• Stars
    star
    262
  • Rank 150,325 (Top 4 %)
  • Language
    Python
  • Created over 3 years ago
  • Updated 10 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis

Code repository for "Free View Synthesis", ECCV 2020.

Setup

Install the following Python packages in your Python environment

- numpy (1.19.1)
- scikit-image (0.15.0)
- pillow (7.2.0)
- pytorch (1.6.0)
- torchvision (0.7.0)

Clone the repository and initialize the submodule

git clone https://github.com/intel-isl/FreeViewSynthesis.git
cd FreeViewSynthesis
git submodule update --init --recursive

Finally, build the Python extension needed for preprocessing

cd ext/preprocess
cmake -DCMAKE_BUILD_TYPE=Release .
make 

Tested with Ubuntu 18.04 and macOS Catalina. If you do not have a C++17 compatible compiler, you can change the code as descibed here.

Run Free View Synthesis

Make sure you adapted the paths in config.py to point to the downloaded data!

You can download the pre-trained models here

# in FreeViewSynthesis directory
wget https://storage.googleapis.com/isl-datasets/FreeViewSynthesis/experiments.tar.gz
tar xvzf experiments.tar.gz
# there should now be net*params files in exp/experiments/*/

Then run the evaluation via

python exp.py --net rnn_vgg16unet3_gruunet4.64.3 --cmd eval --iter last --eval-dsets tat-subseq --eval-scale 0.5

This will run the pretrained network on the four Tanks and Temples sequences.

To train the network from scratch you can run

python exp.py --net rnn_vgg16unet3_gruunet4.64.3 --cmd retrain

Data

We provide the preprocessed Tanks and Temples dataset as we used it for training and evaluation here. Our new recordings can be downloaded in a preprocessed version from here.

We used COLMAP for camera registration, multi-view stereo and surface reconstruction on full resolution. The packages above contain the already undistorted and registered images. In addition, we provide the estimated camera calibrations, rendered depthmaps used for warping, and closest source image information.

In more detail, a single folder ibr3d_*_scale (where scale is the scale factor with respect to the original images) contains:

  • im_XXXXXXXX.[png|jpg] the downsampled images used as source images, or as target images.
  • dm_XXXXXXXX.npy the rendered depthmaps based on the COLMAP surface reconstruction.
  • Ks.npy contains the 3x3 intrinsic camera matrices, where Ks[idx] corresponds to the depth map dm_{idx:08d}.npy.
  • Rs.npy contains the 3x3 rotation matrices from the world coordinate system to camera coordinate system.
  • ts.npy contains the 3 translation vectors from the world coordinate system to camera coordinate system.
  • count_XXXXXXXX.npy contains the overlap information from target images to source images. I.e., the number of pixels that can be mapped from the target image to the individual source images. np.argsort(np.load('count_00000000.npy'))[::-1] will give you the sorted indices of the most overlapping source images.

Use np.load to load the numpy files.

We use the Tanks and Temples dataset for training except the following scenes that are used for evaluation.

  • train/Truck [172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196]
  • intermediate/M60 [94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129]
  • intermediate/Playground [221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252]
  • intermediate/Train [174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248]

The numbers below the scene name indicate the indices of the target images that we used for evaluation.

Citation

Please cite our paper if you find this work useful.

@inproceedings{Riegler2020FVS,
  title={Free View Synthesis},
  author={Riegler, Gernot and Koltun, Vladlen},
  booktitle={European Conference on Computer Vision},
  year={2020}
}

Video

Free View Synthesis Video

More Repositories

1

Open3D

Open3D: A Modern Library for 3D Data Processing
C++
10,396
star
2

MiDaS

Code for robust monocular depth estimation described in "Ranftl et. al., Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer, TPAMI 2022"
Python
4,041
star
3

OpenBot

OpenBot leverages smartphones as brains for low-cost robots. We have designed a small electric vehicle that costs about $50 and serves as a robot body. Our software stack for Android smartphones supports advanced robotics workloads such as person following and real-time autonomous navigation.
Swift
2,679
star
4

DPT

Dense Prediction Transformers
Python
1,794
star
5

ZoeDepth

Metric depth estimation from a single image
Jupyter Notebook
1,750
star
6

Open3D-ML

An extension of Open3D to address 3D Machine Learning tasks
Python
1,644
star
7

PhotorealismEnhancement

Code & Data for Enhancing Photorealism Enhancement
Python
1,237
star
8

MultiObjectiveOptimization

Source code for Neural Information Processing Systems (NeurIPS) 2018 paper "Multi-Task Learning as Multi-Objective Optimization"
Python
753
star
9

lang-seg

Language-Driven Semantic Segmentation
Jupyter Notebook
654
star
10

FastGlobalRegistration

Fast Global Registration
C++
489
star
11

Open3D-PointNet2-Semantic3D

Semantic3D segmentation with Open3D and PointNet++
Python
461
star
12

StableViewSynthesis

Python
212
star
13

DeepLagrangianFluids

Code repository for "Lagrangian Fluid Simulation with Continuous Convolutions", ICLR 2020.
Python
187
star
14

spear

SPEAR: A Simulator for Photorealistic Embodied AI Research
C++
173
star
15

DirectFuturePrediction

Code for the paper "Learning to Act by Predicting the Future", Alexey Dosovitskiy and Vladlen Koltun, ICLR 2017
Python
152
star
16

VI-Depth

Code for Monocular Visual-Inertial Depth Estimation (ICRA 2023)
Python
139
star
17

NPHard

Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search
Python
139
star
18

redwood-3dscan

Python
100
star
19

Intseg

Interactive Image Segmentation with Latent Diversity
Python
78
star
20

TanksAndTemples

Toolbox for the TanksAndTemples benchmark website
Python
58
star
21

dcflow

Code for the paper "Accurate Optical Flow via Direct Cost Volume Processing. Jia Xu, Renรฉ Ranftl, and Vladlen Koltun. CVPR 2017"
C++
52
star
22

adaptive-surface-reconstruction

Adaptive Surface Reconstruction for 3D Data Processing
Python
48
star
23

DFE

Python
43
star
24

open3d-cmake-find-package

Find pre-installed Open3D package in CMake
C++
42
star
25

vision-for-action

Code to accompany "Does computer vision matter for action?"
Python
41
star
26

LMRS

Source code for ICLR 2020 paper: "Learning to Guide Random Search"
Python
39
star
27

open3d_downloads

Hosting Open3D test data for development use
23
star
28

Open3D-3rdparty

C
20
star
29

open3d-cmake-external-project

Use Open3D as a CMake external project
CMake
15
star
30

0shot-object-insertion

Simulation and robot code for contact-rich household object insertion (ICRA 2023).
Python
11
star
31

objects-with-lighting

8
star
32

Open3D-Viewer

C++
7
star
33

generalized-smoothing

Companion code for the ICML 2022 paper "Generalizing Gaussian Smoothing for Random Search"
Python
5
star
34

Open3D-Python-CI

Testing Open3D Python package from PyPI and Conda
4
star
35

MetaLearningTradeoffs

Source code for the NeurIPS 2020 Paper: Modeling and Optimization Trade-off in Meta-learning.
Python
4
star
36

hello-world-docker-action

Dockerfile
1
star
37

mshadow

Forked from https://github.com/dmlc/mshadow
C++
1
star