• Stars
    star
    815
  • Rank 55,957 (Top 2 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 3 years ago
  • Updated 4 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A platform for managing machine learning experiments

XManager: A framework for managing machine learning experiments 🧑‍🔬

XManager is a platform for packaging, running and keeping track of machine learning experiments. It currently enables one to launch experiments locally or on Google Cloud Platform (GCP). Interaction with experiments is done via XManager's APIs through Python launch scripts. Check out these slides for a more detailed introduction.

To get started, install XManager, its prerequisites if needed and follow the tutorial or a codelab (Colab Notebook / Jupyter Notebook) to create and run a launch script.

See CONTRIBUTING.md for guidance on contributions.

Install XManager

pip install git+https://github.com/deepmind/xmanager.git

Or, alternatively, a PyPI project is also available.

pip install xmanager

On Debian-based systems, XManager and all its dependencies can be installed and set up by cloning this repository and then running

cd xmanager/setup_scripts && chmod +x setup_all.sh && . ./setup_all.sh

Prerequisites

The codebase assumes Python 3.9+.

Install Docker (optional)

If you use xmanager.xm.PythonDocker to run XManager experiments, you need to install Docker.

  1. Follow the steps to install Docker.

  2. And if you are a Linux user, follow the steps to enable sudoless Docker.

Install Bazel (optional)

If you use xmanager.xm_local.BazelContainer or xmanager.xm_local.BazelBinary to run XManager experiments, you need to install Bazel.

  1. Follow the steps to install Bazel.

Create a GCP project (optional)

If you use xm_local.Vertex (Vertex AI) to run XManager experiments, you need to have a GCP project in order to be able to access Vertex AI to run jobs.

  1. Create a GCP project.

  2. Install gcloud.

  3. Associate your Google Account (Gmail account) with your GCP project by running:

    export GCP_PROJECT=<GCP PROJECT ID>
    gcloud auth login
    gcloud auth application-default login
    gcloud config set project $GCP_PROJECT
  4. Set up gcloud to work with Docker by running:

    gcloud auth configure-docker
  5. Enable Google Cloud Platform APIs.

  6. Create a staging bucket in us-central1 if you do not already have one. This bucket should be used to save experiment artifacts like TensorFlow log files, which can be read by TensorBoard. This bucket may also be used to stage files to build your Docker image if you build your images remotely.

    export GOOGLE_CLOUD_BUCKET_NAME=<GOOGLE_CLOUD_BUCKET_NAME>
    gsutil mb -l us-central1 gs://$GOOGLE_CLOUD_BUCKET_NAME

    Add GOOGLE_CLOUD_BUCKET_NAME to the environment variables or your .bashrc:

    export GOOGLE_CLOUD_BUCKET_NAME=<GOOGLE_CLOUD_BUCKET_NAME>

Writing XManager launch scripts

A snippet for the impatient 🙂
# Contains core primitives and APIs.
from xmanager import xm
# Implementation of those core concepts for what we call 'the local backend',
# which means all executables are sent for execution from this machine,
# independently of whether they are actually executed on our machine or on GCP.
from xmanager import xm_local
#
# Creates an experiment context and saves its metadata to the database, which we
# can reuse later via `xm_local.list_experiments`, for example. Note that
# `experiment` has tracking properties such as `id`.
with xm_local.create_experiment(experiment_title='cifar10') as experiment:
  # Packaging prepares a given *executable spec* for running with a concrete
  # *executor spec*: depending on the combination, that may involve building
  # steps and / or copying the results somewhere. For example, a
  # `xm.python_container` designed to run on `Kubernetes` will be built via
  #`docker build`, and the new image will be uploaded to the container registry.
  # But for our simple case where we have a prebuilt Linux binary designed to
  # run locally only some validations are performed -- for example, that the
  # file exists.
  #
  # `executable` contains all the necessary information needed to launch the
  # packaged blob via `.add`, see below.
  [executable] = experiment.package([
      xm.binary(
          # What we are going to run.
          path='/home/user/project/a.out',
          # Where we are going to run it.
          executor_spec=xm_local.Local.Spec(),
      )
  ])
  #
  # Let's find out which `batch_size` is best -- presumably our jobs write the
  # results somewhere.
  for batch_size in [64, 1024]:
    # `add` creates a new *experiment unit*, which is usually a collection of
    # semantically united jobs, and sends them for execution. To pass an actual
    # collection one may want to use `JobGroup`s (more about it later in the
    # documentation), but for our purposes we are going to pass just one job.
    experiment.add(xm.Job(
        # The `a.out` we packaged earlier.
        executable=executable,
        # We are using the default settings here, but executors have plenty of
        # arguments available to control execution.
        executor=xm_local.Local(),
        # Time to pass the batch size as a command-line argument!
        args={'batch_size': batch_size},
        # We can also pass environment variables.
        env_vars={'HEAPPROFILE': '/tmp/a_out.hprof'},
    ))
  #
  # The context will wait for locally run things (but not for remote things such
  # as jobs sent to GCP, although they can be explicitly awaited via
  # `wait_for_completion`).

The basic structure of an XManager launch script can be summarized by these steps:

  1. Create an experiment and acquire its context.

    from xmanager import xm
    from xmanager import xm_local
    
    with xm_local.create_experiment(experiment_title='cifar10') as experiment:
  2. Define specifications of executables you want to run.

    spec = xm.PythonContainer(
        path='/path/to/python/folder',
        entrypoint=xm.ModuleName('cifar10'),
    )
  3. Package your executables.

    [executable] = experiment.package([
      xm.Packageable(
        executable_spec=spec,
        executor_spec=xm_local.Vertex.Spec(),
      ),
    ])
  4. Define your hyperparameters.

    import itertools
    
    batch_sizes = [64, 1024]
    learning_rates = [0.1, 0.001]
    trials = list(
      dict([('batch_size', bs), ('learning_rate', lr)])
      for (bs, lr) in itertools.product(batch_sizes, learning_rates)
    )
  5. Define resource requirements for each job.

    requirements = xm.JobRequirements(T4=1)
  6. For each trial, add a job / job groups to launch them.

    for hyperparameters in trials:
      experiment.add(xm.Job(
          executable=executable,
          executor=xm_local.Vertex(requirements=requirements),
          args=hyperparameters,
        ))

Now we should be ready to run the launch script.

To learn more about different executables and executors follow 'Components'.

Run XManager

xmanager launch ./xmanager/examples/cifar10_tensorflow/launcher.py

In order to run multi-job experiments, the --xm_wrap_late_bindings flag might be required:

xmanager launch ./xmanager/examples/cifar10_tensorflow/launcher.py -- --xm_wrap_late_bindings

Components

Executable specifications

XManager executable specifications define what should be packaged in the form of binaries, source files, and other input dependencies required for job execution. Executable specifications are reusable and generally platform-independent.

See executable_specs.md for details on each executable specification.

Name Description
xmanager.xm.Container A pre-built .tar image.
xmanager.xm.BazelContainer A Bazel target producing a .tar image.
xmanager.xm.Binary A pre-built binary.
xmanager.xm.BazelBinary A Bazel target producing a self-contained binary.
xmanager.xm.PythonContainer A directory with Python modules to be packaged as a Docker container.

Executors

XManager executors define a platform where the job runs and resource requirements for the job.

Each executor also has a specification which describes how an executable specification should be prepared and packaged.

See executors.md for details on each executor.

Name Description
xmanager.xm_local.Local Runs a binary or a container locally.
xmanager.xm_local.Vertex Runs a container on Vertex AI.
xmanager.xm_local.Kubernetes Runs a container on Kubernetes.

Job / JobGroup

A Job represents a single executable on a particular executor, while a JobGroup unites a group of Jobs providing a gang scheduling concept: Jobs inside them are scheduled / descheduled simultaneously. Same Job and JobGroup instances can be added multiple times.

Job

A Job accepts an executable and an executor along with hyperparameters which can either be command-line arguments or environment variables.

Command-line arguments can be passed in list form, [arg1, arg2, arg3]:

binary arg1 arg2 arg3

They can also be passed in dictionary form, {key1: value1, key2: value2}:

binary --key1=value1 --key2=value2

Environment variables are always passed in Dict[str, str] form:

export KEY=VALUE

Jobs are defined like this:

[executable] = xm.Package(...)

executor = xm_local.Vertex(...)

xm.Job(
    executable=executable,
    executor=executor,
    args={
        'batch_size': 64,
    },
    env_vars={
        'NCCL_DEBUG': 'INFO',
    },
)

JobGroup

A JobGroup accepts jobs in a kwargs form. The keyword can be any valid Python identifier. For example, you can call your jobs 'agent' and 'observer'.

agent_job = xm.Job(...)
observer_job = xm.Job(...)

xm.JobGroup(agent=agent_job, observer=observer_job)

More Repositories

1

deepmind-research

This repository contains implementations and illustrative code to accompany DeepMind publications
Jupyter Notebook
13,132
star
2

alphafold

Open source code for AlphaFold.
Python
12,602
star
3

sonnet

TensorFlow-based neural network library
Python
9,769
star
4

mujoco

Multi-Joint dynamics with Contact. A general purpose physics simulator.
Jupyter Notebook
8,113
star
5

pysc2

StarCraft II Learning Environment
Python
8,001
star
6

lab

A customisable 3D platform for agent-based AI research
C
7,101
star
7

graph_nets

Build Graph Nets in Tensorflow
Python
5,352
star
8

graphcast

Python
4,517
star
9

open_spiel

OpenSpiel is a collection of environments and algorithms for research in general reinforcement learning and search/planning in games.
C++
4,231
star
10

alphageometry

Python
4,079
star
11

learning-to-learn

Learning to Learn in TensorFlow
Python
4,064
star
12

dm_control

Google DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo.
Python
3,793
star
13

acme

A library of reinforcement learning components and agents
Python
3,466
star
14

trfl

TensorFlow Reinforcement Learning
Python
3,136
star
15

dm-haiku

JAX-based neural network library
Python
2,848
star
16

alphatensor

Python
2,670
star
17

dnc

A TensorFlow implementation of the Differentiable Neural Computer.
Python
2,478
star
18

gemma

Open weights LLM from Google DeepMind.
Python
2,421
star
19

mctx

Monte Carlo tree search in JAX
Python
2,313
star
20

code_contests

C++
2,064
star
21

optax

Optax is a gradient processing and optimization library for JAX.
Python
1,670
star
22

kinetics-i3d

Convolutional neural network model for video classification trained on the Kinetics dataset.
Python
1,639
star
23

penzai

A JAX research toolkit for building, editing, and visualizing neural networks.
Python
1,639
star
24

mathematics_dataset

This dataset code generates mathematical question and answer pairs, from a range of question types at roughly school-level difficulty.
Python
1,621
star
25

bsuite

bsuite is a collection of carefully-designed experiments that investigate core capabilities of a reinforcement learning (RL) agent
Python
1,497
star
26

educational

Jupyter Notebook
1,398
star
27

jraph

A Graph Neural Network Library in Jax
Python
1,349
star
28

rc-data

Question answering dataset featured in "Teaching Machines to Read and Comprehend
Python
1,285
star
29

mujoco_menagerie

A collection of high-quality models for the MuJoCo physics engine, curated by Google DeepMind.
Jupyter Notebook
1,278
star
30

tapnet

Tracking Any Point (TAP)
Jupyter Notebook
1,266
star
31

rlax

Python
1,223
star
32

scalable_agent

A TensorFlow implementation of Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures.
Python
981
star
33

android_env

RL research on Android devices.
Python
977
star
34

neural-processes

This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).
Jupyter Notebook
969
star
35

mujoco_mpc

Real-time behaviour synthesis with MuJoCo, using Predictive Control
C++
959
star
36

dramatron

Dramatron uses large language models to generate coherent scripts and screenplays.
Jupyter Notebook
947
star
37

tree

tree is a library for working with nested data structures
Python
925
star
38

materials_discovery

Jupyter Notebook
866
star
39

open_x_embodiment

Jupyter Notebook
785
star
40

chex

Python
751
star
41

ferminet

An implementation of the Fermionic Neural Network for ab-initio electronic structure calculations
Python
707
star
42

reverb

Reverb is an efficient and easy-to-use data storage and transport system designed for machine learning research
C++
700
star
43

funsearch

Jupyter Notebook
699
star
44

alphadev

Python
688
star
45

pycolab

A highly-customisable gridworld game engine with some batteries included. Make your own gridworld games to test reinforcement learning agents!
Python
659
star
46

concordia

A library for generative social simulation
Python
634
star
47

hanabi-learning-environment

hanabi_learning_environment is a research platform for Hanabi experiments.
Python
614
star
48

recurrentgemma

Open weights language model from Google DeepMind, based on Griffin.
Python
603
star
49

ai-safety-gridworlds

This is a suite of reinforcement learning environments illustrating various safety properties of intelligent agents.
Python
577
star
50

meltingpot

A suite of test scenarios for multi-agent reinforcement learning.
Python
576
star
51

ithaca

Restoring and attributing ancient texts using deep neural networks
Jupyter Notebook
547
star
52

dqn

Lua/Torch implementation of DQN (Nature, 2015)
Lua
546
star
53

uncertain_ground_truth

Dermatology ddx dataset, Jax implementations of Monte Carlo conformal prediction, plausibility regions and statistical annotation aggregation from our recent work on uncertain ground truth (TMLR'23 and ArXiv pre-print).
Python
534
star
54

distrax

Python
527
star
55

long-form-factuality

Benchmarking long-form factuality in large language models. Original code for our paper "Long-form factuality in large language models".
Python
526
star
56

surface-distance

Library to compute surface distance based performance metrics for segmentation tasks.
Python
526
star
57

tracr

Python
496
star
58

alphamissense

Python
494
star
59

dsprites-dataset

Dataset to assess the disentanglement properties of unsupervised learning methods
Jupyter Notebook
476
star
60

narrativeqa

This repository contains the NarrativeQA dataset. It includes the list of documents with Wikipedia summaries, links to full stories, and questions and answers.
Shell
452
star
61

clrs

Jupyter Notebook
444
star
62

lab2d

A customisable 2D platform for agent-based AI research
C++
420
star
63

dqn_zoo

DQN Zoo is a collection of reference implementations of reinforcement learning agents developed at DeepMind based on the Deep Q-Network (DQN) agent.
Python
406
star
64

alphastar

Python
403
star
65

dm_pix

PIX is an image processing library in JAX, for JAX.
Python
386
star
66

opro

official code for "Large Language Models as Optimizers"
Python
383
star
67

mathematics_conjectures

Jupyter Notebook
367
star
68

spriteworld

Spriteworld: a flexible, configurable python-based reinforcement learning environment
Python
367
star
69

torax

TORAX: Tokamak transport simulation in JAX
Python
361
star
70

dm_env

A Python interface for reinforcement learning environments
Python
343
star
71

dm_robotics

Libraries, tools and tasks created and used at DeepMind Robotics.
Python
341
star
72

spiral

We provide a pre-trained model for unconditional 19-step generation of CelebA-HQ images
C++
327
star
73

launchpad

Python
310
star
74

leo

Implementation of Meta-Learning with Latent Embedding Optimization
Python
302
star
75

enn

Python
291
star
76

streetlearn

A C++/Python implementation of the StreetLearn environment based on images from Street View, as well as a TensorFlow implementation of goal-driven navigation agents solving the task published in “Learning to Navigate in Cities Without a Map”, NeurIPS 2018
C++
285
star
77

gqn-datasets

Datasets used to train Generative Query Networks (GQNs) in the ‘Neural Scene Representation and Rendering’ paper.
Python
269
star
78

treescope

An interactive HTML pretty-printer for machine learning research in IPython notebooks.
Python
256
star
79

multi_object_datasets

Multi-object image datasets with ground-truth segmentation masks and generative factors.
Python
254
star
80

AQuA

A algebraic word problem dataset, with multiple choice questions annotated with rationales.
238
star
81

synjax

Python
238
star
82

grid-cells

Implementation of the supervised learning experiments in Vector-based navigation using grid-like representations in artificial agents, as published at https://www.nature.com/articles/s41586-018-0102-6
Python
236
star
83

card2code

A code generation dataset for generating the code that implements Hearthstone and Magic The Gathering card effects.
236
star
84

arnheim

Jupyter Notebook
235
star
85

torch-hdf5

Torch interface to HDF5 library
Lua
234
star
86

kfac-jax

Second Order Optimization and Curvature Estimation with K-FAC in JAX.
Python
231
star
87

dm_memorytasks

A set of 13 diverse machine-learning tasks that require memory to solve.
Python
221
star
88

Temporal-3D-Pose-Kinetics

Exploiting temporal context for 3D human pose estimation in the wild: 3D poses for the Kinetics dataset
Python
218
star
89

dm_alchemy

DeepMind Alchemy task environment: a meta-reinforcement learning benchmark
Python
197
star
90

neural_testbed

Jupyter Notebook
191
star
91

perception_test

Jupyter Notebook
184
star
92

jmp

JMP is a Mixed Precision library for JAX.
Python
183
star
93

neural_networks_chomsky_hierarchy

Neural Networks and the Chomsky Hierarchy
Python
183
star
94

xquad

180
star
95

nanodo

Python
180
star
96

pg19

179
star
97

spectral_inference_networks

Implementation of Spectral Inference Networks, ICLR 2019
Python
165
star
98

barkour_robot

Barkour Robot: Agile Quadruped Robots by Google DeepMind
C++
165
star
99

onetwo

Python
164
star
100

abstract-reasoning-matrices

Progressive matrices dataset, as described in: Measuring abstract reasoning in neural networks (Barrett*, Hill*, Santoro*, Morcos, Lillicrap), ICML2018
162
star