• Stars
    star
    793
  • Rank 57,419 (Top 2 %)
  • Language
    Python
  • License
    MIT License
  • Created over 1 year ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

MultimodalC4 is a multimodal extension of c4 that interleaves millions of images with text.

๐Ÿ“ท ๐Ÿ“ Multimodal C4 (mmc4) ๐Ÿ“ ๐Ÿ“ท

An open, billion-scale corpus of images interleaved with text.

arXiv paper with curation details out now!


Updates

  • released mmc4 version 1.1 ๐Ÿ”ฅ which fixes #11 and #10

Corpus stats (v1.1)

# images # docs # tokens
Multimodal-C4 (mmc4) 571M 101.2M 43B
Multimodal-C4 fewer-faces (mmc4-ff) 375M 77.7M 33B
Multimodal-C4 core (mmc4-core) 29.9M 7.3M 2.4B
Multimodal-C4 core fewer-faces (mmc4-core-ff) 22.4M 5.5M 1.8B

More details about these datasets and our processing steps can be found in our paper. (the current paper results describe v1 of the corpus, we will update to v1.1 soon).

Accessing mmc4-ff

Documents

You can directly download the "fewer faces" multimodal c4 documents at urls like this:

https://storage.googleapis.com/ai2-jackh-mmc4-public/data_v1.1/docs_no_face_shard_{$SHARD}_v2.jsonl.zip

where SHARD can vary from 0 to 23098. 14 shards are missing and are not included in the dataset.

You can download the smaller "core fewer faces" documents at URLs like this:

https://storage.googleapis.com/ai2-jackh-mmc4-public/data_core_v1.1/docs_no_face_shard_{$SHARD}_v3.jsonl.zip

where SHARD can vary from 0 to 23098. The total size of all these files together is approximately 9.4GB.

You can also automatically download & unzip these files from commands, you can run the script by providing the destination folder as an argument, like:

sh download_scripts/fewer_facesv2.sh /path/to/destination/folder

sh download_scripts/fewer_faces_corev3.sh /path/to/destination/folder

Documents in both sets contain text, image URLs, assignments of images to sentences, and image-by-text CLIP ViT-L/14 similarity matrices. Specifically:

  • text_list: a list of sentences comprising the text of the document
  • url: the original url where the document was hosted
  • image_info is a key mapping to a list of images. each image contains:
    • image_name: a filename that you could download the image to
    • face_detections: None if no faces are detected (which should be the case in "fewer faces")
    • matched_text_index: the index within text_list representing the sentence that this image is matched to
    • matched_sim: the CLIP ViT-L/14 similarity between the image and the sentence at the matched index
  • similarity_matrix: a matrix of shape len(image_info) x len(text_list) where similarity_matrix[i, j] is the CLIP ViT-L/14 similarity between image i and sentence j.
  • could_have_url_duplicate: a small number of URLs (~3%) in the corpus may have duplicate entries due to commoncrawl collecting multiple snapshots over time. we downsample such that, in expectation, each URL occurs once, but duplicates are technically possible. You can discard all entries with could_have_url_duplicate equal to 1 if you want a more strictly deduplicated set.

Here's an example:

{'image_info': [{'face_detections': None,
                 'image_name': 'b9040a0dbb22.jpg',
                 'matched_sim': 0.27694183588027954,
                 'matched_text_index': 2,
                 'raw_url': 'http://www.hfitinfo.com/honda_fit_pics/3/2/index.90.jpg'},
                {'face_detections': None,
                 'image_name': 'db1c21bc8474.jpg',
                 'matched_sim': 0.3234919607639313,
                 'matched_text_index': 1,
                 'raw_url': 'http://www.hfitinfo.com/honda_fit_pics/3/2/index.91.jpg'}],
 'similarity_matrix': [[0.24363446235656738,
                        0.31758785247802734,
                        0.27694183588027954],
                       [0.2233106791973114,
                        0.3234919607639313,
                        0.26118797063827515]],
 'text_list': ['When you lock the door using the lock tab on the driverโ€™s '
               'door, all of the other doors and tailgate lock at the same '
               'time.',
               'Press the master door lock switch in as shown to lock or '
               'unlock all doors and the tailgate.',
               'When you lock/unlock the driverโ€™s door and tailgate using the '
               'master lock switch, all the other doors lock/ unlock at the '
               'same time.'],
 'url': 'http://www.hfitinfo.com/hofi-48.html',
 'could_have_url_duplicate': 0 }

The assignments of images to sentences are computed using compute_assignments.py

Image features

You can directly download CLIP ViT-L/14 features extracted from the images at urls like this:

https://storage.googleapis.com/ai2-jackh-mmc4-public/images/clip_vitl14_shard_{$SHARD}_features.pkl

where SHARD can vary from 0 to 23098. The total size of all the image feature files together is approximately 1.8Tb. Each pkl file is a dictionary that maps from image filename (accessible in the document jsons, see image_name above) to the associated CLIP feature. We used a jax port of CLIP to extract features on TPU. As a result, there may be some numerical differences with CPU or GPU versions of features. We have found that differences are relatively small in practice.

Accessing mmc4

If you are interested in accessing mmc4 (and mmc4-core) without the fewer faces restriction, please fill out this form.

Accessing raw images

We are not releasing raw images for now. But if you are interested in potential updates, you can contact us using this google form.

The missing shards โ›๏ธ๐Ÿ’Ž๐Ÿ”

.1% of the 23099 shards are missing from the corpus. These were not included in any statistics or experiments, so they are not part of mmc4. The missing shards are:

3218,3267,5064,5146,7119,8991,9750,11899,15127,15252,16996,17369,17499,17818

License

  • the new contributions of mmc4 beyond text-only c4 (e.g., the similarity matrices/image-text alignments) are released under ODC-BY.
  • By using mmc4, be aware of that you are also bound by the Common Crawl terms of use.

Citation

If you found our work useful, please consider citing:

@article{zhu2023multimodal,
  title={{Multimodal C4}: An Open, Billion-scale Corpus of Images Interleaved With Text},
  author={Wanrong Zhu and Jack Hessel and Anas Awadalla and Samir Yitzhak Gadre and Jesse Dodge and Alex Fang and Youngjae Yu and Ludwig Schmidt and William Yang Wang and Yejin Choi},
  journal={arXiv preprint arXiv:2304.06939},
  year={2023}
}

More Repositories

1

allennlp

An open-source NLP research library, built on PyTorch.
Python
11,751
star
2

OLMo

Modeling, training, eval, and inference code for OLMo
Python
4,535
star
3

RL4LMs

A modular RL library to fine-tune language models to human preferences
Python
2,101
star
4

longformer

Longformer: The Long-Document Transformer
Python
2,022
star
5

bilm-tf

Tensorflow implementation of contextualized word representations from bi-directional language models
Python
1,621
star
6

scispacy

A full spaCy pipeline and models for scientific/biomedical documents.
Python
1,618
star
7

bi-att-flow

Bi-directional Attention Flow (BiDAF) network is a multi-stage hierarchical process that represents context at different levels of granularity and uses a bi-directional attention flow mechanism to achieve a query-aware context representation without early summarization.
Python
1,533
star
8

scibert

A BERT model for scientific text.
Python
1,495
star
9

open-instruct

Python
1,185
star
10

ai2thor

An open-source platform for Visual AI.
C#
1,160
star
11

dolma

Data and tools for generating and inspecting OLMo pre-training data.
Python
961
star
12

XNOR-Net

ImageNet classification using binary Convolutional Neural Networks
Lua
839
star
13

s2orc

S2ORC: The Semantic Scholar Open Research Corpus: https://www.aclweb.org/anthology/2020.acl-main.447/
Python
817
star
14

scitldr

Python
734
star
15

objaverse-xl

๐Ÿช Objaverse-XL is a Universe of 10M+ 3D Objects. Contains API Scripts for Downloading and Processing!
Python
701
star
16

papermage

library supporting NLP and CV research on scientific papers
Python
692
star
17

natural-instructions

Expanding natural instructions
Python
690
star
18

visprog

Official code for VisProg (CVPR 2023 Best Paper!)
Python
686
star
19

science-parse

Science Parse parses scientific papers (in PDF form) and returns them in structured form.
Java
611
star
20

pdffigures2

Given a scholarly PDF, extract figures, tables, captions, and section titles.
Scala
593
star
21

writing-code-for-nlp-research-emnlp2018

A companion repository for the "Writing code for NLP Research" Tutorial at EMNLP 2018
Python
558
star
22

tango

Organize your experiments into discrete steps that can be cached and reused throughout the lifetime of your research project.
Python
528
star
23

allennlp-models

Officially supported AllenNLP models
Python
521
star
24

specter

SPECTER: Document-level Representation Learning using Citation-informed Transformers
Python
506
star
25

dont-stop-pretraining

Code associated with the Don't Stop Pretraining ACL 2020 paper
Python
488
star
26

unified-io-2

Python
471
star
27

macaw

Multi-angle c(q)uestion answering
Python
451
star
28

lumos

Code and data for "Lumos: Learning Agents with Unified Data, Modular Design, and Open-Source LLMs"
Python
433
star
29

document-qa

Python
420
star
30

scholarphi

An interactive PDF reader.
Python
418
star
31

deep_qa

A deep NLP library, based on Keras / tf, focused on question answering (but useful for other NLP too)
Python
404
star
32

acl2018-semantic-parsing-tutorial

Materials from the ACL 2018 tutorial on neural semantic parsing
402
star
33

unifiedqa

UnifiedQA: Crossing Format Boundaries With a Single QA System
Python
384
star
34

pawls

Software that makes labeling PDFs easy.
Python
380
star
35

OLMoE

OLMoE: Open Mixture-of-Experts Language Models
Jupyter Notebook
374
star
36

kb

KnowBert -- Knowledge Enhanced Contextual Word Representations
Python
359
star
37

PeerRead

Data and code for Kang et al., NAACL 2018's paper titled "A Dataset of Peer Reviews (PeerRead): Collection, Insights and NLP Applications"
Python
354
star
38

reward-bench

RewardBench: the first evaluation tool for reward models.
Python
346
star
39

naacl2021-longdoc-tutorial

Python
342
star
40

openie-standalone

Quality information extraction at web scale. Edit
Scala
327
star
41

Holodeck

CVPR 2024: Language Guided Generation of 3D Embodied AI Environments.
Python
319
star
42

python-package-template

A template repo for Python packages
Python
318
star
43

allenact

An open source framework for research in Embodied-AI from AI2.
Python
316
star
44

ir_datasets

Provides a common interface to many IR ranking datasets.
Python
314
star
45

s2orc-doc2json

Parsers for scientific papers (PDF2JSON, TEX2JSON, JATS2JSON)
Python
302
star
46

acl2022-zerofewshot-tutorial

291
star
47

OLMo-Eval

Evaluation suite for LLMs
Python
280
star
48

procthor

๐Ÿ˜๏ธ Scaling Embodied AI by Procedurally Generating Interactive 3D Houses
Python
257
star
49

fm-cheatsheet

Website for hosting the Open Foundation Models Cheat Sheet.
JavaScript
255
star
50

FineGrainedRLHF

Python
243
star
51

beaker-cli

A collaborative platform for rapid and reproducible research.
Go
230
star
52

comet-atomic-2020

Python
228
star
53

spv2

Science-parse version 2
Python
225
star
54

scifact

Data and models for the SciFact verification task.
Python
217
star
55

objaverse-rendering

๐Ÿ“ท Scripts for rendering Objaverse
Python
206
star
56

ScienceWorld

ScienceWorld is a text-based virtual environment centered around accomplishing tasks from the standardized elementary science curriculum.
Scala
197
star
57

unified-io-inference

Jupyter Notebook
196
star
58

allennlp-demo

Code for the AllenNLP demo.
TypeScript
191
star
59

citeomatic

A citation recommendation system that allows users to find relevant citations for their paper drafts. The tool is backed by Semantic Scholar's OpenCorpus dataset.
Jupyter Notebook
189
star
60

cartography

Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics
Jupyter Notebook
188
star
61

savn

Learning to Learn how to Learn: Self-Adaptive Visual Navigation using Meta-Learning (https://arxiv.org/abs/1812.00971)
Python
175
star
62

vampire

Variational Methods for Pretraining in Resource-limited Environments
Python
173
star
63

vila

Incorporating VIsual LAyout Structures for Scientific Text Classification
Python
172
star
64

s2-folks

Public space for the user community of Semantic Scholar APIs to share scripts, report issues, and make suggestions.
171
star
65

hidden-networks

Python
164
star
66

cord19

Get started with CORD-19
161
star
67

mmda

multimodal document analysis
Jupyter Notebook
158
star
68

PRIMER

The official code for PRIMERA: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization
Python
150
star
69

catwalk

This project studies the performance and robustness of language models and task-adaptation methods.
Python
141
star
70

dnw

Discovering Neural Wirings (https://arxiv.org/abs/1906.00586)
Python
139
star
71

deepfigures-open

Companion code to the paper "Extracting Scientific Figures with Distantly Supervised Neural Networks" ๐Ÿค–
Python
133
star
72

tpu_pretrain

LM Pretraining with PyTorch/TPU
Python
132
star
73

allentune

Hyperparameter Search for AllenNLP
Python
128
star
74

SciREX

Data/Code Repository for https://api.semanticscholar.org/CorpusID:218470122
Python
128
star
75

scidocs

Dataset accompanying the SPECTER model
Python
127
star
76

lm-explorer

interactive explorer for language models
Python
127
star
77

pdffigures

Command line tool to extract figures, tables, and captions from scholarly documents in PDF form.
C++
125
star
78

OpenBookQA

Code for experiments on OpenBookQA from the EMNLP 2018 paper "Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering"
Python
121
star
79

peS2o

Pretraining Efficiently on S2ORC!
120
star
80

gooaq

Question-answers, collected from Google
Python
116
star
81

allennlp-as-a-library-example

A simple example for how to build your own model using AllenNLP as a dependency.
Python
113
star
82

embodied-clip

Official codebase for EmbCLIP
Python
111
star
83

multimodalqa

Python
109
star
84

alexafsm

With alexafsm, developers can model dialog agents with first-class concepts such as states, attributes, transition, and actions. alexafsm also provides visualization and other tools to help understand, test, debug, and maintain complex FSM conversations.
Python
108
star
85

allennlp-semparse

A framework for building semantic parsers (including neural module networks) with AllenNLP, built by the authors of AllenNLP
Python
107
star
86

scicite

Repository for NAACL 2019 paper on Citation Intent prediction
Python
106
star
87

ai2thor-rearrangement

๐Ÿ”€ Visual Room Rearrangement
Python
104
star
88

commonsense-kg-completion

Python
102
star
89

medicat

Dataset of medical images, captions, subfigure-subcaption annotations, and inline textual references
Python
102
star
90

real-toxicity-prompts

Jupyter Notebook
101
star
91

s2search

The Semantic Scholar Search Reranker
Python
99
star
92

aristo-mini

Aristo mini is a light-weight question answering system that can quickly evaluate Aristo science questions with an evaluation web server and the provided baseline solvers.
Python
96
star
93

gpv-1

A task-agnostic vision-language architecture as a step towards General Purpose Vision
Jupyter Notebook
92
star
94

flex

Few-shot NLP benchmark for unified, rigorous eval
Python
91
star
95

elastic

Python
91
star
96

manipulathor

ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm
Jupyter Notebook
88
star
97

spoc-robot-training

SPOC: Imitating Shortest Paths in Simulation Enables Effective Navigation and Manipulation in the Real World
Python
85
star
98

S2AND

Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite
Python
85
star
99

propara

ProPara (Process Paragraph Comprehension) dataset and models
Python
82
star
100

ARC-Solvers

ARC Question Solvers
Python
82
star