• Stars
    star
    380
  • Rank 112,766 (Top 3 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 4 years ago
  • Updated 6 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Software that makes labeling PDFs easy.

PDF Annotations with Labels and Structure is software that makes it easy to collect a series of annotations associated with a PDF document. It was written specifically for annotating academic papers within the Semantic Scholar corpus, but can be used with any collection of PDF documents.

Quick Start

Quick start will download some pre-processed PDFs and get the UI set up so that you can see them. If you want to pre-process your own PDFs, keep reading! If it's your first time working with PAWLS, we recommend you try the quick start first though.

First, we need to download some processed PDFs to view in the UI. PAWLS uses the PDFs themselves to render in the browser, as well as using a JSON file of extracted token bounding boxes per page, called pdf_structure.json. The PAWLS CLI can be used to do this pre-processing, but for the quick start, we have done it for you. Download them from the provided AWS S3 Bucket like so:

aws s3 sync s3://ai2-s2-pawls-public/example-data ./skiff_files/apps/pawls/papers/ --no-sign-request

Configuration in PAWLS is controlled by a JSON file, located in the api/config directory. The location that we downloaded the PDFs to above corresponds to the location in the config file, where it is mounted in using docker-compose.yaml. So, when PAWLS starts up, the API knows where to look to serve the PDFs we want.

Next, we can start the services required to use PAWLS using docker-compose:

~ docker-compose up --build

This process launches 4 services:

  • the ui, which renders the user interface that PAWLS uses
  • the api, which serves PDFs and saves/recieves annotations
  • a proxy responsible for forwarding traffic to the appropriate services.
  • A grobid service, running a fork of Grobid. This is not actually necessary for the application, but is useful for the CLI.

You'll see output from each.

Once all of these have come up, navigate to localhost:8080 in your browser and you should see the PAWLS UI! Happy annotating.

Getting Started

In order to run a local environment, you'll need to use the PAWLS CLI to preprocess and assign the PDFs you want to serve. When using PDFs from semantic scholar, the CLI is also used to download the PDFs. The PDFs have to be put in a directory structure within skiff_files/apps/pawls (see PAWLS CLI usage for details).

For instance, you can run the following commands to download, preprocess, and assign PDFs:

  # Fetches PDFs from semantic scholar's S3 buckets.
  python scripts/ai2-internal/fetch_pdfs.py skiff_files/apps/pawls/papers 34f25a8704614163c4095b3ee2fc969b60de4698 3febb2bed8865945e7fddc99efd791887bb7e14f 553c58a05e25f794d24e8db8c2b8fdb9603e6a29
  # ensure that the papers are pre-processed with grobid so that they have token information.
  pawls preprocess grobid skiff_files/apps/pawls/papers
  # Assign the development user to all the papers we've downloaded.
  pawls assign skiff_files/apps/pawls/papers [email protected] --all --name-file skiff_files/apps/pawls/papers/name_mapping.json

and then open up the UI locally by running docker-compose up.

Authentication and Authorization

Authentication is simply checking that users are who they say they are. Whether or not these users' requests are allowed (e.g., to view a PDFs) is considerd authorization. See more about this distinction at Skiff Login.

Authentication

All requests must be authenticated.

  • The production deployment of PAWLS uses Skiff Login to authenticate requests. New users are bounced to a Google login workflow, and redirected back to the site if they authenticate with Google. Authenticated requests carry an HTTP header that identifies the user.
  • For local development, there is no login workflow. Instead, all requests are supplemented with a hard-coded authentication header in proxy/local.conf specifying that the user is [email protected].

Look at the function get_user_from_header in main.py for details.

Authorization

Authorization is enforced by the PAWLS app. A file of allowed user email addresses is consulted on every request.

The format of the file is simply a list of allowed email addresses.

There's a special case when an allowed email address in this file starts with "@", meaning all users in that domain are allowed. That is, an entry "@allenai.org" will grant access to all AI2 people.

Look at the function user_is_allowed in main.py for details.

Python Development

The Python service and Python cli are formatted using black and flake8. Currently this is run in a local environment using the app's requirements.txt. To run the linters:

black api/
flake8 api/

Prerequisites

Make sure that you have the latest version of Docker 🐳 installed on your local machine.

To start a version of the application locally for development purposes, run this command:

~ docker-compose up --build

This process launches 3 services, the ui, api and a proxy responsible for forwarding traffic to the appropriate services. You'll see output from each.

It might take a minute or two for the application to start, particularly if it's the first time you've executed this command. Be patience and wait for a clear message indicating that all of the required services have started up.

As you make changes the running application will be automatically updated. Simply refresh your browser to see them.

Sometimes one portion of your application will crash due to errors in the code. When this occurs resolve the related issue and re-run docker-compose up --build to start things back up.

Development Tips and Tricks

The skiff template contains some features which are ideal for a robust web application, but might be un-intuitive for researchers. Below are some small technical points that might help you if you are making substantial changes to the skiff template.

  • Skiff uses sonar to check that all parts of the application (frontend, backend) are up and running before serving requests. To do this, it checks that your api returns 2XX codes from its root url - if you change the server, you'll need to make sure to add code which returns a 2XX response from your server.

  • To ease development/deployment differences, skiff uses a proxy to route different urls to different containers in your application. The TL;DR of this is the following:

External URL Internal URL Container
localhost:8080/* localhost:3000/* ui
localhost:8080/api/* localhost:8000/* api

So, in your web application, you would make a request, e.g axios.get("/api/route", data), which the server recieves at localhost:8000/route. This makes it easy to develop without worrying about where apis will be hosted in production vs development, and also allows for things like rate limiting. The configuration for the proxy lives here for development and here for production.

For example, if you wanted to expose the docs route localhost:8000/docs from your api container to users of your app in production, you would add this to prod.conf:

location /docs/ {
    limit_req zone=api;
    proxy_pass http://api:8000/;
}

Troubleshooting

Updating UI Dependencies based on Dependabot Alerts

  1. Add the package and version reqs in the resolutions field from the package.json file;
  2. Run yarn install to update the yarn.lock file
  3. Start the docker and test whether the UI still works docker-compose up --build

Windows EOL format (CRLF) vs Linux (LF)

The application was developed for Linux, and might fail to start on Windows because of line-ending differences.

To fix this, run this command from the root of the repository:

~ (cd ./ui && yarn && yarn lint:fix) # with parenthesis, to stay in same directory

Cite PAWLS

If you find PAWLS helpful for your research, please consider cite PAWLS.

@misc{neumann2021pawls,
      title={PAWLS: PDF Annotation With Labels and Structure}, 
      author={Mark Neumann and Zejiang Shen and Sam Skjonsberg},
      year={2021},
      eprint={2101.10281},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

PAWLS is an open-source project developed by the Allen Institute for Artificial Intelligence (AI2). AI2 is a non-profit institute with the mission to contribute to humanity through high-impact AI research and engineering.

More Repositories

1

allennlp

An open-source NLP research library, built on PyTorch.
Python
11,751
star
2

OLMo

Modeling, training, eval, and inference code for OLMo
Python
4,535
star
3

RL4LMs

A modular RL library to fine-tune language models to human preferences
Python
2,101
star
4

longformer

Longformer: The Long-Document Transformer
Python
2,022
star
5

bilm-tf

Tensorflow implementation of contextualized word representations from bi-directional language models
Python
1,621
star
6

scispacy

A full spaCy pipeline and models for scientific/biomedical documents.
Python
1,618
star
7

bi-att-flow

Bi-directional Attention Flow (BiDAF) network is a multi-stage hierarchical process that represents context at different levels of granularity and uses a bi-directional attention flow mechanism to achieve a query-aware context representation without early summarization.
Python
1,533
star
8

scibert

A BERT model for scientific text.
Python
1,495
star
9

open-instruct

Python
1,185
star
10

ai2thor

An open-source platform for Visual AI.
C#
1,160
star
11

dolma

Data and tools for generating and inspecting OLMo pre-training data.
Python
961
star
12

XNOR-Net

ImageNet classification using binary Convolutional Neural Networks
Lua
839
star
13

s2orc

S2ORC: The Semantic Scholar Open Research Corpus: https://www.aclweb.org/anthology/2020.acl-main.447/
Python
817
star
14

mmc4

MultimodalC4 is a multimodal extension of c4 that interleaves millions of images with text.
Python
793
star
15

scitldr

Python
734
star
16

objaverse-xl

🪐 Objaverse-XL is a Universe of 10M+ 3D Objects. Contains API Scripts for Downloading and Processing!
Python
701
star
17

papermage

library supporting NLP and CV research on scientific papers
Python
692
star
18

natural-instructions

Expanding natural instructions
Python
690
star
19

visprog

Official code for VisProg (CVPR 2023 Best Paper!)
Python
686
star
20

science-parse

Science Parse parses scientific papers (in PDF form) and returns them in structured form.
Java
611
star
21

pdffigures2

Given a scholarly PDF, extract figures, tables, captions, and section titles.
Scala
593
star
22

writing-code-for-nlp-research-emnlp2018

A companion repository for the "Writing code for NLP Research" Tutorial at EMNLP 2018
Python
558
star
23

tango

Organize your experiments into discrete steps that can be cached and reused throughout the lifetime of your research project.
Python
528
star
24

allennlp-models

Officially supported AllenNLP models
Python
521
star
25

specter

SPECTER: Document-level Representation Learning using Citation-informed Transformers
Python
506
star
26

dont-stop-pretraining

Code associated with the Don't Stop Pretraining ACL 2020 paper
Python
488
star
27

unified-io-2

Python
471
star
28

macaw

Multi-angle c(q)uestion answering
Python
451
star
29

lumos

Code and data for "Lumos: Learning Agents with Unified Data, Modular Design, and Open-Source LLMs"
Python
433
star
30

document-qa

Python
420
star
31

scholarphi

An interactive PDF reader.
Python
418
star
32

deep_qa

A deep NLP library, based on Keras / tf, focused on question answering (but useful for other NLP too)
Python
404
star
33

acl2018-semantic-parsing-tutorial

Materials from the ACL 2018 tutorial on neural semantic parsing
402
star
34

unifiedqa

UnifiedQA: Crossing Format Boundaries With a Single QA System
Python
384
star
35

OLMoE

OLMoE: Open Mixture-of-Experts Language Models
Jupyter Notebook
374
star
36

kb

KnowBert -- Knowledge Enhanced Contextual Word Representations
Python
359
star
37

PeerRead

Data and code for Kang et al., NAACL 2018's paper titled "A Dataset of Peer Reviews (PeerRead): Collection, Insights and NLP Applications"
Python
354
star
38

reward-bench

RewardBench: the first evaluation tool for reward models.
Python
346
star
39

naacl2021-longdoc-tutorial

Python
342
star
40

openie-standalone

Quality information extraction at web scale. Edit
Scala
327
star
41

Holodeck

CVPR 2024: Language Guided Generation of 3D Embodied AI Environments.
Python
319
star
42

python-package-template

A template repo for Python packages
Python
318
star
43

allenact

An open source framework for research in Embodied-AI from AI2.
Python
316
star
44

ir_datasets

Provides a common interface to many IR ranking datasets.
Python
314
star
45

s2orc-doc2json

Parsers for scientific papers (PDF2JSON, TEX2JSON, JATS2JSON)
Python
302
star
46

acl2022-zerofewshot-tutorial

291
star
47

OLMo-Eval

Evaluation suite for LLMs
Python
280
star
48

procthor

🏘️ Scaling Embodied AI by Procedurally Generating Interactive 3D Houses
Python
257
star
49

fm-cheatsheet

Website for hosting the Open Foundation Models Cheat Sheet.
JavaScript
255
star
50

FineGrainedRLHF

Python
243
star
51

beaker-cli

A collaborative platform for rapid and reproducible research.
Go
230
star
52

comet-atomic-2020

Python
228
star
53

spv2

Science-parse version 2
Python
225
star
54

scifact

Data and models for the SciFact verification task.
Python
217
star
55

objaverse-rendering

📷 Scripts for rendering Objaverse
Python
206
star
56

ScienceWorld

ScienceWorld is a text-based virtual environment centered around accomplishing tasks from the standardized elementary science curriculum.
Scala
197
star
57

unified-io-inference

Jupyter Notebook
196
star
58

allennlp-demo

Code for the AllenNLP demo.
TypeScript
191
star
59

citeomatic

A citation recommendation system that allows users to find relevant citations for their paper drafts. The tool is backed by Semantic Scholar's OpenCorpus dataset.
Jupyter Notebook
189
star
60

cartography

Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics
Jupyter Notebook
188
star
61

savn

Learning to Learn how to Learn: Self-Adaptive Visual Navigation using Meta-Learning (https://arxiv.org/abs/1812.00971)
Python
175
star
62

vampire

Variational Methods for Pretraining in Resource-limited Environments
Python
173
star
63

vila

Incorporating VIsual LAyout Structures for Scientific Text Classification
Python
172
star
64

s2-folks

Public space for the user community of Semantic Scholar APIs to share scripts, report issues, and make suggestions.
171
star
65

hidden-networks

Python
164
star
66

cord19

Get started with CORD-19
161
star
67

mmda

multimodal document analysis
Jupyter Notebook
158
star
68

PRIMER

The official code for PRIMERA: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization
Python
150
star
69

catwalk

This project studies the performance and robustness of language models and task-adaptation methods.
Python
141
star
70

dnw

Discovering Neural Wirings (https://arxiv.org/abs/1906.00586)
Python
139
star
71

deepfigures-open

Companion code to the paper "Extracting Scientific Figures with Distantly Supervised Neural Networks" 🤖
Python
133
star
72

tpu_pretrain

LM Pretraining with PyTorch/TPU
Python
132
star
73

allentune

Hyperparameter Search for AllenNLP
Python
128
star
74

SciREX

Data/Code Repository for https://api.semanticscholar.org/CorpusID:218470122
Python
128
star
75

scidocs

Dataset accompanying the SPECTER model
Python
127
star
76

lm-explorer

interactive explorer for language models
Python
127
star
77

pdffigures

Command line tool to extract figures, tables, and captions from scholarly documents in PDF form.
C++
125
star
78

OpenBookQA

Code for experiments on OpenBookQA from the EMNLP 2018 paper "Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering"
Python
121
star
79

peS2o

Pretraining Efficiently on S2ORC!
120
star
80

gooaq

Question-answers, collected from Google
Python
116
star
81

allennlp-as-a-library-example

A simple example for how to build your own model using AllenNLP as a dependency.
Python
113
star
82

embodied-clip

Official codebase for EmbCLIP
Python
111
star
83

multimodalqa

Python
109
star
84

alexafsm

With alexafsm, developers can model dialog agents with first-class concepts such as states, attributes, transition, and actions. alexafsm also provides visualization and other tools to help understand, test, debug, and maintain complex FSM conversations.
Python
108
star
85

allennlp-semparse

A framework for building semantic parsers (including neural module networks) with AllenNLP, built by the authors of AllenNLP
Python
107
star
86

scicite

Repository for NAACL 2019 paper on Citation Intent prediction
Python
106
star
87

ai2thor-rearrangement

🔀 Visual Room Rearrangement
Python
104
star
88

commonsense-kg-completion

Python
102
star
89

medicat

Dataset of medical images, captions, subfigure-subcaption annotations, and inline textual references
Python
102
star
90

real-toxicity-prompts

Jupyter Notebook
101
star
91

s2search

The Semantic Scholar Search Reranker
Python
99
star
92

aristo-mini

Aristo mini is a light-weight question answering system that can quickly evaluate Aristo science questions with an evaluation web server and the provided baseline solvers.
Python
96
star
93

gpv-1

A task-agnostic vision-language architecture as a step towards General Purpose Vision
Jupyter Notebook
92
star
94

flex

Few-shot NLP benchmark for unified, rigorous eval
Python
91
star
95

elastic

Python
91
star
96

manipulathor

ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm
Jupyter Notebook
88
star
97

spoc-robot-training

SPOC: Imitating Shortest Paths in Simulation Enables Effective Navigation and Manipulation in the Real World
Python
85
star
98

S2AND

Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite
Python
85
star
99

propara

ProPara (Process Paragraph Comprehension) dataset and models
Python
82
star
100

ARC-Solvers

ARC Question Solvers
Python
82
star