• Stars
    star
    314
  • Rank 133,353 (Top 3 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created about 4 years ago
  • Updated 3 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Provides a common interface to many IR ranking datasets.

ir_datasets

ir_datasets is a python package that provides a common interface to many IR ad-hoc ranking benchmarks, training datasets, etc.

The package takes care of downloading datasets (including documents, queries, relevance judgments, etc.) when available from public sources. Instructions on how to obtain datasets are provided when they are not publicly available.

ir_datasets provides a common iterator format to allow them to be easily used in python. It attempts to provide the data in an unaltered form (i.e., keeping all fields and markup), while handling differences in file formats, encoding, etc. Adapters provide extra functionality, e.g., to allow quick lookups of documents by ID.

A command line interface is also available.

You can find a list of datasets and their features here. Want a new dataset, added functionality, or a bug fixed? Feel free to post an issue or make a pull request!

Getting Started

For a quick start with the Python API, check out our Colab tutorials: Python Command Line

Install via pip:

pip install ir_datasets

If you want the main branch, you install as such:

pip install git+https://github.com/allenai/ir_datasets.git

If you want to build from source, use:

$ git clone https://github.com/allenai/ir_datasets
$ cd ir_datasets
$ python setup.py bdist_wheel
$ pip install dist/ir_datasets-*.whl

Tested with python versions 3.7, 3.8, 3.9, and 3.10. (Mininum python version is 3.7.)

Features

Python and Command Line Interfaces. Access datasts both through a simple Python API and via the command line.

import ir_datasets
dataset = ir_datasets.load('msmarco-passage/train')
# Documents
for doc in dataset.docs_iter():
    print(doc)
# GenericDoc(doc_id='0', text='The presence of communication amid scientific minds was equa...
# GenericDoc(doc_id='1', text='The Manhattan Project and its atomic bomb helped bring an en...
# ...
ir_datasets export msmarco-passage/train docs | head -n2
0 The presence of communication amid scientific minds was equally important to the success of the Manh...
1 The Manhattan Project and its atomic bomb helped bring an end to World War II. Its legacy of peacefu...

Automatically downloads source files (when available). Will download and verify the source files for queries, documents, qrels, etc. when they are publicly available, as they are needed. A CI build checks weekly to ensure that all the downloadable content is available and correct: Downloadable Content. We mirror some troublesome files on mirror.ir-datasets.com, and automatically switch to the mirror when the original source is not available.

import ir_datasets
dataset = ir_datasets.load('msmarco-passage/train')
for doc in dataset.docs_iter(): # Will download and extract MS-MARCO's collection.tar.gz the first time
    ...
for query in dataset.queries_iter(): # Will download and extract MS-MARCO's queries.tar.gz the first time
    ...

Instructions for dataset access (when not publicly available). Provides instructions on how to get a copy of the data when it is not publicly available online (e.g., when it requires a data usage agreement).

import ir_datasets
dataset = ir_datasets.load('trec-arabic')
for doc in dataset.docs_iter():
    ...
# Provides the following instructions:
# The dataset is based on the Arabic Newswire corpus. It is available from the LDC via: <https://catalog.ldc.upenn.edu/LDC2001T55>
# To proceed, symlink the source file here: [gives path]

Support for datasets big and small. By using iterators, supports large datasets that may not fit into system memory, such as ClueWeb.

import ir_datasets
dataset = ir_datasets.load('clueweb09')
for doc in dataset.docs_iter():
    ... # will iterate through all ~1B documents

Fixes known dataset issues. For instance, automatically corrects the document UTF-8 encoding problem in the MS-MARCO passage collection.

import ir_datasets
dataset = ir_datasets.load('msmarco-passage')
docstore = dataset.docs_store()
docstore.get('243').text
# "John Maynard Keynes, 1st Baron Keynes, CB, FBA (/ˈkeɪnz/ KAYNZ; 5 June 1883 – 21 April [SNIP]"
# Naïve UTF-8 decoding yields double-encoding artifacts like:
# "John Maynard Keynes, 1st Baron Keynes, CB, FBA (/Ë\x88keɪnz/ KAYNZ; 5 June 1883 â\x80\x93 21 April [SNIP]"
#                                                  ~~~~~~  ~~                       ~~~~~~~~~

Fast Random Document Access. Builds data structures that allow fast and efficient lookup of document content. For large datasets, such as ClueWeb, uses checkpoint files to load documents from source 40x faster than normal. Results are cached for even faster subsequent accesses.

import ir_datasets
dataset = ir_datasets.load('clueweb12')
docstore = dataset.docs_store()
docstore.get_many(['clueweb12-0000tw-05-00014', 'clueweb12-0000tw-05-12119', 'clueweb12-0106wb-18-19516'])
# {'clueweb12-0000tw-05-00014': ..., 'clueweb12-0000tw-05-12119': ..., 'clueweb12-0106wb-18-19516': ...}

Fancy Iter Slicing. Sometimes it's helpful to be able to select ranges of data (e.g., for processing document collections in parallel on multiple devices). Efficient implementations of slicing operations allow for much faster dataset partitioning than using itertools.slice.

import ir_datasets
dataset = ir_datasets.load('clueweb12')
dataset.docs_iter()[500:1000] # normal slicing behavior
# WarcDoc(doc_id='clueweb12-0000tw-00-00502', ...), WarcDoc(doc_id='clueweb12-0000tw-00-00503', ...), ...
dataset.docs_iter()[-10:-8] # includes negative indexing
# WarcDoc(doc_id='clueweb12-1914wb-28-24245', ...), WarcDoc(doc_id='clueweb12-1914wb-28-24246', ...)
dataset.docs_iter()[::100] # includes support for skip (only positive values)
# WarcDoc(doc_id='clueweb12-0000tw-00-00000', ...), WarcDoc(doc_id='clueweb12-0000tw-00-00100', ...), ...
dataset.docs_iter()[1/3:2/3] # supports proportional slicing (this takes the middle third of the collection)
# WarcDoc(doc_id='clueweb12-0605wb-28-12714', ...), WarcDoc(doc_id='clueweb12-0605wb-28-12715', ...), ...

Datasets

Available datasets include:

There are "subsets" under each dataset. For instance, clueweb12/b13/trec-misinfo-2019 provides the queries and judgments from the 2019 TREC misinformation track, and msmarco-document/orcas provides the ORCAS dataset. They tend to be organized with the document collection at the top level.

See the ir_dataets docs (ir_datasets.com) for details about each dataset, its available subsets, and what data they provide.

Environment variables

  • IR_DATASETS_HOME: Home directory for ir_datasets data (default ~/.ir_datasets/). Contains directories for each top-level dataset.
  • IR_DATASETS_TMP: Temporary working directory (default /tmp/ir_datasets/).
  • IR_DATASETS_DL_TIMEOUT: Download stream read timeout, in seconds (default 15). If no data is received within this duration, the connection will be assumed to be dead, and another download may be attempted.
  • IR_DATASETS_DL_TRIES: Default number of download attempts before exception is thrown (default 3). When the server accepts Range requests, uses them. Otherwise, will download the entire file again
  • IR_DATASETS_DL_DISABLE_PBAR: Set to true to disable the progress bar for downloads. Useful in settings where an interactive console is not available.
  • IR_DATASETS_DL_SKIP_SSL: Set to true to disable checking SSL certificates when downloading files. Useful as a short-term solution when SSL certificates expire or are otherwise invalid. Note that this does not disable hash verification of the downloaded content.
  • IR_DATASETS_SKIP_DISK_FREE: Set to true to disable checks for enough free space on disk before downloading content or otherwise creating large files.
  • IR_DATASETS_SMALL_FILE_SIZE: The size of files that are considered "small", in bytes. Instructions for linking small files rather then downloading them are not shown. Defaults to 5000000 (5MB).

Citing

When using datasets provided by this package, be sure to properly cite them. Bibtex for each dataset can be found on the datasets documentation page.

If you use this tool, please cite our SIGIR resource paper:

@inproceedings{macavaney:sigir2021-irds,
  author = {MacAvaney, Sean and Yates, Andrew and Feldman, Sergey and Downey, Doug and Cohan, Arman and Goharian, Nazli},
  title = {Simplified Data Wrangling with ir_datasets},
  year = {2021},
  booktitle = {SIGIR}
}

Credits

Contributors to this repository:

  • Sean MacAvaney (University of Glasgow)
  • Shuo Sun (Johns Hopkins University)
  • Thomas Jänich (University of Glasgow)
  • Jan Heinrich Reimer (Martin Luther University Halle-Wittenberg)
  • Maik Fröbe (Martin Luther University Halle-Wittenberg)
  • Eugene Yang (Johns Hopkins University)
  • Augustin Godinot (NAVERLABS Europe, ENS Paris-Saclay)

More Repositories

1

allennlp

An open-source NLP research library, built on PyTorch.
Python
11,751
star
2

OLMo

Modeling, training, eval, and inference code for OLMo
Python
4,535
star
3

RL4LMs

A modular RL library to fine-tune language models to human preferences
Python
2,101
star
4

longformer

Longformer: The Long-Document Transformer
Python
2,022
star
5

bilm-tf

Tensorflow implementation of contextualized word representations from bi-directional language models
Python
1,621
star
6

scispacy

A full spaCy pipeline and models for scientific/biomedical documents.
Python
1,618
star
7

bi-att-flow

Bi-directional Attention Flow (BiDAF) network is a multi-stage hierarchical process that represents context at different levels of granularity and uses a bi-directional attention flow mechanism to achieve a query-aware context representation without early summarization.
Python
1,533
star
8

scibert

A BERT model for scientific text.
Python
1,495
star
9

open-instruct

Python
1,185
star
10

ai2thor

An open-source platform for Visual AI.
C#
1,160
star
11

dolma

Data and tools for generating and inspecting OLMo pre-training data.
Python
961
star
12

XNOR-Net

ImageNet classification using binary Convolutional Neural Networks
Lua
839
star
13

s2orc

S2ORC: The Semantic Scholar Open Research Corpus: https://www.aclweb.org/anthology/2020.acl-main.447/
Python
817
star
14

mmc4

MultimodalC4 is a multimodal extension of c4 that interleaves millions of images with text.
Python
793
star
15

scitldr

Python
734
star
16

objaverse-xl

🪐 Objaverse-XL is a Universe of 10M+ 3D Objects. Contains API Scripts for Downloading and Processing!
Python
701
star
17

papermage

library supporting NLP and CV research on scientific papers
Python
692
star
18

natural-instructions

Expanding natural instructions
Python
690
star
19

visprog

Official code for VisProg (CVPR 2023 Best Paper!)
Python
686
star
20

science-parse

Science Parse parses scientific papers (in PDF form) and returns them in structured form.
Java
611
star
21

pdffigures2

Given a scholarly PDF, extract figures, tables, captions, and section titles.
Scala
593
star
22

writing-code-for-nlp-research-emnlp2018

A companion repository for the "Writing code for NLP Research" Tutorial at EMNLP 2018
Python
558
star
23

tango

Organize your experiments into discrete steps that can be cached and reused throughout the lifetime of your research project.
Python
528
star
24

allennlp-models

Officially supported AllenNLP models
Python
521
star
25

specter

SPECTER: Document-level Representation Learning using Citation-informed Transformers
Python
506
star
26

dont-stop-pretraining

Code associated with the Don't Stop Pretraining ACL 2020 paper
Python
488
star
27

unified-io-2

Python
471
star
28

macaw

Multi-angle c(q)uestion answering
Python
451
star
29

lumos

Code and data for "Lumos: Learning Agents with Unified Data, Modular Design, and Open-Source LLMs"
Python
433
star
30

document-qa

Python
420
star
31

scholarphi

An interactive PDF reader.
Python
418
star
32

deep_qa

A deep NLP library, based on Keras / tf, focused on question answering (but useful for other NLP too)
Python
404
star
33

acl2018-semantic-parsing-tutorial

Materials from the ACL 2018 tutorial on neural semantic parsing
402
star
34

unifiedqa

UnifiedQA: Crossing Format Boundaries With a Single QA System
Python
384
star
35

pawls

Software that makes labeling PDFs easy.
Python
380
star
36

OLMoE

OLMoE: Open Mixture-of-Experts Language Models
Jupyter Notebook
374
star
37

kb

KnowBert -- Knowledge Enhanced Contextual Word Representations
Python
359
star
38

PeerRead

Data and code for Kang et al., NAACL 2018's paper titled "A Dataset of Peer Reviews (PeerRead): Collection, Insights and NLP Applications"
Python
354
star
39

reward-bench

RewardBench: the first evaluation tool for reward models.
Python
346
star
40

naacl2021-longdoc-tutorial

Python
342
star
41

openie-standalone

Quality information extraction at web scale. Edit
Scala
327
star
42

Holodeck

CVPR 2024: Language Guided Generation of 3D Embodied AI Environments.
Python
319
star
43

python-package-template

A template repo for Python packages
Python
318
star
44

allenact

An open source framework for research in Embodied-AI from AI2.
Python
316
star
45

s2orc-doc2json

Parsers for scientific papers (PDF2JSON, TEX2JSON, JATS2JSON)
Python
302
star
46

acl2022-zerofewshot-tutorial

291
star
47

OLMo-Eval

Evaluation suite for LLMs
Python
280
star
48

procthor

🏘️ Scaling Embodied AI by Procedurally Generating Interactive 3D Houses
Python
257
star
49

fm-cheatsheet

Website for hosting the Open Foundation Models Cheat Sheet.
JavaScript
255
star
50

FineGrainedRLHF

Python
243
star
51

beaker-cli

A collaborative platform for rapid and reproducible research.
Go
230
star
52

comet-atomic-2020

Python
228
star
53

spv2

Science-parse version 2
Python
225
star
54

scifact

Data and models for the SciFact verification task.
Python
217
star
55

objaverse-rendering

📷 Scripts for rendering Objaverse
Python
206
star
56

ScienceWorld

ScienceWorld is a text-based virtual environment centered around accomplishing tasks from the standardized elementary science curriculum.
Scala
197
star
57

unified-io-inference

Jupyter Notebook
196
star
58

allennlp-demo

Code for the AllenNLP demo.
TypeScript
191
star
59

citeomatic

A citation recommendation system that allows users to find relevant citations for their paper drafts. The tool is backed by Semantic Scholar's OpenCorpus dataset.
Jupyter Notebook
189
star
60

cartography

Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics
Jupyter Notebook
188
star
61

savn

Learning to Learn how to Learn: Self-Adaptive Visual Navigation using Meta-Learning (https://arxiv.org/abs/1812.00971)
Python
175
star
62

vampire

Variational Methods for Pretraining in Resource-limited Environments
Python
173
star
63

vila

Incorporating VIsual LAyout Structures for Scientific Text Classification
Python
172
star
64

s2-folks

Public space for the user community of Semantic Scholar APIs to share scripts, report issues, and make suggestions.
171
star
65

hidden-networks

Python
164
star
66

cord19

Get started with CORD-19
161
star
67

mmda

multimodal document analysis
Jupyter Notebook
158
star
68

PRIMER

The official code for PRIMERA: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization
Python
150
star
69

catwalk

This project studies the performance and robustness of language models and task-adaptation methods.
Python
141
star
70

dnw

Discovering Neural Wirings (https://arxiv.org/abs/1906.00586)
Python
139
star
71

deepfigures-open

Companion code to the paper "Extracting Scientific Figures with Distantly Supervised Neural Networks" 🤖
Python
133
star
72

tpu_pretrain

LM Pretraining with PyTorch/TPU
Python
132
star
73

allentune

Hyperparameter Search for AllenNLP
Python
128
star
74

SciREX

Data/Code Repository for https://api.semanticscholar.org/CorpusID:218470122
Python
128
star
75

scidocs

Dataset accompanying the SPECTER model
Python
127
star
76

lm-explorer

interactive explorer for language models
Python
127
star
77

pdffigures

Command line tool to extract figures, tables, and captions from scholarly documents in PDF form.
C++
125
star
78

OpenBookQA

Code for experiments on OpenBookQA from the EMNLP 2018 paper "Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering"
Python
121
star
79

peS2o

Pretraining Efficiently on S2ORC!
120
star
80

gooaq

Question-answers, collected from Google
Python
116
star
81

allennlp-as-a-library-example

A simple example for how to build your own model using AllenNLP as a dependency.
Python
113
star
82

embodied-clip

Official codebase for EmbCLIP
Python
111
star
83

multimodalqa

Python
109
star
84

alexafsm

With alexafsm, developers can model dialog agents with first-class concepts such as states, attributes, transition, and actions. alexafsm also provides visualization and other tools to help understand, test, debug, and maintain complex FSM conversations.
Python
108
star
85

allennlp-semparse

A framework for building semantic parsers (including neural module networks) with AllenNLP, built by the authors of AllenNLP
Python
107
star
86

scicite

Repository for NAACL 2019 paper on Citation Intent prediction
Python
106
star
87

ai2thor-rearrangement

🔀 Visual Room Rearrangement
Python
104
star
88

commonsense-kg-completion

Python
102
star
89

medicat

Dataset of medical images, captions, subfigure-subcaption annotations, and inline textual references
Python
102
star
90

real-toxicity-prompts

Jupyter Notebook
101
star
91

s2search

The Semantic Scholar Search Reranker
Python
99
star
92

aristo-mini

Aristo mini is a light-weight question answering system that can quickly evaluate Aristo science questions with an evaluation web server and the provided baseline solvers.
Python
96
star
93

gpv-1

A task-agnostic vision-language architecture as a step towards General Purpose Vision
Jupyter Notebook
92
star
94

flex

Few-shot NLP benchmark for unified, rigorous eval
Python
91
star
95

elastic

Python
91
star
96

manipulathor

ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm
Jupyter Notebook
88
star
97

spoc-robot-training

SPOC: Imitating Shortest Paths in Simulation Enables Effective Navigation and Manipulation in the Real World
Python
85
star
98

S2AND

Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite
Python
85
star
99

propara

ProPara (Process Paragraph Comprehension) dataset and models
Python
82
star
100

ARC-Solvers

ARC Question Solvers
Python
82
star