• Stars
    star
    327
  • Rank 124,219 (Top 3 %)
  • Language
    C++
  • License
    Apache License 2.0
  • Created almost 6 years ago
  • Updated over 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

We provide a pre-trained model for unconditional 19-step generation of CelebA-HQ images

SPIRAL

Overview

This repository contains agents and environments described in the ICML'18 paper "Synthesizing Programs for Images using Reinforced Adversarial Learning". For the time being, we are providing two simulators: one based on libmypaint and one based on Fluid Paint (NOTE: our implementation is written in C++ whereas the original is in javascript). Additionally, we supply a Sonnet module for the unconditional agent as well as pre-trained model snapshots (9 agents from a single population for libmypaint and 1 agent for Fluid Paint) available from TF-Hub.

If you feel an immediate urge to dive into the code the most relevant files are:

Path Description
spiral/agents/default.py The architecture of the agent
spiral/environments/libmypaint.py The libmypaint-based environment
spiral/environments/fluid.py The Fluid Paint-based environment

Reference

If this repository is helpful for your research please cite the following publication:

@inproceedings{ganin2018synthesizing,
  title={Synthesizing Programs for Images using Reinforced Adversarial Learning},
  author={Ganin, Yaroslav and Kulkarni, Tejas and Babuschkin, Igor and Eslami, SM Ali and Vinyals, Oriol},
  booktitle={ICML},
  year={2018}
}

Quickstart with Docker

The easiest way to get SPIRAL up and running on your machine is to use a pre-built Docker image.

Installation

This section describes how to build and install the package on Ubuntu (16.04 or newer). The following instructions (with slight modifications) might also work for other Linux distributions.

Clone this repository and fetch the external submodules:

git clone https://github.com/deepmind/spiral.git
cd spiral
git submodule update --init --recursive

Install required packages:

apt-get install cmake pkg-config protobuf-compiler libjson-c-dev intltool libpython3-dev python3-pip
pip3 install six setuptools numpy scipy tensorflow==1.14 tensorflow-hub dm-sonnet==1.35

WARNING: Make sure that you have cmake 3.14 or later since we rely on its capability to find numpy libraries. If your package manager doesn't provide it follow the installation instructions from here. You can check the version by running cmake --version .

Finally, run the following command to install the SPIRAL package itself:

python3 setup.py develop --user

You will also need to obtain the brush files for the libmypaint environment to work properly. These can be found here. For example, you can place them in third_party folder like this:

wget -c https://github.com/mypaint/mypaint-brushes/archive/v1.3.0.tar.gz -O - | tar -xz -C third_party

Finally, the Fluid Paint environment depends on the shaders from the original javascript implementation. You can obtain them by running the following commands:

git clone https://github.com/dli/paint third_party/paint
patch third_party/paint/shaders/setbristles.frag third_party/paint-setbristles.patch

Optionally, in order to be able to try out the package in the provided jupyter notebook, you’ll need to install the following packages:

pip3 install matplotlib jupyter

Usage

For a basic example of how to use the package please follow this notebook.

Sampling from a pre-trained model

We provide pre-trained models for unconditional 19-step generation of CelebA-HQ images. Here is an example of how you can sample from an agent interacting with the libmypaint environment:

import matplotlib.pyplot as plt

import spiral.agents.default as default_agent
import spiral.agents.utils as agent_utils
import spiral.environments.libmypaint as libmypaint


# The path to a TF-Hub module.
MODULE_PATH = "https://tfhub.dev/deepmind/spiral/default-wgangp-celebahq64-gen-19steps/agent4/1"
# The folder containing `libmypaint` brushes.
BRUSHES_PATH = "the/path/to/libmypaint-brushes"

# Here, we create an environment.
env = libmypaint.LibMyPaint(episode_length=20,
                            canvas_width=64,
                            grid_width=32,
                            brush_type="classic/dry_brush",
                            brush_sizes=[1, 2, 4, 8, 12, 24],
                            use_color=True,
                            use_pressure=True,
                            use_alpha=False,
                            background="white",
                            brushes_basedir=BRUSHES_PATH)


# Now we load the agent from a snapshot.
initial_state, step = agent_utils.get_module_wrappers(MODULE_PATH)

# Everything is ready for sampling.
state = initial_state()
noise_sample = np.random.normal(size=(10,)).astype(np.float32)

time_step = env.reset()
for t in range(19):
    time_step.observation["noise_sample"] = noise_sample
    action, state = step(time_step.step_type, time_step.observation, state)
    time_step = env.step(action)

# Show the sample.
plt.close("all")
plt.imshow(time_step.observation["canvas"], interpolation="nearest")

Converting a trained agent into a TF-Hub module

import spiral.agents.default as default_agent
import spiral.agents.utils as agent_utils
import spiral.environments.libmypaint as libmypaint


# This where we're going to put our TF-Hub module.
TARGET_PATH = ...
# A path to a checkpoint of the trained model.
CHECKPOINT_PATH = ...

# We will need to create an environment in order to obtain the specifications
# for the agent's action and the observation.
env = libmypaint.LibMyPaint(...)

# Here, we wrap a Sonnet module constructor for our agent in a function.
# This is to avoid contaminating the default tensorflow graph.
def agent_ctor():
  return default_agent.Agent(action_spec=env.action_spec(),
                             input_shape=(64, 64),
                             grid_shape=(32, 32),
                             action_order="libmypaint")

# Finally, export a TF-Hub module. We need to specify which checkpoint to use
# to extract the weights for the agent. Since the variable names in the
# checkpoint may differ from the names in the Sonnet module produced by
# `agent_ctor`, we may also want to provide an appropriate name mapping
# function.
agent_utils.export_hub_module(agent_ctor=agent_ctor,
                              observation_spec=env.observation_spec(),
                              noise_dim=10,
                              module_path=TARGET_PATH,
                              checkpoint_path=CHECKPOINT_PATH,
                              name_transform_fn=lambda name: ...)

Disclaimer

This is not an official Google product.

More Repositories

1

deepmind-research

This repository contains implementations and illustrative code to accompany DeepMind publications
Jupyter Notebook
12,817
star
2

alphafold

Open source code for AlphaFold.
Python
11,700
star
3

sonnet

TensorFlow-based neural network library
Python
9,691
star
4

pysc2

StarCraft II Learning Environment
Python
7,904
star
5

mujoco

Multi-Joint dynamics with Contact. A general purpose physics simulator.
Jupyter Notebook
7,202
star
6

lab

A customisable 3D platform for agent-based AI research
C
7,012
star
7

graph_nets

Build Graph Nets in Tensorflow
Python
5,325
star
8

graphcast

Python
4,242
star
9

learning-to-learn

Learning to Learn in TensorFlow
Python
4,063
star
10

open_spiel

OpenSpiel is a collection of environments and algorithms for research in general reinforcement learning and search/planning in games.
C++
4,019
star
11

alphageometry

Python
3,580
star
12

dm_control

Google DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo.
Python
3,473
star
13

acme

A library of reinforcement learning components and agents
Python
3,372
star
14

trfl

TensorFlow Reinforcement Learning
Python
3,139
star
15

dm-haiku

JAX-based neural network library
Python
2,697
star
16

alphatensor

Python
2,616
star
17

dnc

A TensorFlow implementation of the Differentiable Neural Computer.
Python
2,478
star
18

mctx

Monte Carlo tree search in JAX
Python
2,209
star
19

gemma

Open weights LLM from Google DeepMind.
Jupyter Notebook
2,061
star
20

code_contests

C++
2,010
star
21

kinetics-i3d

Convolutional neural network model for video classification trained on the Kinetics dataset.
Python
1,639
star
22

mathematics_dataset

This dataset code generates mathematical question and answer pairs, from a range of question types at roughly school-level difficulty.
Python
1,621
star
23

optax

Optax is a gradient processing and optimization library for JAX.
Python
1,492
star
24

bsuite

bsuite is a collection of carefully-designed experiments that investigate core capabilities of a reinforcement learning (RL) agent
Python
1,465
star
25

penzai

A JAX research toolkit for building, editing, and visualizing neural networks.
Python
1,405
star
26

educational

Jupyter Notebook
1,382
star
27

jraph

A Graph Neural Network Library in Jax
Python
1,306
star
28

rc-data

Question answering dataset featured in "Teaching Machines to Read and Comprehend
Python
1,285
star
29

rlax

Python
1,185
star
30

tapnet

Tracking Any Point (TAP)
Python
1,033
star
31

scalable_agent

A TensorFlow implementation of Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures.
Python
972
star
32

neural-processes

This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).
Jupyter Notebook
966
star
33

android_env

RL research on Android devices.
Python
946
star
34

mujoco_menagerie

A collection of high-quality models for the MuJoCo physics engine, curated by Google DeepMind.
Jupyter Notebook
926
star
35

dramatron

Dramatron uses large language models to generate coherent scripts and screenplays.
Jupyter Notebook
904
star
36

tree

tree is a library for working with nested data structures
Python
891
star
37

xmanager

A platform for managing machine learning experiments
Python
794
star
38

mujoco_mpc

Real-time behaviour synthesis with MuJoCo, using Predictive Control
C++
771
star
39

materials_discovery

Python
770
star
40

chex

Python
716
star
41

reverb

Reverb is an efficient and easy-to-use data storage and transport system designed for machine learning research
C++
692
star
42

alphadev

Python
662
star
43

pycolab

A highly-customisable gridworld game engine with some batteries included. Make your own gridworld games to test reinforcement learning agents!
Python
654
star
44

ferminet

An implementation of the Fermionic Neural Network for ab-initio electronic structure calculations
Python
643
star
45

hanabi-learning-environment

hanabi_learning_environment is a research platform for Hanabi experiments.
Python
614
star
46

funsearch

Jupyter Notebook
611
star
47

ai-safety-gridworlds

This is a suite of reinforcement learning environments illustrating various safety properties of intelligent agents.
Python
577
star
48

dqn

Lua/Torch implementation of DQN (Nature, 2015)
Lua
546
star
49

ithaca

Restoring and attributing ancient texts using deep neural networks
Jupyter Notebook
540
star
50

meltingpot

A suite of test scenarios for multi-agent reinforcement learning.
Python
516
star
51

distrax

Python
509
star
52

recurrentgemma

Open weights language model from Google DeepMind, based on Griffin.
Python
505
star
53

surface-distance

Library to compute surface distance based performance metrics for segmentation tasks.
Python
493
star
54

tracr

Python
467
star
55

dsprites-dataset

Dataset to assess the disentanglement properties of unsupervised learning methods
Jupyter Notebook
463
star
56

alphamissense

Python
455
star
57

narrativeqa

This repository contains the NarrativeQA dataset. It includes the list of documents with Wikipedia summaries, links to full stories, and questions and answers.
Shell
432
star
58

lab2d

A customisable 2D platform for agent-based AI research
C++
415
star
59

open_x_embodiment

Jupyter Notebook
409
star
60

dqn_zoo

DQN Zoo is a collection of reference implementations of reinforcement learning agents developed at DeepMind based on the Deep Q-Network (DQN) agent.
Python
406
star
61

clrs

Python
376
star
62

spriteworld

Spriteworld: a flexible, configurable python-based reinforcement learning environment
Python
366
star
63

dm_pix

PIX is an image processing library in JAX, for JAX.
Python
363
star
64

concordia

A library for generative social simulation
Python
351
star
65

mathematics_conjectures

Jupyter Notebook
348
star
66

alphastar

Python
346
star
67

dm_env

A Python interface for reinforcement learning environments
Python
326
star
68

dm_robotics

Libraries, tools and tasks created and used at DeepMind Robotics.
Python
315
star
69

uncertain_ground_truth

Dermatology ddx dataset, Jax implementations of Monte Carlo conformal prediction, plausibility regions and statistical annotation aggregation from our recent work on uncertain ground truth (TMLR'23 and ArXiv pre-print).
Python
315
star
70

long-form-factuality

Benchmarking long-form factuality in large language models. Original code for our paper "Long-form factuality in large language models".
Python
314
star
71

launchpad

Python
305
star
72

leo

Implementation of Meta-Learning with Latent Embedding Optimization
Python
302
star
73

streetlearn

A C++/Python implementation of the StreetLearn environment based on images from Street View, as well as a TensorFlow implementation of goal-driven navigation agents solving the task published in “Learning to Navigate in Cities Without a Map”, NeurIPS 2018
C++
279
star
74

gqn-datasets

Datasets used to train Generative Query Networks (GQNs) in the ‘Neural Scene Representation and Rendering’ paper.
Python
269
star
75

enn

Python
265
star
76

multi_object_datasets

Multi-object image datasets with ground-truth segmentation masks and generative factors.
Python
247
star
77

AQuA

A algebraic word problem dataset, with multiple choice questions annotated with rationales.
238
star
78

card2code

A code generation dataset for generating the code that implements Hearthstone and Magic The Gathering card effects.
236
star
79

grid-cells

Implementation of the supervised learning experiments in Vector-based navigation using grid-like representations in artificial agents, as published at https://www.nature.com/articles/s41586-018-0102-6
Python
236
star
80

arnheim

Jupyter Notebook
235
star
81

synjax

Python
233
star
82

torch-hdf5

Torch interface to HDF5 library
Lua
231
star
83

dm_memorytasks

A set of 13 diverse machine-learning tasks that require memory to solve.
Python
220
star
84

Temporal-3D-Pose-Kinetics

Exploiting temporal context for 3D human pose estimation in the wild: 3D poses for the Kinetics dataset
Python
214
star
85

opro

official code for "Large Language Models as Optimizers"
Python
199
star
86

dm_alchemy

DeepMind Alchemy task environment: a meta-reinforcement learning benchmark
Python
197
star
87

neural_testbed

Jupyter Notebook
187
star
88

kfac-jax

Second Order Optimization and Curvature Estimation with K-FAC in JAX.
Python
187
star
89

pg19

179
star
90

xquad

173
star
91

jmp

JMP is a Mixed Precision library for JAX.
Python
171
star
92

spectral_inference_networks

Implementation of Spectral Inference Networks, ICLR 2019
Python
165
star
93

abstract-reasoning-matrices

Progressive matrices dataset, as described in: Measuring abstract reasoning in neural networks (Barrett*, Hill*, Santoro*, Morcos, Lillicrap), ICML2018
162
star
94

xitari

This is the 0.4 release of the Arcade Learning Environment (ALE), a platform designed for AI research. ALE is based on Stella, an Atari 2600 VCS emulator.
C++
159
star
95

tensor_annotations

Annotating tensor shapes using Python types
Python
158
star
96

neural_networks_chomsky_hierarchy

Neural Networks and the Chomsky Hierarchy
Python
155
star
97

symplectic-gradient-adjustment

A colab that implements the Symplectic Gradient Adjustment optimizer from "The mechanics of n-player differentiable games"
Jupyter Notebook
150
star
98

mc_gradients

Jupyter Notebook
149
star
99

interval-bound-propagation

This repository contains a simple implementation of Interval Bound Propagation (IBP) using TensorFlow: https://arxiv.org/abs/1810.12715
Python
148
star
100

s6

C++
146
star