• Stars
    star
    121
  • Rank 293,924 (Top 6 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created about 6 years ago
  • Updated over 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Code for experiments on OpenBookQA from the EMNLP 2018 paper "Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering"

OpenBookQA Models

This repository provides code for various baseline models reported in the EMNLP-2018 paper introducing the OpenBookQA dataset: Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering

@inproceedings{OpenBookQA2018,
 title={Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering},
 author={Todor Mihaylov and Peter Clark and Tushar Khot and Ashish Sabharwal},
 booktitle={EMNLP},
 year={2018}
}

Please visit the OpenBookQA Leaderboard for the latest on this challenge!

Setting Up the Environment

  1. Create the obqa environment using Anaconda

    conda create -n obqa python=3.6
    
  2. Activate the environment

    source activate obqa
    
  3. Install the requirements in the environment:

    Note: The script below installs Pytorch 0.4.0 for CUDA 8 only. If you are using a different CUDA version, please visit http://pytorch.org/ and install the relevant version.

    bash scripts/install_requirements.sh
    

Downloading and Preparing Data

Download the OpenBookQA dataset and embeddings using the script below. Note that this includes downloading glove.840B.300d.txt.gz, a 2GB file containing 300-dimensional GloVe word embeddings trained on 840B tokens, which can take several minutes. If you already have this file, you might consider altering the script.

bash scripts/download_and_prepare_data.sh

Download Pre-trained models

If you are interested in using the pre-trained models from the paper, you can download them using the command below.

Note: Some of the models that use ELMo are more than 700MB. If you do not plan to use them or have a slow internet connection, you might want to modify the download script and exclude them from downloading.

Note: The downloaded models are for best performing run on Dev.

bash scripts/download_trained_models.sh

Training/Evaluating Neural Baselines for OpenBookQA

If you use the script below, you might want to first look at scripts/experiments/qa/run_experiment_openbookqa.sh and set the EXPERIMENTS_OUTPUT_DIR_BASE environment variable to a directory where you want to save the output of the experiments. Default is _experiments.

Note: If you want to use GPU for the experiments, make sure to change the trainer.cuda_device setting to the desired CUDA device id. Default is -1 (no GPU). You can also use scripts/experiments/qa/run_experiment_openbookqa_gpu.sh (automatically sets trainer.cuda_device to CUDA device 0) instead of scripts/experiments/qa/run_experiment_openbookqa.sh in the experiments commands below.

1. Without External Knowledge

Table: Comparison between models with Glove (default) and ELMo. The comparison is mentioned in the text of the paper. The results displayed here are avg accuracy (equivalent to exam score) and the Std across 5 runs with different random seeds and the result for the best run on Dev.

Model Dev (5 runs) Test (5 runs) Dev (Best run) Test
Question-to-Choice (Question Match) 54.6±1.2 50.2±0.9 56.8 49.8
Question-to-Choice + ELMo 57.1±1.1 50.6±1.2 58.4 50.0
ESIM 53.9±0.4 48.9±1.1 54.4 47.4
ESIM + ELMo 55.5±0.6 50.7±0.7 56.4 49.6

1.1 Question-to-Choice Model (Question Match)

Experiments with pre-trained GloVe embedding vectors:

Train a new model

config_file=training_config/qa/multi_choice/openbookqa/reader_mc_qa_question_to_choice.json
bash scripts/experiments/qa/run_experiment_openbookqa.sh ${config_file}

Evaluate on the pre-trained model

MODEL_ARCHIVE=data/trained_models/model_q2ch_best_run.tar.gz
EVALUATION_DATA_FILE=data/OpenBookQA-V1-Sep2018/Data/Main/test.jsonl
python obqa/run.py evaluate_predictions_qa_mc \
                  --archive_file ${MODEL_ARCHIVE} \
                  --evaluation_data_file ${EVALUATION_DATA_FILE} \
                  --output_file ${MODEL_ARCHIVE##*/}_pred_${EVALUATION_DATA_FILE##*/}

Experiments with ELMo contextual word representations:

Train a new model

config_file=training_config/qa/multi_choice/openbookqa/reader_mc_qa_question_to_choice_elmo.json
bash scripts/experiments/qa/run_experiment_openbookqa.sh ${config_file}

Evaluate on the pre-trained model

MODEL_ARCHIVE=data/trained_models/model_q2ch_elmo_best_run.tar.gz
EVALUATION_DATA_FILE=data/OpenBookQA-V1-Sep2018/Data/Main/test.jsonl
python obqa/run.py evaluate_predictions_qa_mc \
                  --archive_file ${MODEL_ARCHIVE} \
                  --evaluation_data_file ${EVALUATION_DATA_FILE} \
                  --output_file ${MODEL_ARCHIVE##*/}_pred_${EVALUATION_DATA_FILE##*/}

1.2 ESIM Model

Experiments with Glove pre-trained embeddings vectors:

Train a new model

config_file=training_config/qa/multi_choice/openbookqa/reader_mc_qa_esim.json
bash scripts/experiments/qa/run_experiment_openbookqa.sh ${config_file}

Evaluate on the pre-trained model

MODEL_ARCHIVE=data/trained_models/model_esim_best_run.tar.gz
EVALUATION_DATA_FILE=data/OpenBookQA-V1-Sep2018/Data/Main/test.jsonl
python obqa/run.py evaluate_predictions_qa_mc \
                  --archive_file ${MODEL_ARCHIVE} \
                  --evaluation_data_file ${EVALUATION_DATA_FILE} \
                  --output_file ${MODEL_ARCHIVE##*/}_pred_${EVALUATION_DATA_FILE##*/}

Experiments with ELMo contextual representations:

Train a new model

config_file=training_config/qa/multi_choice/openbookqa/reader_mc_qa_esim_elmo.json
bash scripts/experiments/qa/run_experiment_openbookqa.sh ${config_file}

Evaluate on the pre-trained model

MODEL_ARCHIVE=data/trained_models/model_esim_elmo_best_run.tar.gz
EVALUATION_DATA_FILE=data/OpenBookQA-V1-Sep2018/Data/Main/test.jsonl
python obqa/run.py evaluate_predictions_qa_mc \
                  --archive_file ${MODEL_ARCHIVE} \
                  --evaluation_data_file ${EVALUATION_DATA_FILE} \
                  --output_file ${MODEL_ARCHIVE##*/}_pred_${EVALUATION_DATA_FILE##*/}

2. Knowledge-Enhanced Models

2.1. Retrieve external knowledge

2.1.1. Open Book Knowledge (1326 Science facts)

Rank OpenBook (Science) knowledge facts for the given question:

DATA_DIR_ROOT=data/
KNOWLEDGE_DIR_ROOT=data/knowledge
OPENBOOKQA_DIR=${DATA_DIR_ROOT}/OpenBookQA-V1-Sep2018

ranking_out_dir=${OPENBOOKQA_DIR}/Data/Main/ranked_knowledge/openbook
mkdir -p ${ranking_out_dir}
data_file=${OPENBOOKQA_DIR}/Data/Main/full.jsonl
know_file=${KNOWLEDGE_DIR_ROOT}/openbook.csv

PYTHONPATH=. python obqa/data/retrieval/knowledge/rank_knowledge_for_mc_qa.py \
                     -o ${ranking_out_dir} -i ${data_file} \
                     -k ${know_file} -n tfidf --max_facts_per_choice 100 \
                     --limit_items 0

2.1.2. Commonsense Knowledge

Open Mind Common Sense part of ConceptNet (cn5omcs)
DATA_DIR_ROOT=data/
KNOWLEDGE_DIR_ROOT=data/knowledge
OPENBOOKQA_DIR=${DATA_DIR_ROOT}/OpenBookQA-V1-Sep2018

ranking_out_dir=${OPENBOOKQA_DIR}/Data/Main/ranked_knowledge/cn5omcs
mkdir -p ${ranking_out_dir}
data_file=${OPENBOOKQA_DIR}/Data/Main/full.jsonl
know_file=${KNOWLEDGE_DIR_ROOT}/CN5/cn5_omcs.json

PYTHONPATH=. python obqa/data/retrieval/knowledge/rank_knowledge_for_mc_qa.py \
                     -o ${ranking_out_dir} -i ${data_file} \
                     -k ${know_file} -n tfidf --max_facts_per_choice 100 \
                     --limit_items 0
WordNet part of ConceptNet (cn5wordnet)
DATA_DIR_ROOT=data/
KNOWLEDGE_DIR_ROOT=data/knowledge
OPENBOOKQA_DIR=${DATA_DIR_ROOT}/OpenBookQA-V1-Sep2018

ranking_out_dir=${OPENBOOKQA_DIR}/Data/Main/ranked_knowledge/cn5wordnet
mkdir -p ${ranking_out_dir}
data_file=${OPENBOOKQA_DIR}/Data/Main/full.jsonl
know_file=${KNOWLEDGE_DIR_ROOT}/CN5/cn5_wordnet.json

PYTHONPATH=. python obqa/data/retrieval/knowledge/rank_knowledge_for_mc_qa.py \
                     -o ${ranking_out_dir} -i ${data_file} \
                     -k ${know_file} -n tfidf --max_facts_per_choice 100 \
                     --limit_items 0

2.1.3. Retrieve "Gold" Fact from the Open Book (Oracle)

Note: This is Oracle knowledge -- a hypothetical setting that assumes access to the gold science fact. The goal here is to allow research effort to focus on the sub-challenges of retrieving the missing commonsense knowledge, and reasoning with both facts in order to answer the question. A full model for OpenBookQA should, of course, not rely on such Oracle knowledge.

DATA_DIR_ROOT=data/
KNOWLEDGE_DIR_ROOT=data/knowledge
OPENBOOKQA_DIR=${DATA_DIR_ROOT}/OpenBookQA-V1-Sep2018

ranking_out_dir=${OPENBOOKQA_DIR}/Data/Main/ranked_knowledge/openbook_oracle
mkdir -p ${ranking_out_dir}
data_file=${OPENBOOKQA_DIR}/Data/Main/full.jsonl
know_file=${OPENBOOKQA_DIR}/Data/Additional/full_complete.jsonl

PYTHONPATH=. python obqa/data/retrieval/knowledge/rank_knowledge_for_mc_qa.py \
                    -o ${ranking_out_dir} -i ${data_file} \
                    -k ${know_file} -n tfidf  --max_facts_per_choice 1 \
                    --limit_items 0 \
                    --knowledge_reader reader_gold_facts_arc_mc_qa_2 \
                    --dataset_reader reader_arc_qa_question_choice_facts

2.2. Train Knowledge-Enhanced Reader With Above Knowledge

Various baselines that adapt and train the Knowledge-Enhanced Reader model from ACL-2018 for the OpenBookQA setting, using various sources of knowledge.

2.2.1. Oracle Setting

  • Oracle Open Book fact + Conceptnet OMCS (referred to as the f + ConceptNet Oracle setup in the paper)
config_file=training_config/qa/multi_choice/openbookqa/knowreader_v1_mc_qa_multi_source_oracle_openbook_plus_cn5omcs.json
bash scripts/experiments/qa/run_experiment_openbookqa.sh ${config_file}
  • Oracle Open Book fact + WordNet (referred to as the f + WordNet Oracle setup in the paper)
config_file=training_config/qa/multi_choice/openbookqa/knowreader_v1_mc_qa_multi_source_oracle_openbook_plus_cn5wordnet.json
bash scripts/experiments/qa/run_experiment_openbookqa.sh ${config_file}

2.2.2. Normal (Non-Oracle) Setting

Note: These experiments are not reported in the main paper! These are additional baseline models whose Dev and Test scores are listed below for reference.

Table: Additional (Non-Oracle) experiments with external knowledge. The results displayed here are avg accuracy (equivalent to exam score) and the Std across 5 runs with different random seeds and the result for the best run on Dev.

Model Dev (5 runs) Test (5 runs) Dev (Best run) Test
ConceptNet only (cn5omcs) 54.0±0.6 51.1±2.1 54.4 52.2
Wordnet only (cn5wordnet) 54.9±0.4 49.4±1.5 55.6 51.4
OpenBook + ConceptNet 53.8±1.0 51.2±1.1 54.6 50.8
OpenBook + Wordnet 53.3±0.7 50.6±0.6 54.2 51.2

Below are commands for training new models or evaluating on the pre-trained models from the EMNLP paper. Note that even if you just evaluate on pre-trained models, you still need to run the knowledge retrieval from 2.1. Retrieve external knowledge.

  • Open Mind Common Sense part of ConceptNet only (cn5omcs)

Train a new model

config_file=training_config/qa/multi_choice/openbookqa/knowreader_v1_mc_qa_multi_source_cn5omcs.json
bash scripts/experiments/qa/run_experiment_openbookqa.sh ${config_file}

Evaluate on the pre-trained model

MODEL_ARCHIVE=data/trained_models/model_kn_conceptnet5_best_run.tar.gz
EVALUATION_DATA_FILE=data/OpenBookQA-V1-Sep2018/Data/Main/test.jsonl
python obqa/run.py evaluate_predictions_qa_mc_know_visualize \
                  --archive_file ${MODEL_ARCHIVE} \
                  --evaluation_data_file ${EVALUATION_DATA_FILE} \
                  --output_file ${MODEL_ARCHIVE##*/}_pred_${EVALUATION_DATA_FILE##*/}
  • WordNet part of ConceptNet only (cn5wordnet)

Train a new model

config_file=training_config/qa/multi_choice/openbookqa/knowreader_v1_mc_qa_multi_source_cn5wordnet.json
bash scripts/experiments/qa/run_experiment_openbookqa.sh ${config_file}

Evaluate on the pre-trained model

MODEL_ARCHIVE=data/trained_models/model_kn_wordnet_best_run.tar.gz
EVALUATION_DATA_FILE=data/OpenBookQA-V1-Sep2018/Data/Main/test.jsonl
python obqa/run.py evaluate_predictions_qa_mc_know_visualize \
                  --archive_file ${MODEL_ARCHIVE} \
                  --evaluation_data_file ${EVALUATION_DATA_FILE} \
                  --output_file ${MODEL_ARCHIVE##*/}_pred_${EVALUATION_DATA_FILE##*/}
  • Open Book + Open Mind Common Sense part of ConceptNet (Note: this is not the Oracle setup from the paper; instead, science facts from the Open Book are retrieved based on a TF-IDF similarity measure with the question and answer choices)

Train a new model

config_file=training_config/qa/multi_choice/openbookqa/knowreader_v1_mc_qa_multi_source_openbook_plus_cn5omcs.json
bash scripts/experiments/qa/run_experiment_openbookqa.sh ${config_file}

Evaluate on the pre-trained model

MODEL_ARCHIVE=data/trained_models/model_kn_conceptnet5_and_openbook_best_run.tar.gz
EVALUATION_DATA_FILE=data/OpenBookQA-V1-Sep2018/Data/Main/test.jsonl
python obqa/run.py evaluate_predictions_qa_mc_know_visualize \
                  --archive_file ${MODEL_ARCHIVE} \
                  --evaluation_data_file ${EVALUATION_DATA_FILE} \
                  --output_file ${MODEL_ARCHIVE##*/}_pred_${EVALUATION_DATA_FILE##*/}
  • Open Book + WordNet part of ConceptNet (Note: Similar to above, this is not the Oracle setup from the paper)

Train a new model

config_file=training_config/qa/multi_choice/openbookqa/knowreader_v1_mc_qa_multi_source_openbook_plus_cn5wordnet.json
bash scripts/experiments/qa/run_experiment_openbookqa.sh ${config_file}

Evaluate on the pre-trained model

MODEL_ARCHIVE=data/trained_models/model_kn_wordnet_and_openbook_best_run.tar.gz
EVALUATION_DATA_FILE=data/OpenBookQA-V1-Sep2018/Data/Main/test.jsonl
python obqa/run.py evaluate_predictions_qa_mc_know_visualize \
                  --archive_file ${MODEL_ARCHIVE} \
                  --evaluation_data_file ${EVALUATION_DATA_FILE} \
                  --output_file ${MODEL_ARCHIVE##*/}_pred_${EVALUATION_DATA_FILE##*/}

Appendix

A. Experiments with SciTail, using BiLSTM max-out model

If you are also interested in SciTail entailment task (Khot et. al 2017), here is a simple BiLSTM max-out model that attains an accuracy of 87% and 85% on the Dev and Test sets, resp. (without extensive hyper-parameter tuning).

A.1 Download Scitail Dataset

bash scripts/download_and_prepare_data_scitail.sh

A.2 Train the Entailment Model

python obqa/run.py train \
    -s _experiments/scitail_bilstm_maxout/ \
    training_config/entailment/scitail/stacked_nn_aggregate_custom_bilstm_maxout_scitail.json

B. Experiments with ARC, using Question-to-Choice BiLSTM max-out model

If you are also interested in the ARC Challenge, our Question-to-Choice BiLSTM max-out model obtains an accuracy of 33.9% on the Test set (without extensive hyper-parameter tuning).

Download ARC Dataset

bash scripts/download_and_prepare_data_arc.sh

Train the QA Model

python obqa/run.py train \
    -s _experiments/qa_multi_question_to_choices/ \
    training_config/qa/multi_choice/arc/reader_qa_multi_choice_max_att_ARC_Chellenge_full.json

Contact

If you have any questions or comments about the code, data, or models, please contact Todor Mihaylov, Ashish Sabharwal, Tushar Khot, or Peter Clark.


More Repositories

1

allennlp

An open-source NLP research library, built on PyTorch.
Python
11,751
star
2

OLMo

Modeling, training, eval, and inference code for OLMo
Python
4,535
star
3

RL4LMs

A modular RL library to fine-tune language models to human preferences
Python
2,101
star
4

longformer

Longformer: The Long-Document Transformer
Python
2,022
star
5

bilm-tf

Tensorflow implementation of contextualized word representations from bi-directional language models
Python
1,621
star
6

scispacy

A full spaCy pipeline and models for scientific/biomedical documents.
Python
1,618
star
7

bi-att-flow

Bi-directional Attention Flow (BiDAF) network is a multi-stage hierarchical process that represents context at different levels of granularity and uses a bi-directional attention flow mechanism to achieve a query-aware context representation without early summarization.
Python
1,533
star
8

scibert

A BERT model for scientific text.
Python
1,495
star
9

open-instruct

Python
1,185
star
10

ai2thor

An open-source platform for Visual AI.
C#
1,160
star
11

dolma

Data and tools for generating and inspecting OLMo pre-training data.
Python
961
star
12

XNOR-Net

ImageNet classification using binary Convolutional Neural Networks
Lua
839
star
13

s2orc

S2ORC: The Semantic Scholar Open Research Corpus: https://www.aclweb.org/anthology/2020.acl-main.447/
Python
817
star
14

mmc4

MultimodalC4 is a multimodal extension of c4 that interleaves millions of images with text.
Python
793
star
15

scitldr

Python
734
star
16

objaverse-xl

🪐 Objaverse-XL is a Universe of 10M+ 3D Objects. Contains API Scripts for Downloading and Processing!
Python
701
star
17

papermage

library supporting NLP and CV research on scientific papers
Python
692
star
18

natural-instructions

Expanding natural instructions
Python
690
star
19

visprog

Official code for VisProg (CVPR 2023 Best Paper!)
Python
686
star
20

science-parse

Science Parse parses scientific papers (in PDF form) and returns them in structured form.
Java
611
star
21

pdffigures2

Given a scholarly PDF, extract figures, tables, captions, and section titles.
Scala
593
star
22

writing-code-for-nlp-research-emnlp2018

A companion repository for the "Writing code for NLP Research" Tutorial at EMNLP 2018
Python
558
star
23

tango

Organize your experiments into discrete steps that can be cached and reused throughout the lifetime of your research project.
Python
528
star
24

allennlp-models

Officially supported AllenNLP models
Python
521
star
25

specter

SPECTER: Document-level Representation Learning using Citation-informed Transformers
Python
506
star
26

dont-stop-pretraining

Code associated with the Don't Stop Pretraining ACL 2020 paper
Python
488
star
27

unified-io-2

Python
471
star
28

macaw

Multi-angle c(q)uestion answering
Python
451
star
29

lumos

Code and data for "Lumos: Learning Agents with Unified Data, Modular Design, and Open-Source LLMs"
Python
433
star
30

document-qa

Python
420
star
31

scholarphi

An interactive PDF reader.
Python
418
star
32

deep_qa

A deep NLP library, based on Keras / tf, focused on question answering (but useful for other NLP too)
Python
404
star
33

acl2018-semantic-parsing-tutorial

Materials from the ACL 2018 tutorial on neural semantic parsing
402
star
34

unifiedqa

UnifiedQA: Crossing Format Boundaries With a Single QA System
Python
384
star
35

pawls

Software that makes labeling PDFs easy.
Python
380
star
36

OLMoE

OLMoE: Open Mixture-of-Experts Language Models
Jupyter Notebook
374
star
37

kb

KnowBert -- Knowledge Enhanced Contextual Word Representations
Python
359
star
38

PeerRead

Data and code for Kang et al., NAACL 2018's paper titled "A Dataset of Peer Reviews (PeerRead): Collection, Insights and NLP Applications"
Python
354
star
39

reward-bench

RewardBench: the first evaluation tool for reward models.
Python
346
star
40

naacl2021-longdoc-tutorial

Python
342
star
41

openie-standalone

Quality information extraction at web scale. Edit
Scala
327
star
42

Holodeck

CVPR 2024: Language Guided Generation of 3D Embodied AI Environments.
Python
319
star
43

python-package-template

A template repo for Python packages
Python
318
star
44

allenact

An open source framework for research in Embodied-AI from AI2.
Python
316
star
45

ir_datasets

Provides a common interface to many IR ranking datasets.
Python
314
star
46

s2orc-doc2json

Parsers for scientific papers (PDF2JSON, TEX2JSON, JATS2JSON)
Python
302
star
47

acl2022-zerofewshot-tutorial

291
star
48

OLMo-Eval

Evaluation suite for LLMs
Python
280
star
49

procthor

🏘️ Scaling Embodied AI by Procedurally Generating Interactive 3D Houses
Python
257
star
50

fm-cheatsheet

Website for hosting the Open Foundation Models Cheat Sheet.
JavaScript
255
star
51

FineGrainedRLHF

Python
243
star
52

beaker-cli

A collaborative platform for rapid and reproducible research.
Go
230
star
53

comet-atomic-2020

Python
228
star
54

spv2

Science-parse version 2
Python
225
star
55

scifact

Data and models for the SciFact verification task.
Python
217
star
56

objaverse-rendering

📷 Scripts for rendering Objaverse
Python
206
star
57

ScienceWorld

ScienceWorld is a text-based virtual environment centered around accomplishing tasks from the standardized elementary science curriculum.
Scala
197
star
58

unified-io-inference

Jupyter Notebook
196
star
59

allennlp-demo

Code for the AllenNLP demo.
TypeScript
191
star
60

citeomatic

A citation recommendation system that allows users to find relevant citations for their paper drafts. The tool is backed by Semantic Scholar's OpenCorpus dataset.
Jupyter Notebook
189
star
61

cartography

Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics
Jupyter Notebook
188
star
62

savn

Learning to Learn how to Learn: Self-Adaptive Visual Navigation using Meta-Learning (https://arxiv.org/abs/1812.00971)
Python
175
star
63

vampire

Variational Methods for Pretraining in Resource-limited Environments
Python
173
star
64

vila

Incorporating VIsual LAyout Structures for Scientific Text Classification
Python
172
star
65

s2-folks

Public space for the user community of Semantic Scholar APIs to share scripts, report issues, and make suggestions.
171
star
66

hidden-networks

Python
164
star
67

cord19

Get started with CORD-19
161
star
68

mmda

multimodal document analysis
Jupyter Notebook
158
star
69

PRIMER

The official code for PRIMERA: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization
Python
150
star
70

catwalk

This project studies the performance and robustness of language models and task-adaptation methods.
Python
141
star
71

dnw

Discovering Neural Wirings (https://arxiv.org/abs/1906.00586)
Python
139
star
72

deepfigures-open

Companion code to the paper "Extracting Scientific Figures with Distantly Supervised Neural Networks" 🤖
Python
133
star
73

tpu_pretrain

LM Pretraining with PyTorch/TPU
Python
132
star
74

allentune

Hyperparameter Search for AllenNLP
Python
128
star
75

SciREX

Data/Code Repository for https://api.semanticscholar.org/CorpusID:218470122
Python
128
star
76

scidocs

Dataset accompanying the SPECTER model
Python
127
star
77

lm-explorer

interactive explorer for language models
Python
127
star
78

pdffigures

Command line tool to extract figures, tables, and captions from scholarly documents in PDF form.
C++
125
star
79

peS2o

Pretraining Efficiently on S2ORC!
120
star
80

gooaq

Question-answers, collected from Google
Python
116
star
81

allennlp-as-a-library-example

A simple example for how to build your own model using AllenNLP as a dependency.
Python
113
star
82

embodied-clip

Official codebase for EmbCLIP
Python
111
star
83

multimodalqa

Python
109
star
84

alexafsm

With alexafsm, developers can model dialog agents with first-class concepts such as states, attributes, transition, and actions. alexafsm also provides visualization and other tools to help understand, test, debug, and maintain complex FSM conversations.
Python
108
star
85

allennlp-semparse

A framework for building semantic parsers (including neural module networks) with AllenNLP, built by the authors of AllenNLP
Python
107
star
86

scicite

Repository for NAACL 2019 paper on Citation Intent prediction
Python
106
star
87

ai2thor-rearrangement

🔀 Visual Room Rearrangement
Python
104
star
88

commonsense-kg-completion

Python
102
star
89

medicat

Dataset of medical images, captions, subfigure-subcaption annotations, and inline textual references
Python
102
star
90

real-toxicity-prompts

Jupyter Notebook
101
star
91

s2search

The Semantic Scholar Search Reranker
Python
99
star
92

aristo-mini

Aristo mini is a light-weight question answering system that can quickly evaluate Aristo science questions with an evaluation web server and the provided baseline solvers.
Python
96
star
93

gpv-1

A task-agnostic vision-language architecture as a step towards General Purpose Vision
Jupyter Notebook
92
star
94

flex

Few-shot NLP benchmark for unified, rigorous eval
Python
91
star
95

elastic

Python
91
star
96

manipulathor

ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm
Jupyter Notebook
88
star
97

spoc-robot-training

SPOC: Imitating Shortest Paths in Simulation Enables Effective Navigation and Manipulation in the Real World
Python
85
star
98

S2AND

Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite
Python
85
star
99

propara

ProPara (Process Paragraph Comprehension) dataset and models
Python
82
star
100

ARC-Solvers

ARC Question Solvers
Python
82
star