• Stars
    star
    219
  • Rank 181,133 (Top 4 %)
  • Language
    C++
  • License
    MIT License
  • Created over 3 years ago
  • Updated 4 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

SPEAR: A Simulator for Photorealistic Embodied AI Research

SPEAR

SPEAR: A Simulator for Photorealistic Embodied AI Research

Interactive simulators are becoming powerful tools for training embodied agents, but existing simulators suffer from limited content diversity, physical interactivity, and visual fidelity. We address these limitations by introducing SPEAR: A Simulator for Photorealistic Embodied AI Research. To create our simulator, we worked closely with a team of professional artists for over a year to construct 300 unique virtual indoor environments with 2,566 unique rooms and 17,234 unique objects that can be manipulated individually. Each of our environments features detailed geometry, photorealistic materials, and a unique floor plan and object layout designed by a professional artist, i.e., we do not rely on remixing existing layouts to create additional content. Our environments are implemented as Unreal Engine assets, and we provide an OpenAI Gym interface for interacting with the environments via Python.

The SPEAR code is released under an MIT License, and the SPEAR assets are released under various licenses that permit academic use.

Citation

If you find SPEAR useful in your research, please cite this repository as follows:

@misc{roberts:2022,
    author       = {Mike Roberts AND Quentin Leboutet AND Rachith Prakash AND Renhan Wang AND
                    Hailin Zhang AND Rui Tang AND Marti Ferragut AND Stefan Leutenegger AND
                    Stephan R. Richter AND Vladlen Koltun AND Matthias M{\"u}ller AND German Ros},
    title        = {{SPEAR}: {A} Simulator for Photorealistic Embodied AI Research},
    howpublished = {\url{http://github.com/isl-org/spear}},
    year         = {2022},
}

Getting Started

Minimum and recommended system specifications

Minimum and recommended system specifications for the Unreal Engine are given here.

Precompiled binaries

See our latest release notes for download links.

The easiest way to start working with SPEAR is to download a precompiled binary for your platform. Our precompiled binaries come pre-packaged with the scene pictured above. You can start interactively navigating around this scene with the keyboard and mouse simply by running the downloaded binary with no additional arguments.

Working with multiple scenes

See our Getting Started tutorial.

Programmatically interacting with SPEAR via Python

See our Getting Started tutorial.

Building from source

See our Building SpearSim tutorial.

Note that building from source is optional because we provide links to precompiled binaries.

Contributing

See our Contribution Guidelines tutorial.

Licenses

More Repositories

1

Open3D

Open3D: A Modern Library for 3D Data Processing
C++
11,405
star
2

MiDaS

Code for robust monocular depth estimation described in "Ranftl et. al., Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer, TPAMI 2022"
Python
4,418
star
3

OpenBot

OpenBot leverages smartphones as brains for low-cost robots. We have designed a small electric vehicle that costs about $50 and serves as a robot body. Our software stack for Android smartphones supports advanced robotics workloads such as person following and real-time autonomous navigation.
Swift
2,819
star
4

ZoeDepth

Metric depth estimation from a single image
Jupyter Notebook
2,167
star
5

DPT

Dense Prediction Transformers
Python
1,866
star
6

Open3D-ML

An extension of Open3D to address 3D Machine Learning tasks
Python
1,821
star
7

PhotorealismEnhancement

Code & Data for Enhancing Photorealism Enhancement
Python
1,237
star
8

MultiObjectiveOptimization

Source code for Neural Information Processing Systems (NeurIPS) 2018 paper "Multi-Task Learning as Multi-Objective Optimization"
Python
753
star
9

lang-seg

Language-Driven Semantic Segmentation
Jupyter Notebook
704
star
10

FastGlobalRegistration

Fast Global Registration
C++
500
star
11

Open3D-PointNet2-Semantic3D

Semantic3D segmentation with Open3D and PointNet++
Python
461
star
12

FreeViewSynthesis

Code repository for "Free View Synthesis", ECCV 2020.
Python
262
star
13

StableViewSynthesis

Python
212
star
14

DeepLagrangianFluids

Code repository for "Lagrangian Fluid Simulation with Continuous Convolutions", ICLR 2020.
Python
207
star
15

DirectFuturePrediction

Code for the paper "Learning to Act by Predicting the Future", Alexey Dosovitskiy and Vladlen Koltun, ICLR 2017
Python
152
star
16

VI-Depth

Code for Monocular Visual-Inertial Depth Estimation (ICRA 2023)
Python
147
star
17

NPHard

Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search
Python
139
star
18

redwood-3dscan

Python
100
star
19

Intseg

Interactive Image Segmentation with Latent Diversity
Python
78
star
20

TanksAndTemples

Toolbox for the TanksAndTemples benchmark website
Python
58
star
21

dcflow

Code for the paper "Accurate Optical Flow via Direct Cost Volume Processing. Jia Xu, RenΓ© Ranftl, and Vladlen Koltun. CVPR 2017"
C++
52
star
22

adaptive-surface-reconstruction

Adaptive Surface Reconstruction for 3D Data Processing
Python
49
star
23

open3d-cmake-find-package

Find pre-installed Open3D package in CMake
C++
48
star
24

DFE

Python
43
star
25

vision-for-action

Code to accompany "Does computer vision matter for action?"
Python
41
star
26

LMRS

Source code for ICLR 2020 paper: "Learning to Guide Random Search"
Python
39
star
27

objects-with-lighting

Repository for the Objects With Lighting Dataset
Python
36
star
28

open3d_downloads

Hosting Open3D test data for development use
23
star
29

Open3D-3rdparty

C
20
star
30

open3d-cmake-external-project

Use Open3D as a CMake external project
CMake
18
star
31

0shot-object-insertion

Simulation and robot code for contact-rich household object insertion (ICRA 2023).
Python
11
star
32

Open3D-Viewer

C++
7
star
33

generalized-smoothing

Companion code for the ICML 2022 paper "Generalizing Gaussian Smoothing for Random Search"
Python
7
star
34

Open3D-Python-CI

Testing Open3D Python package from PyPI and Conda
4
star
35

MetaLearningTradeoffs

Source code for the NeurIPS 2020 Paper: Modeling and Optimization Trade-off in Meta-learning.
Python
4
star
36

hello-world-docker-action

Dockerfile
1
star
37

mshadow

Forked from https://github.com/dmlc/mshadow
C++
1
star