uncertain_ground_truth

Dermatology ddx dataset, Jax implementations of Monte Carlo conformal prediction, plausibility regions and statistical annotation aggregation from our recent work on uncertain ground truth (TMLR'23 and ArXiv pre-print).
Python
534
star
55

distrax

Python
527
star
56

long-form-factuality

Benchmarking long-form factuality in large language models. Original code for our paper "Long-form factuality in large language models".
Python
526
star
57

surface-distance

Library to compute surface distance based performance metrics for segmentation tasks.
Python
526
star
58

tracr

Python
496
star
59

alphamissense

Python
494
star
60

dsprites-dataset

Dataset to assess the disentanglement properties of unsupervised learning methods
Jupyter Notebook
476
star
61

narrativeqa

This repository contains the NarrativeQA dataset. It includes the list of documents with Wikipedia summaries, links to full stories, and questions and answers.
Shell
452
star
62

clrs

Jupyter Notebook
444
star
63

lab2d

A customisable 2D platform for agent-based AI research
C++
420
star
64

dqn_zoo

DQN Zoo is a collection of reference implementations of reinforcement learning agents developed at DeepMind based on the Deep Q-Network (DQN) agent.
Python
406
star
65

alphastar

Python
403
star
66

dm_pix

PIX is an image processing library in JAX, for JAX.
Python
386
star
67

opro

official code for "Large Language Models as Optimizers"
Python
383
star
68

mathematics_conjectures

Jupyter Notebook
367
star
69

spriteworld

Spriteworld: a flexible, configurable python-based reinforcement learning environment
Python
367
star
70

torax

TORAX: Tokamak transport simulation in JAX
Python
361
star
71

dm_env

A Python interface for reinforcement learning environments
Python
343
star
72

dm_robotics

Libraries, tools and tasks created and used at DeepMind Robotics.
Python
341
star
73

spiral

We provide a pre-trained model for unconditional 19-step generation of CelebA-HQ images
C++
327
star
74

launchpad

Python
310
star
75

leo

Implementation of Meta-Learning with Latent Embedding Optimization
Python
302
star
76

enn

Python
291
star
77

streetlearn

A C++/Python implementation of the StreetLearn environment based on images from Street View, as well as a TensorFlow implementation of goal-driven navigation agents solving the task published in “Learning to Navigate in Cities Without a Map”, NeurIPS 2018
C++
285
star
78

gqn-datasets

Datasets used to train Generative Query Networks (GQNs) in the ‘Neural Scene Representation and Rendering’ paper.
Python
269
star
79

treescope

An interactive HTML pretty-printer for machine learning research in IPython notebooks.
Python
256
star
80

multi_object_datasets

Multi-object image datasets with ground-truth segmentation masks and generative factors.
Python
254
star
81

AQuA

A algebraic word problem dataset, with multiple choice questions annotated with rationales.
238
star
82

synjax

Python
238
star
83

grid-cells

Implementation of the supervised learning experiments in Vector-based navigation using grid-like representations in artificial agents, as published at https://www.nature.com/articles/s41586-018-0102-6
Python
236
star
84

card2code

A code generation dataset for generating the code that implements Hearthstone and Magic The Gathering card effects.
236
star
85

arnheim

Jupyter Notebook
235
star
86

torch-hdf5

Torch interface to HDF5 library
Lua
234
star
87

kfac-jax

Second Order Optimization and Curvature Estimation with K-FAC in JAX.
Python
231
star
88

dm_memorytasks

A set of 13 diverse machine-learning tasks that require memory to solve.
Python
221
star
89

Temporal-3D-Pose-Kinetics

Exploiting temporal context for 3D human pose estimation in the wild: 3D poses for the Kinetics dataset
Python
218
star
90

dm_alchemy

DeepMind Alchemy task environment: a meta-reinforcement learning benchmark
Python
197
star
91

neural_testbed

Jupyter Notebook
191
star
92

perception_test

Jupyter Notebook
184
star
93

neural_networks_chomsky_hierarchy

Neural Networks and the Chomsky Hierarchy
Python
183
star
94

xquad

180
star
95

nanodo

Python
180
star
96

pg19

179
star
97

spectral_inference_networks

Implementation of Spectral Inference Networks, ICLR 2019
Python
165
star
98

barkour_robot

Barkour Robot: Agile Quadruped Robots by Google DeepMind
C++
165
star
99

onetwo

Python
164
star
100

abstract-reasoning-matrices

Progressive matrices dataset, as described in: Measuring abstract reasoning in neural networks (Barrett*, Hill*, Santoro*, Morcos, Lillicrap), ICML2018
162
star