• Stars
    star
    128
  • Rank 281,044 (Top 6 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 5 years ago
  • Updated over 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Hyperparameter Search for AllenNLP

Allentune

Hyperparameter Search for AllenNLP

Citation

If you use this repository for your research, please cite:

@inproceedings{showyourwork,
 author = {Jesse Dodge and Suchin Gururangan and Dallas Card and Roy Schwartz and Noah A. Smith},
 title = {Show Your Work: Improved Reporting of Experimental Results},
 year = {2019},
 booktitle = {Proceedings of EMNLP},
}

NOTE: This repository works with allennlp 1.0.0.

Generating expected validation curves

If you are interested in plotting expected validation curves without using AllenTune, we've extracted the code for plotting here: https://github.com/dodgejesse/show_your_work

Using AllenTune

Run distributed, parallel hyperparameter search on GPUs or CPUs. See the associated paper.

This library was inspired by tuna, thanks to @ChristophAlt for the work!

To get started, clone the allentune repository, cd into root folder, and run pip install --editable .s

Then, make sure all tests pass:

pytest -v .

Now you can test your installation by running allentune -h.

What does Allentune support?

This library is compatible with random and grid search algorithms via Raytune. Support for complex search schedulers (e.g. Hyperband, Median Stopping Rule, Population Based Training) is on the roadmap.

How does it work?

Allentune operates by combining a search_space with an AllenNLP training config. The search_space contains sampling strategies and bounds per hyperparameter. For each assignment, AllenTune sets the sampled hyperparameter values as environment variables and kicks off a job. The jobs are queued up and executed on a GPU/CPU when available. You can specify which and how many GPUs/CPUs you'd like AllenTune to use when doing hyperparameter search.

Setup base training config

See examples/classifier.jsonnet as an example of a CNN-based classifier on the IMDB dataset. Crucially, the AllenNLP training config sets each hyperparameter value with the standard format std.extVar(HYPERPARAMETER_NAME), which allows jsonnet to instantiate the value with an environment variable.

Setup the Search space

See examples/search_space.json as an example of search bounds applied to each hyperparameter of the CNN classifier.

There are a few sampling strategies currently supported:

  1. choice: choose an element in a specified set.
  2. integer: choose a random integer within the specified bounds.
  3. uniform: choose a random float using the uniform distribution within the specified bounds.
  4. loguniform: choose a random float using the loguniform distribution within the specified bounds.

If you want to fix a particular hyperparameter, just set it as a constant in the search space file.

Run Hyperparameter Search

Example command for 30 samples of random search with a CNN classifier, on 4 GPUs:

allentune search \
    --experiment-name classifier_search \
    --num-cpus 56 \
    --num-gpus 4 \
    --cpus-per-trial 1 \
    --gpus-per-trial 1 \
    --search-space examples/search_space.json \
    --num-samples 50 \
    --base-config examples/classifier.jsonnet

To restrict the GPUs you run on, run the above command with CUDA_VISIBLE_DEVICES=xxx.

Note: You can add the --include-package XXX flag when using allentune on your custom library, just like you would with allennlp.

Search output

By default, allentune logs all search trials to a logs/ directory in your current directory. Each trial gets its own directory.

Generate a report from the search

To check progress on your search, or to check results when your search has completed, run allentune report.

This command will generate a dataset of resulting hyperparameter assignments and training metrics, for further analysis:

allentune report \
    --log-dir logs/classifier_search/ \
    --performance-metric best_validation_accuracy \
    --model "CNN Classifier"

This command will create a file results.jsonl in logs/classifier_search. Each line has the hyperparameter assignments and resulting training metrics from each experiment of your search.

allentune report will also tell you the currently best performing model, and the path to its serialization directory:

-------------------------  ----------------------------------------------------------------------------------------
Model Name                 CNN Classifier                                                            
Performance Metric         best_validation_accuracy                                                          
Total Experiments          44
Best Performance           0.8844
Min Performance            0.8505 +- 0.08600000000000008
Mean +- STD Performance    0.8088454545454546 +- 0.08974256581128731
Median +- IQR Performance  0.8505 +- 0.08600000000000008
Best Model Directory Path /home/suching/allentune/logs/classifier_search/run_18_2020-07-27_14-57-28lfw_dbkq/trial/
------------------------- ----------------------------------------------------------------------------------------

Merge multiple reports

To merge the reports of multiple models, we've added a simple convenience command merge.

The following command will merge the results of multiple runs into a single file merged_results.jsonl for further analysis.

allentune merge \
    --input-files logs/classifier_1_search/results.jsonl logs/classifier_2_search/results.jsonl  \
    --output-file merged_results.jsonl \

Plot expected performance

Finally, you can plot expected performance as a function of hyperparameter assignments or training duration. For more information on how this plot is generated, check the associated paper.

allentune plot \
    --data-name IMDB \
    --subplot 1 1 \
    --figsize 10 10 \
    --result-file logs/classifier_search/results.jsonl \
    --output-file classifier_performance.pdf \
    --performance-metric-field best_validation_accuracy \
    --performance-metric accuracy

Sample more hyperparameters until this curve converges to some expected validation performance!

More Repositories

1

allennlp

An open-source NLP research library, built on PyTorch.
Python
11,751
star
2

OLMo

Modeling, training, eval, and inference code for OLMo
Python
4,535
star
3

RL4LMs

A modular RL library to fine-tune language models to human preferences
Python
2,101
star
4

longformer

Longformer: The Long-Document Transformer
Python
2,022
star
5

bilm-tf

Tensorflow implementation of contextualized word representations from bi-directional language models
Python
1,621
star
6

scispacy

A full spaCy pipeline and models for scientific/biomedical documents.
Python
1,618
star
7

bi-att-flow

Bi-directional Attention Flow (BiDAF) network is a multi-stage hierarchical process that represents context at different levels of granularity and uses a bi-directional attention flow mechanism to achieve a query-aware context representation without early summarization.
Python
1,533
star
8

scibert

A BERT model for scientific text.
Python
1,495
star
9

open-instruct

Python
1,185
star
10

ai2thor

An open-source platform for Visual AI.
C#
1,160
star
11

dolma

Data and tools for generating and inspecting OLMo pre-training data.
Python
961
star
12

XNOR-Net

ImageNet classification using binary Convolutional Neural Networks
Lua
839
star
13

s2orc

S2ORC: The Semantic Scholar Open Research Corpus: https://www.aclweb.org/anthology/2020.acl-main.447/
Python
817
star
14

mmc4

MultimodalC4 is a multimodal extension of c4 that interleaves millions of images with text.
Python
793
star
15

scitldr

Python
734
star
16

objaverse-xl

πŸͺ Objaverse-XL is a Universe of 10M+ 3D Objects. Contains API Scripts for Downloading and Processing!
Python
701
star
17

papermage

library supporting NLP and CV research on scientific papers
Python
692
star
18

natural-instructions

Expanding natural instructions
Python
690
star
19

visprog

Official code for VisProg (CVPR 2023 Best Paper!)
Python
686
star
20

science-parse

Science Parse parses scientific papers (in PDF form) and returns them in structured form.
Java
611
star
21

pdffigures2

Given a scholarly PDF, extract figures, tables, captions, and section titles.
Scala
593
star
22

writing-code-for-nlp-research-emnlp2018

A companion repository for the "Writing code for NLP Research" Tutorial at EMNLP 2018
Python
558
star
23

tango

Organize your experiments into discrete steps that can be cached and reused throughout the lifetime of your research project.
Python
528
star
24

allennlp-models

Officially supported AllenNLP models
Python
521
star
25

specter

SPECTER: Document-level Representation Learning using Citation-informed Transformers
Python
506
star
26

dont-stop-pretraining

Code associated with the Don't Stop Pretraining ACL 2020 paper
Python
488
star
27

unified-io-2

Python
471
star
28

macaw

Multi-angle c(q)uestion answering
Python
451
star
29

lumos

Code and data for "Lumos: Learning Agents with Unified Data, Modular Design, and Open-Source LLMs"
Python
433
star
30

document-qa

Python
420
star
31

scholarphi

An interactive PDF reader.
Python
418
star
32

deep_qa

A deep NLP library, based on Keras / tf, focused on question answering (but useful for other NLP too)
Python
404
star
33

acl2018-semantic-parsing-tutorial

Materials from the ACL 2018 tutorial on neural semantic parsing
402
star
34

unifiedqa

UnifiedQA: Crossing Format Boundaries With a Single QA System
Python
384
star
35

pawls

Software that makes labeling PDFs easy.
Python
380
star
36

OLMoE

OLMoE: Open Mixture-of-Experts Language Models
Jupyter Notebook
374
star
37

kb

KnowBert -- Knowledge Enhanced Contextual Word Representations
Python
359
star
38

PeerRead

Data and code for Kang et al., NAACL 2018's paper titled "A Dataset of Peer Reviews (PeerRead): Collection, Insights and NLP Applications"
Python
354
star
39

reward-bench

RewardBench: the first evaluation tool for reward models.
Python
346
star
40

naacl2021-longdoc-tutorial

Python
342
star
41

openie-standalone

Quality information extraction at web scale. Edit
Scala
327
star
42

Holodeck

CVPR 2024: Language Guided Generation of 3D Embodied AI Environments.
Python
319
star
43

python-package-template

A template repo for Python packages
Python
318
star
44

allenact

An open source framework for research in Embodied-AI from AI2.
Python
316
star
45

ir_datasets

Provides a common interface to many IR ranking datasets.
Python
314
star
46

s2orc-doc2json

Parsers for scientific papers (PDF2JSON, TEX2JSON, JATS2JSON)
Python
302
star
47

acl2022-zerofewshot-tutorial

291
star
48

OLMo-Eval

Evaluation suite for LLMs
Python
280
star
49

procthor

🏘️ Scaling Embodied AI by Procedurally Generating Interactive 3D Houses
Python
257
star
50

fm-cheatsheet

Website for hosting the Open Foundation Models Cheat Sheet.
JavaScript
255
star
51

FineGrainedRLHF

Python
243
star
52

beaker-cli

A collaborative platform for rapid and reproducible research.
Go
230
star
53

comet-atomic-2020

Python
228
star
54

spv2

Science-parse version 2
Python
225
star
55

scifact

Data and models for the SciFact verification task.
Python
217
star
56

objaverse-rendering

πŸ“· Scripts for rendering Objaverse
Python
206
star
57

ScienceWorld

ScienceWorld is a text-based virtual environment centered around accomplishing tasks from the standardized elementary science curriculum.
Scala
197
star
58

unified-io-inference

Jupyter Notebook
196
star
59

allennlp-demo

Code for the AllenNLP demo.
TypeScript
191
star
60

citeomatic

A citation recommendation system that allows users to find relevant citations for their paper drafts. The tool is backed by Semantic Scholar's OpenCorpus dataset.
Jupyter Notebook
189
star
61

cartography

Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics
Jupyter Notebook
188
star
62

savn

Learning to Learn how to Learn: Self-Adaptive Visual Navigation using Meta-Learning (https://arxiv.org/abs/1812.00971)
Python
175
star
63

vampire

Variational Methods for Pretraining in Resource-limited Environments
Python
173
star
64

vila

Incorporating VIsual LAyout Structures for Scientific Text Classification
Python
172
star
65

s2-folks

Public space for the user community of Semantic Scholar APIs to share scripts, report issues, and make suggestions.
171
star
66

hidden-networks

Python
164
star
67

cord19

Get started with CORD-19
161
star
68

mmda

multimodal document analysis
Jupyter Notebook
158
star
69

PRIMER

The official code for PRIMERA: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization
Python
150
star
70

catwalk

This project studies the performance and robustness of language models and task-adaptation methods.
Python
141
star
71

dnw

Discovering Neural Wirings (https://arxiv.org/abs/1906.00586)
Python
139
star
72

deepfigures-open

Companion code to the paper "Extracting Scientific Figures with Distantly Supervised Neural Networks" πŸ€–
Python
133
star
73

tpu_pretrain

LM Pretraining with PyTorch/TPU
Python
132
star
74

SciREX

Data/Code Repository for https://api.semanticscholar.org/CorpusID:218470122
Python
128
star
75

scidocs

Dataset accompanying the SPECTER model
Python
127
star
76

lm-explorer

interactive explorer for language models
Python
127
star
77

pdffigures

Command line tool to extract figures, tables, and captions from scholarly documents in PDF form.
C++
125
star
78

OpenBookQA

Code for experiments on OpenBookQA from the EMNLP 2018 paper "Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering"
Python
121
star
79

peS2o

Pretraining Efficiently on S2ORC!
120
star
80

gooaq

Question-answers, collected from Google
Python
116
star
81

allennlp-as-a-library-example

A simple example for how to build your own model using AllenNLP as a dependency.
Python
113
star
82

embodied-clip

Official codebase for EmbCLIP
Python
111
star
83

multimodalqa

Python
109
star
84

alexafsm

With alexafsm, developers can model dialog agents with first-class concepts such as states, attributes, transition, and actions. alexafsm also provides visualization and other tools to help understand, test, debug, and maintain complex FSM conversations.
Python
108
star
85

allennlp-semparse

A framework for building semantic parsers (including neural module networks) with AllenNLP, built by the authors of AllenNLP
Python
107
star
86

scicite

Repository for NAACL 2019 paper on Citation Intent prediction
Python
106
star
87

ai2thor-rearrangement

πŸ”€ Visual Room Rearrangement
Python
104
star
88

commonsense-kg-completion

Python
102
star
89

medicat

Dataset of medical images, captions, subfigure-subcaption annotations, and inline textual references
Python
102
star
90

real-toxicity-prompts

Jupyter Notebook
101
star
91

s2search

The Semantic Scholar Search Reranker
Python
99
star
92

aristo-mini

Aristo mini is a light-weight question answering system that can quickly evaluate Aristo science questions with an evaluation web server and the provided baseline solvers.
Python
96
star
93

gpv-1

A task-agnostic vision-language architecture as a step towards General Purpose Vision
Jupyter Notebook
92
star
94

flex

Few-shot NLP benchmark for unified, rigorous eval
Python
91
star
95

elastic

Python
91
star
96

manipulathor

ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm
Jupyter Notebook
88
star
97

spoc-robot-training

SPOC: Imitating Shortest Paths in Simulation Enables Effective Navigation and Manipulation in the Real World
Python
85
star
98

S2AND

Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite
Python
85
star
99

propara

ProPara (Process Paragraph Comprehension) dataset and models
Python
82
star
100

ARC-Solvers

ARC Question Solvers
Python
82
star