• Stars
    star
    315
  • Rank 128,468 (Top 3 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created 5 months ago
  • Updated about 2 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Dermatology ddx dataset, Jax implementations of Monte Carlo conformal prediction, plausibility regions and statistical annotation aggregation from our recent work on uncertain ground truth (TMLR'23 and ArXiv pre-print).

Evaluation and calibration with uncertain ground truth

This repository contains code for our papers on calibrating [1] and evaluating [2] AI models with uncertain and ambiguous ground truth.

Currently, the code allows to reproduce our results on the toy dataset presented in [1]. Results on the dermatology case study of [2] will follow soon.

[1] Stutz, D., Roy, A.G., Matejovicova, T., Strachan, P., Cemgil, A.T.,
    & Doucet, A. (2023).
    [Conformal prediction under ambiguous ground truth](https://openreview.net/forum?id=CAd6V2qXxc).
    TMLR.
[2] Stutz, D., Cemgil, A.T., Roy, A.G., Matejovicova, T., Barsbey, M., Strachan,
   P., Schaekermann, M., Freyberg, J.V., Rikhye, R.V., Freeman, B., Matos, J.P.,
   Telang, U., Webster, D.R., Liu, Y., Corrado, G.S., Matias, Y., Kohli, P.,
   Liu, Y., Doucet, A., & Karthikesalingam, A. (2023).
   [Evaluating AI systems under uncertain ground truth: a case study in dermatology](https://arxiv.org/abs/2307.02191).
   ArXiv, abs/2307.02191.

Monte Carlo conformal prediction teaser

Evaluation teaser

Overview

For safety, AI systems often undergo thorough evaluation and targeted calibration against a ground truth that is assumed certain. However, in many cases, this is actually not the case and the ground truth may be uncertain. Unfortunately, this is largely ignored in practice even though it can have severe consequences such as overestimating of future performance and mis-calibration. To address this problem, we present work for taking uncertain ground truth into account when evaluating and calibrating AI models.

For evaluation, we assume that ground truth uncertainty decomposes into two main components: annotation uncertainty which stems from the lack of reliable annotations, and inherent uncertainty due to limited observational information. This uncertainty is ignored when estimating the ground truth by deterministically aggregating annotations, e.g., by majority voting or averaging. In contrast, we propose a framework where aggregation is done using a statistical model. Specifically, we frame aggregation of annotations as posterior inference of so-called plausibilities, representing distributions over classes in a classification setting, subject to a hyper-parameter encoding annotator reliability. Based on this model, we propose a metric for measuring annotation uncertainty and provide uncertainty-adjusted metrics for performance evaluation.

For calibration, we use conformal prediction (CP) which allows to perform rigorous uncertainty quantification by constructing a prediction set guaranteeing that the true label is included with high, user-chosen probability. However, this framework typically assumes access to certain labels on a held-out calibration set. Applied to labels obtained through simple majority voting of annotations, the obtained coverage guarantee has to be understood w.r.t. these voted labels -- not the underlying, unknown true labels. Especially if annotators disagree strongly, the distribution of voted labels ignores this uncertainty. Therefore, we propose to directly leverage the annotations to perform CP. Specifically, we use plausibilities obtained from the above statistical aggregation to sample multiple pseudo-labels per calibration examples. This leads to Monte Carlo CP which provides a coverage guarantee w.r.t. the obtained plausibilities rather than the voted labels.

In a case study of skin condition classification with significant disagreement among expert annotators, we show that standard deterministic aggregation of annotations, called inverse rank normalization (IRN) ignores any ground truth uncertainty. We develop two alternative statistical aggregation models showing that IRN-based evaluation severely over-estimates performance without providing uncertainty estimates. Moreover, we show that standard CP w.r.t. to the voted labels obtained from IRN under-covers the expert annotations while our Monte Carlo CP closes this gap.

Installation

  1. Install Conda following the official instructions. Make sure to restart bash after installation.

  2. Clone this repository using

    git clone https://github.com/deepmind/git cd uncertain_ground_truth

  3. Create a new Conda environment from environment.yml and activate it (the environment can be deactivated any time using conda deactivate):

    conda env create -f environment.yml
    conda activate uncertain_ground_truth
    

    Alternatively, manually create the environment and install the following packages:

    conda create --name uncertain_ground_truth
    conda activate uncertain_ground_truth
    # TensorFlow only required for colab_mnist_multi_label.ipynb, but if wanted we
    # recommend installing it first.
    conda install -c conda-forge tensorflow
    conda install -c conda-forge tensorflow-datasets
    conda install -c conda-forge absl-py scikit-learn jax
    conda install jupyter matplotlib
    
  4. Check if all tests run:

    python -m unittest discover -s . -p '*_test.py'
    

    Make sure to always start jupyter from within the uncertain_ground_truth environment. Then the preferred kernel selected by Jupyter will be the correct kernel.

These instructions have been tested with Conda version 23.7.4 (not miniconda) on a 64-bit Linux workstation. We recommend to make sure that no conflicting pyenv environments are activated or PATH is explicitly set or changed in the used bash profile. After activating the Conda environment, the corresponding Python binary should be first in PATH. If that is not the case (e.g., PATH lists a local Python installation in ~/.local/ first), this can cause problems.

Usage

All of this repository's components can be used in a standalone fashion. This will likely be most interesting for the standard conformal prediction (conformal_prediction.py), Monte Carlo conformal prediction (monte_carlo.py), p-value combination (p_value_combination.py), and plausibility regions (plausibility_regions.py) methods from [1]. Note that the plausibility regions have been removed for clarity in the TMLR version of [1] but is available in v1 on ArXiv. Moreover, this repository includes implementations of the Plackett-Luce Gibbs sampler (pl_samplers.py), probabilistic IRN (irn.py), partial average overlap (ranking_metrics.py) and general top-k (aggregated) coverage and accuracy metrics (classification_metrics.py). This will likely be most interesting regarding the (smooth) conformal prediction Finally, the toy example from [1] can be found in gaussian_toy_dataset.py.

Reproducing experiments from [1]

  1. Start by running colab_toy_data.ipynb to create the toy dataset used for illustrations throughout [1]. The Colab will visualize the dataset, save it to a .pkl file and train a few small MLPs on the dataset.
  2. Run colab_toy_mccp to re-create many of the plots from Sections 2 and 3. The Colab includes examples of running standard conformal prediction against voted labels, Monte Carlo conformal prediction against plausibilities (with and without ECDF correction), and plausibility regions against plausibilities.
  3. Run colab_mnist_multi_label.ipynb to run Monte Carlo conformal prediction on a synthetic multi-label dataset derived from MNIST.

Reproducing experiments from [2]

  1. Start by running colab_toy_data.ipynb to create the toy dataset from [1]. This will also sample multiple annotations as (partial) rankings per example.
  2. Run colab_toy_pl_sampler.ipynb to run the Plackett-Luce Gibbs sampler on the sampled annotations from 1.
  3. Run colab_toy_ua_accuracy.ipynb to re-create figures from [2] on the toy dataset using probabilistic IRN plausibilities. After step 2, this can be changed to use Plackett-Luce plausibilities instead.
  4. Run colab_partial_ao.ipynb for an example of how to use the partial average overlap algorithm from [2].

Citing this work

When using any part of this repository, make sure to cite both papers as follows:

@article{StutzTMLR2023,
    title={Conformal prediction under ambiguous ground truth},
    author={David Stutz and Abhijit Guha Roy and Tatiana Matejovicova and Patricia Strachan and Ali Taylan Cemgil and Arnaud Doucet},
    journal={Transactions on Machine Learning Research},
    issn={2835-8856},
    year={2023},
    url={https://openreview.net/forum?id=CAd6V2qXxc},
}
@article{DBLP:journals/corr/abs-2307-02191,
    author = {David Stutz and Ali Taylan Cemgil and Abhijit Guha Roy and Tatiana Matejovicova and Melih Barsbey and Patricia Strachan and Mike Schaekermann and Jan Freyberg and Rajeev Rikhye and Beverly Freeman and Javier Perez Matos and Umesh Telang and Dale R. Webster and Yuan Liu and Gregory S. Corrado and Yossi Matias and Pushmeet Kohli and Yun Liu and Arnaud Doucet and Alan Karthikesalingam},
    title = {Evaluating {AI} systems under uncertain ground truth: a case study
    in dermatology},
    journal = {CoRR},
    volume = {abs/2307.02191},
    year = {2023},
}

License and disclaimer

Copyright 2023 DeepMind Technologies Limited

All software is licensed under the Apache License, Version 2.0 (Apache 2.0); you may not use this file except in compliance with the Apache 2.0 license. You may obtain a copy of the Apache 2.0 license at: https://www.apache.org/licenses/LICENSE-2.0

All other materials are licensed under the Creative Commons Attribution 4.0 International License (CC-BY). You may obtain a copy of the CC-BY license at: https://creativecommons.org/licenses/by/4.0/legalcode

Unless required by applicable law or agreed to in writing, all software and materials distributed here under the Apache 2.0 or CC-BY licenses are distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the licenses for the specific language governing permissions and limitations under those licenses.

This is not an official Google product.

More Repositories

1

deepmind-research

This repository contains implementations and illustrative code to accompany DeepMind publications
Jupyter Notebook
12,817
star
2

alphafold

Open source code for AlphaFold.
Python
11,700
star
3

sonnet

TensorFlow-based neural network library
Python
9,691
star
4

pysc2

StarCraft II Learning Environment
Python
7,904
star
5

mujoco

Multi-Joint dynamics with Contact. A general purpose physics simulator.
Jupyter Notebook
7,202
star
6

lab

A customisable 3D platform for agent-based AI research
C
7,012
star
7

graph_nets

Build Graph Nets in Tensorflow
Python
5,325
star
8

graphcast

Python
4,242
star
9

learning-to-learn

Learning to Learn in TensorFlow
Python
4,063
star
10

open_spiel

OpenSpiel is a collection of environments and algorithms for research in general reinforcement learning and search/planning in games.
C++
4,019
star
11

alphageometry

Python
3,580
star
12

dm_control

Google DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo.
Python
3,473
star
13

acme

A library of reinforcement learning components and agents
Python
3,372
star
14

trfl

TensorFlow Reinforcement Learning
Python
3,139
star
15

dm-haiku

JAX-based neural network library
Python
2,697
star
16

alphatensor

Python
2,616
star
17

dnc

A TensorFlow implementation of the Differentiable Neural Computer.
Python
2,478
star
18

mctx

Monte Carlo tree search in JAX
Python
2,209
star
19

gemma

Open weights LLM from Google DeepMind.
Jupyter Notebook
2,061
star
20

code_contests

C++
2,010
star
21

kinetics-i3d

Convolutional neural network model for video classification trained on the Kinetics dataset.
Python
1,639
star
22

mathematics_dataset

This dataset code generates mathematical question and answer pairs, from a range of question types at roughly school-level difficulty.
Python
1,621
star
23

optax

Optax is a gradient processing and optimization library for JAX.
Python
1,492
star
24

bsuite

bsuite is a collection of carefully-designed experiments that investigate core capabilities of a reinforcement learning (RL) agent
Python
1,465
star
25

penzai

A JAX research toolkit for building, editing, and visualizing neural networks.
Python
1,405
star
26

educational

Jupyter Notebook
1,382
star
27

jraph

A Graph Neural Network Library in Jax
Python
1,306
star
28

rc-data

Question answering dataset featured in "Teaching Machines to Read and Comprehend
Python
1,285
star
29

rlax

Python
1,185
star
30

tapnet

Tracking Any Point (TAP)
Python
1,033
star
31

scalable_agent

A TensorFlow implementation of Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures.
Python
972
star
32

neural-processes

This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).
Jupyter Notebook
966
star
33

android_env

RL research on Android devices.
Python
946
star
34

mujoco_menagerie

A collection of high-quality models for the MuJoCo physics engine, curated by Google DeepMind.
Jupyter Notebook
926
star
35

dramatron

Dramatron uses large language models to generate coherent scripts and screenplays.
Jupyter Notebook
904
star
36

tree

tree is a library for working with nested data structures
Python
891
star
37

xmanager

A platform for managing machine learning experiments
Python
796
star
38

mujoco_mpc

Real-time behaviour synthesis with MuJoCo, using Predictive Control
C++
771
star
39

materials_discovery

Python
770
star
40

chex

Python
716
star
41

reverb

Reverb is an efficient and easy-to-use data storage and transport system designed for machine learning research
C++
692
star
42

alphadev

Python
662
star
43

pycolab

A highly-customisable gridworld game engine with some batteries included. Make your own gridworld games to test reinforcement learning agents!
Python
654
star
44

ferminet

An implementation of the Fermionic Neural Network for ab-initio electronic structure calculations
Python
643
star
45

hanabi-learning-environment

hanabi_learning_environment is a research platform for Hanabi experiments.
Python
614
star
46

funsearch

Jupyter Notebook
611
star
47

ai-safety-gridworlds

This is a suite of reinforcement learning environments illustrating various safety properties of intelligent agents.
Python
577
star
48

dqn

Lua/Torch implementation of DQN (Nature, 2015)
Lua
546
star
49

ithaca

Restoring and attributing ancient texts using deep neural networks
Jupyter Notebook
540
star
50

meltingpot

A suite of test scenarios for multi-agent reinforcement learning.
Python
516
star
51

distrax

Python
509
star
52

recurrentgemma

Open weights language model from Google DeepMind, based on Griffin.
Python
505
star
53

surface-distance

Library to compute surface distance based performance metrics for segmentation tasks.
Python
493
star
54

tracr

Python
467
star
55

dsprites-dataset

Dataset to assess the disentanglement properties of unsupervised learning methods
Jupyter Notebook
463
star
56

alphamissense

Python
455
star
57

narrativeqa

This repository contains the NarrativeQA dataset. It includes the list of documents with Wikipedia summaries, links to full stories, and questions and answers.
Shell
432
star
58

lab2d

A customisable 2D platform for agent-based AI research
C++
415
star
59

open_x_embodiment

Jupyter Notebook
409
star
60

dqn_zoo

DQN Zoo is a collection of reference implementations of reinforcement learning agents developed at DeepMind based on the Deep Q-Network (DQN) agent.
Python
406
star
61

clrs

Python
376
star
62

spriteworld

Spriteworld: a flexible, configurable python-based reinforcement learning environment
Python
366
star
63

dm_pix

PIX is an image processing library in JAX, for JAX.
Python
363
star
64

concordia

A library for generative social simulation
Python
351
star
65

mathematics_conjectures

Jupyter Notebook
348
star
66

alphastar

Python
346
star
67

spiral

We provide a pre-trained model for unconditional 19-step generation of CelebA-HQ images
C++
327
star
68

dm_env

A Python interface for reinforcement learning environments
Python
326
star
69

dm_robotics

Libraries, tools and tasks created and used at DeepMind Robotics.
Python
315
star
70

long-form-factuality

Benchmarking long-form factuality in large language models. Original code for our paper "Long-form factuality in large language models".
Python
314
star
71

launchpad

Python
305
star
72

leo

Implementation of Meta-Learning with Latent Embedding Optimization
Python
302
star
73

streetlearn

A C++/Python implementation of the StreetLearn environment based on images from Street View, as well as a TensorFlow implementation of goal-driven navigation agents solving the task published in “Learning to Navigate in Cities Without a Map”, NeurIPS 2018
C++
279
star
74

gqn-datasets

Datasets used to train Generative Query Networks (GQNs) in the ‘Neural Scene Representation and Rendering’ paper.
Python
269
star
75

enn

Python
265
star
76

multi_object_datasets

Multi-object image datasets with ground-truth segmentation masks and generative factors.
Python
247
star
77

AQuA

A algebraic word problem dataset, with multiple choice questions annotated with rationales.
238
star
78

card2code

A code generation dataset for generating the code that implements Hearthstone and Magic The Gathering card effects.
236
star
79

grid-cells

Implementation of the supervised learning experiments in Vector-based navigation using grid-like representations in artificial agents, as published at https://www.nature.com/articles/s41586-018-0102-6
Python
236
star
80

arnheim

Jupyter Notebook
235
star
81

synjax

Python
233
star
82

torch-hdf5

Torch interface to HDF5 library
Lua
231
star
83

dm_memorytasks

A set of 13 diverse machine-learning tasks that require memory to solve.
Python
220
star
84

Temporal-3D-Pose-Kinetics

Exploiting temporal context for 3D human pose estimation in the wild: 3D poses for the Kinetics dataset
Python
214
star
85

opro

official code for "Large Language Models as Optimizers"
Python
199
star
86

dm_alchemy

DeepMind Alchemy task environment: a meta-reinforcement learning benchmark
Python
197
star
87

neural_testbed

Jupyter Notebook
187
star
88

kfac-jax

Second Order Optimization and Curvature Estimation with K-FAC in JAX.
Python
187
star
89

pg19

179
star
90

xquad

173
star
91

jmp

JMP is a Mixed Precision library for JAX.
Python
171
star
92

spectral_inference_networks

Implementation of Spectral Inference Networks, ICLR 2019
Python
165
star
93

abstract-reasoning-matrices

Progressive matrices dataset, as described in: Measuring abstract reasoning in neural networks (Barrett*, Hill*, Santoro*, Morcos, Lillicrap), ICML2018
162
star
94

neural_networks_chomsky_hierarchy

Neural Networks and the Chomsky Hierarchy
Python
162
star
95

xitari

This is the 0.4 release of the Arcade Learning Environment (ALE), a platform designed for AI research. ALE is based on Stella, an Atari 2600 VCS emulator.
C++
159
star
96

tensor_annotations

Annotating tensor shapes using Python types
Python
158
star
97

symplectic-gradient-adjustment

A colab that implements the Symplectic Gradient Adjustment optimizer from "The mechanics of n-player differentiable games"
Jupyter Notebook
150
star
98

mc_gradients

Jupyter Notebook
149
star
99

interval-bound-propagation

This repository contains a simple implementation of Interval Bound Propagation (IBP) using TensorFlow: https://arxiv.org/abs/1810.12715
Python
148
star
100

s6

C++
146
star