• Stars
    star
    451
  • Rank 96,968 (Top 2 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 3 years ago
  • Updated over 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Multi-angle c(q)uestion answering

Macaw

Introduction

Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside the domains it was trained on. It has been trained in "multi-angle" fashion, which means it can handle a flexible set of input and output "slots" (like question, answer, explanation) .

Macaw was built on top of T5 and comes in different sizes: macaw-11b, macaw-3b, and macaw-large, as well as an answer-focused version featured on various leaderboards: macaw-answer-11b (see below).

Examples

Some suggestive examples from the Macaw (11B) model, for different angles:

  • (Qβ†’A) Given a question, what's the answer?
    Q: James went camping in the woods, but forgot to bring a hammer to bang the tent pegs in. What else might he use?
    β†’ A: rocks

  • (QMβ†’A) Given a question and answer choices, what's the answer?
    Q: James went camping in the woods, but forgot to bring a hammer to bang the tent pegs in. What else might he use?
    M: (A) a leaf (B) a log (C) a worm
    β†’ A: a log

  • (Qβ†’AE) Given a question, what's the answer and an explanation?
    Q: Which force pulls objects to the ground?
    β†’ A: gravity
    β†’ E: Gravitational force causes objects that have mass to be pulled down on a planet.

  • (Aβ†’QE) Given an answer, what's a plausible question and explanation?
    A: elephant
    β†’ Q: Which animal has the largest ears?
    β†’ E: The ears of an elephant are the largest.

  • (Cβ†’QA) Given a context, what's a plausible question and answer?
    C: A car needs a battery to start.
    β†’ Q: What is required for a car to start?
    β†’ A: battery

For many more examples of the basic Q→A angle, see examples.md.

Usage examples

Macaw can easily be used in the Hugging Face transformers library, as shown here for the smallest model (the smallest model is not generally recommended, but has much smaller footprint), where given a question we want to return an answer and suggested multiple-choice answer options.

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("allenai/macaw-large")
model = AutoModelForSeq2SeqLM.from_pretrained("allenai/macaw-large")
input_string = "$answer$ ; $mcoptions$ ; $question$ = What is the color of a cloudy sky?"
input_ids = tokenizer.encode(input_string, return_tensors="pt")
output = model.generate(input_ids, max_length=200)

>>> tokenizer.batch_decode(output, skip_special_tokens=True)
['$answer$ = gray ; $mcoptions$ = (A) blue (B) white (C) grey (D) white']

(run pip install -r requirements.txt if any dependencies are missing). Note there's no guarantee the different slots are fully coherent, as in gray/grey (and duplicate "white") here, more so for the macaw-large model vs the larger ones.

The code in macaw/utils.py includes some convenience wrappers, such as load_model and run_macaw, here are some examples loading the macaw-11b model onto two GPUs (need around 48GB total GPU memory for the largest model to work):

from macaw.utils import load_model, run_macaw
model_dict = load_model("allenai/macaw-11b", cuda_devices=[0,1])
res1 = run_macaw("Q: Which force pulls objects to the ground?\nA\nE", model_dict)
# Alternate input syntax
res2 = run_macaw({"Q:":"Which force causes a compass needle to point north?", "A":""}, model_dict)
# Add sampling options for the output
res3 = run_macaw("Q: Which force pulls objects to the ground?\nA\nE", model_dict, {"do_sample": True, "temperature": 2.0})

>>> [print(res["output_slots_list"][0]) for res in [res1, res2, res3]]
{'answer': 'gravity', 'explanation': 'Gravitational force causes objects that have mass to be pulled down on a planet.'}
{'answer': 'magnetism'}
{'answer': 'gravitional force', 'explanation': 'Gravitational force causes objects that have mass to be pulled down on a planet.'}

For batch evaluation of instances at various angles, see macaw/batch_eval.py for pointers.

Supported slots

Here are the slots available in Macaw, generally applicable for both input and output:

Slot name Description Example
question (Q) Question text What is the color of a cloudy sky?
answer (A) Answer text The sky is blue
mcoptions (M) Multiple-choice answer options (A) blue (B) white (C) grey
context (C) Potentially relevant context (noisy IR) The sky looks blue to us because...
explanation (E) Sentences explaining the answer A cloudy sky is usually gray in color...

An angle is a specific set of input/output slots, for instance QM->AE is the task of producing answer and explanation, given a question and multiple-choice options. Macaw is trained on a wide variety of angles and handles unseen angles as well, one exception is that the context (C) only appears as an input slot in the training data.

The Challenge300 dataset of probing questions

The Challenge300 dataset of 300 diverse probing examples can be found in challenge300-probes-v1.jsonl. The basic Q→A output from Macaw (at different sizes), as well as outputs from GPT3, Jurassic-1 and alternate T5 models trained on NaturalQuestions, can be seen in examples.md.

Demo

See DEMO.md for instructions and code to host an interactive version of Macaw.

Training data

Macaw was trained in two steps from the text-to-text transformer model T5:

  1. Multi-angle version of UnifiedQA by fine-tuning T5 on the following 7 datasets and associated angles:

  2. Further fine-tuning of Multi-Angle UnifiedQA on multiple-choice and direct-answer elementary science questions, along with (up to 5) explanation sentences from WorldTreeV2:

    • ARC: QMCβ†’AE, AQCβ†’M, QMECβ†’A, QMEβ†’A, QEβ†’A, QMCβ†’A, QCβ†’AE, QMβ†’AE, QMACβ†’E, QMAβ†’E
    • ARC-DA: QCβ†’AE, Qβ†’AE, QCβ†’A, Qβ†’A, QECβ†’A, QEβ†’A, AEβ†’Q, ACβ†’Q, QAβ†’E, AQCβ†’E
  3. A specialized answer-focused model, macaw-answer-11b (called "UnifiedQA + ARC MC/DA + IR" on the leaderboards for ARC, ARC-Easy, and ARC-DA) was trained on a smaller set of angles, not including explanations:

    • ARC: QMCβ†’A, QACβ†’M, QCβ†’A, QMβ†’A, MACβ†’Q, ACβ†’QM, Mβ†’QA
    • ARC-DA: QCβ†’A, Qβ†’A, ACβ†’Q, Cβ†’QA

Available models

The Macaw models can be accessed from the Hugging Face model hub:

For a sense of the degradation in performance for the smaller sizes, here are baseline scores on the ARC Challenge and ARC Easy multiple-choice development questions. Included are variants with and without IR context from a large science corpus (corresponding to angles QMC→A and QM→A respectively).

Model ARC Challenge ARC Challenge (no IR) ARC Easy ARC Easy (no IR)
Macaw (11B) 76.9 74.6 91.2 84.9
Macaw-3B 68.2 67.9 87.9 77.7
Macaw-large 57.2 50.5 82.5 63.9
Macaw-answer (11B) 79.9 75.2 90.5 85.8

Disclaimer

As a model capable of generating free form text, the output of the model is not guaranteed to be free of offensive material, so appropriate caution is advised when using the model.

Citation

If you use Macaw in your work, please reference the related paper using

@article{Tafjord2021Macaw,
  title={General-Purpose Question-Answering with {M}acaw},
  author={Oyvind Tafjord and Peter Clark},
  journal={ArXiv},
  year={2021},
  volume={abs/2109.02593}
}

More Repositories

1

allennlp

An open-source NLP research library, built on PyTorch.
Python
11,751
star
2

OLMo

Modeling, training, eval, and inference code for OLMo
Python
4,535
star
3

RL4LMs

A modular RL library to fine-tune language models to human preferences
Python
2,101
star
4

longformer

Longformer: The Long-Document Transformer
Python
2,022
star
5

bilm-tf

Tensorflow implementation of contextualized word representations from bi-directional language models
Python
1,621
star
6

scispacy

A full spaCy pipeline and models for scientific/biomedical documents.
Python
1,618
star
7

bi-att-flow

Bi-directional Attention Flow (BiDAF) network is a multi-stage hierarchical process that represents context at different levels of granularity and uses a bi-directional attention flow mechanism to achieve a query-aware context representation without early summarization.
Python
1,533
star
8

scibert

A BERT model for scientific text.
Python
1,495
star
9

open-instruct

Python
1,185
star
10

ai2thor

An open-source platform for Visual AI.
C#
1,160
star
11

dolma

Data and tools for generating and inspecting OLMo pre-training data.
Python
961
star
12

XNOR-Net

ImageNet classification using binary Convolutional Neural Networks
Lua
839
star
13

s2orc

S2ORC: The Semantic Scholar Open Research Corpus: https://www.aclweb.org/anthology/2020.acl-main.447/
Python
817
star
14

mmc4

MultimodalC4 is a multimodal extension of c4 that interleaves millions of images with text.
Python
793
star
15

scitldr

Python
734
star
16

objaverse-xl

πŸͺ Objaverse-XL is a Universe of 10M+ 3D Objects. Contains API Scripts for Downloading and Processing!
Python
701
star
17

papermage

library supporting NLP and CV research on scientific papers
Python
692
star
18

natural-instructions

Expanding natural instructions
Python
690
star
19

visprog

Official code for VisProg (CVPR 2023 Best Paper!)
Python
686
star
20

science-parse

Science Parse parses scientific papers (in PDF form) and returns them in structured form.
Java
611
star
21

pdffigures2

Given a scholarly PDF, extract figures, tables, captions, and section titles.
Scala
593
star
22

writing-code-for-nlp-research-emnlp2018

A companion repository for the "Writing code for NLP Research" Tutorial at EMNLP 2018
Python
558
star
23

tango

Organize your experiments into discrete steps that can be cached and reused throughout the lifetime of your research project.
Python
528
star
24

allennlp-models

Officially supported AllenNLP models
Python
521
star
25

specter

SPECTER: Document-level Representation Learning using Citation-informed Transformers
Python
506
star
26

dont-stop-pretraining

Code associated with the Don't Stop Pretraining ACL 2020 paper
Python
488
star
27

unified-io-2

Python
471
star
28

lumos

Code and data for "Lumos: Learning Agents with Unified Data, Modular Design, and Open-Source LLMs"
Python
433
star
29

document-qa

Python
420
star
30

scholarphi

An interactive PDF reader.
Python
418
star
31

deep_qa

A deep NLP library, based on Keras / tf, focused on question answering (but useful for other NLP too)
Python
404
star
32

acl2018-semantic-parsing-tutorial

Materials from the ACL 2018 tutorial on neural semantic parsing
402
star
33

unifiedqa

UnifiedQA: Crossing Format Boundaries With a Single QA System
Python
384
star
34

pawls

Software that makes labeling PDFs easy.
Python
380
star
35

OLMoE

OLMoE: Open Mixture-of-Experts Language Models
Jupyter Notebook
374
star
36

kb

KnowBert -- Knowledge Enhanced Contextual Word Representations
Python
359
star
37

PeerRead

Data and code for Kang et al., NAACL 2018's paper titled "A Dataset of Peer Reviews (PeerRead): Collection, Insights and NLP Applications"
Python
354
star
38

reward-bench

RewardBench: the first evaluation tool for reward models.
Python
346
star
39

naacl2021-longdoc-tutorial

Python
342
star
40

openie-standalone

Quality information extraction at web scale. Edit
Scala
327
star
41

Holodeck

CVPR 2024: Language Guided Generation of 3D Embodied AI Environments.
Python
319
star
42

python-package-template

A template repo for Python packages
Python
318
star
43

allenact

An open source framework for research in Embodied-AI from AI2.
Python
316
star
44

ir_datasets

Provides a common interface to many IR ranking datasets.
Python
314
star
45

s2orc-doc2json

Parsers for scientific papers (PDF2JSON, TEX2JSON, JATS2JSON)
Python
302
star
46

acl2022-zerofewshot-tutorial

291
star
47

OLMo-Eval

Evaluation suite for LLMs
Python
280
star
48

procthor

🏘️ Scaling Embodied AI by Procedurally Generating Interactive 3D Houses
Python
257
star
49

fm-cheatsheet

Website for hosting the Open Foundation Models Cheat Sheet.
JavaScript
255
star
50

FineGrainedRLHF

Python
243
star
51

beaker-cli

A collaborative platform for rapid and reproducible research.
Go
230
star
52

comet-atomic-2020

Python
228
star
53

spv2

Science-parse version 2
Python
225
star
54

scifact

Data and models for the SciFact verification task.
Python
217
star
55

objaverse-rendering

πŸ“· Scripts for rendering Objaverse
Python
206
star
56

ScienceWorld

ScienceWorld is a text-based virtual environment centered around accomplishing tasks from the standardized elementary science curriculum.
Scala
197
star
57

unified-io-inference

Jupyter Notebook
196
star
58

allennlp-demo

Code for the AllenNLP demo.
TypeScript
191
star
59

citeomatic

A citation recommendation system that allows users to find relevant citations for their paper drafts. The tool is backed by Semantic Scholar's OpenCorpus dataset.
Jupyter Notebook
189
star
60

cartography

Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics
Jupyter Notebook
188
star
61

savn

Learning to Learn how to Learn: Self-Adaptive Visual Navigation using Meta-Learning (https://arxiv.org/abs/1812.00971)
Python
175
star
62

vampire

Variational Methods for Pretraining in Resource-limited Environments
Python
173
star
63

vila

Incorporating VIsual LAyout Structures for Scientific Text Classification
Python
172
star
64

s2-folks

Public space for the user community of Semantic Scholar APIs to share scripts, report issues, and make suggestions.
171
star
65

hidden-networks

Python
164
star
66

cord19

Get started with CORD-19
161
star
67

mmda

multimodal document analysis
Jupyter Notebook
158
star
68

PRIMER

The official code for PRIMERA: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization
Python
150
star
69

catwalk

This project studies the performance and robustness of language models and task-adaptation methods.
Python
141
star
70

dnw

Discovering Neural Wirings (https://arxiv.org/abs/1906.00586)
Python
139
star
71

deepfigures-open

Companion code to the paper "Extracting Scientific Figures with Distantly Supervised Neural Networks" πŸ€–
Python
133
star
72

tpu_pretrain

LM Pretraining with PyTorch/TPU
Python
132
star
73

allentune

Hyperparameter Search for AllenNLP
Python
128
star
74

SciREX

Data/Code Repository for https://api.semanticscholar.org/CorpusID:218470122
Python
128
star
75

scidocs

Dataset accompanying the SPECTER model
Python
127
star
76

lm-explorer

interactive explorer for language models
Python
127
star
77

pdffigures

Command line tool to extract figures, tables, and captions from scholarly documents in PDF form.
C++
125
star
78

OpenBookQA

Code for experiments on OpenBookQA from the EMNLP 2018 paper "Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering"
Python
121
star
79

peS2o

Pretraining Efficiently on S2ORC!
120
star
80

gooaq

Question-answers, collected from Google
Python
116
star
81

allennlp-as-a-library-example

A simple example for how to build your own model using AllenNLP as a dependency.
Python
113
star
82

embodied-clip

Official codebase for EmbCLIP
Python
111
star
83

multimodalqa

Python
109
star
84

alexafsm

With alexafsm, developers can model dialog agents with first-class concepts such as states, attributes, transition, and actions. alexafsm also provides visualization and other tools to help understand, test, debug, and maintain complex FSM conversations.
Python
108
star
85

allennlp-semparse

A framework for building semantic parsers (including neural module networks) with AllenNLP, built by the authors of AllenNLP
Python
107
star
86

scicite

Repository for NAACL 2019 paper on Citation Intent prediction
Python
106
star
87

ai2thor-rearrangement

πŸ”€ Visual Room Rearrangement
Python
104
star
88

commonsense-kg-completion

Python
102
star
89

medicat

Dataset of medical images, captions, subfigure-subcaption annotations, and inline textual references
Python
102
star
90

real-toxicity-prompts

Jupyter Notebook
101
star
91

s2search

The Semantic Scholar Search Reranker
Python
99
star
92

aristo-mini

Aristo mini is a light-weight question answering system that can quickly evaluate Aristo science questions with an evaluation web server and the provided baseline solvers.
Python
96
star
93

gpv-1

A task-agnostic vision-language architecture as a step towards General Purpose Vision
Jupyter Notebook
92
star
94

flex

Few-shot NLP benchmark for unified, rigorous eval
Python
91
star
95

elastic

Python
91
star
96

manipulathor

ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm
Jupyter Notebook
88
star
97

spoc-robot-training

SPOC: Imitating Shortest Paths in Simulation Enables Effective Navigation and Manipulation in the Real World
Python
85
star
98

S2AND

Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite
Python
85
star
99

propara

ProPara (Process Paragraph Comprehension) dataset and models
Python
82
star
100

ARC-Solvers

ARC Question Solvers
Python
82
star