• Stars
    star
    4,206
  • Rank 10,287 (Top 0.3 %)
  • Language
    Python
  • License
    Other
  • Created over 2 years ago
  • Updated 23 days ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A Python framework for high performance GPU simulation and graphics

NVIDIA Warp (Preview)

Warp is a Python framework for writing high-performance simulation and graphics code. Kernels are defined in Python syntax and JIT converted to C++/CUDA and compiled at runtime.

Warp comes with a rich set of primitives that make it easy to write programs for physics simulation, geometry processing, and procedural animation. In addition, Warp kernels are differentiable, and can be used as part of machine-learning training pipelines with other frameworks such as PyTorch.

Please refer to the project Documentation for API and language reference and CHANGELOG.md for release history.

A selection of physical simulations computed with Warp

Installing

Warp supports Python versions 3.7.x-3.11.x. The easiest way is to install from PyPi:

pip install warp-lang

Pre-built binary packages for Windows and Linux are also available on the Releases page. To install in your local Python environment extract the archive and run the following command from the root directory:

pip install .

Getting Started

An example first program that computes the lengths of random 3D vectors is given below:

import warp as wp
import numpy as np

wp.init()

num_points = 1024

@wp.kernel
def length(points: wp.array(dtype=wp.vec3),
           lengths: wp.array(dtype=float)):

    # thread index
    tid = wp.tid()
    
    # compute distance of each point from origin
    lengths[tid] = wp.length(points[tid])


# allocate an array of 3d points
points = wp.array(np.random.rand(num_points, 3), dtype=wp.vec3)
lengths = wp.zeros(num_points, dtype=float)

# launch kernel
wp.launch(kernel=length,
          dim=len(points),
          inputs=[points, lengths])

print(lengths)

Running Examples

The examples directory contains a number of scripts that show how to implement different simulation methods using the Warp API. Most examples will generate USD files containing time-sampled animations in the examples/outputs directory. Before running examples users should ensure that the usd-core package is installed using:

pip install usd-core

USD files can be viewed or rendered inside NVIDIA Omniverse, Pixar's UsdView, and Blender. Note that Preview in macOS is not recommended as it has limited support for time-sampled animations.

Built-in unit tests can be run from the command-line as follows:

python -m warp.tests

Building

For developers who want to build the library themselves the following tools are required:

  • Microsoft Visual Studio 2019 upwards (Windows)
  • GCC 7.2 upwards (Linux)
  • CUDA Toolkit 11.5 or higher
  • Git LFS installed (https://git-lfs.github.com/)

After cloning the repository, users should run:

python build_lib.py

This will generate the warp.dll / warp.so core library respectively. When building manually users should ensure that their CUDA_PATH environment variable is set, otherwise Warp will be built without CUDA support. Alternatively, the path to the CUDA toolkit can be passed to the build command as --cuda_path="...". After building the Warp package should be installed using:

pip install -e .

Which ensures that subsequent modifications to the library will be reflected in the Python package.

If you are cloning from Windows, please first ensure that you have enabled "Developer Mode" in Windows settings and symlinks in git:

git config --global core.symlinks true

This will ensure symlinks inside exts/omni.warp work upon cloning.

Omniverse

A Warp Omniverse extension is available in the extension registry inside Omniverse Kit or Create:

Enabling the extension will automatically install and initialize the Warp Python module inside the Kit Python environment. Please see the Omniverse Warp Documentation for more details on how to use Warp in Omniverse.

Learn More

Please see the following resources for additional background on Warp:

The underlying technology in Warp has been used in a number of research projects at NVIDIA including the following publications:

  • Accelerated Policy Learning with Parallel Differentiable Simulation - Xu, J., Makoviychuk, V., Narang, Y., Ramos, F., Matusik, W., Garg, A., & Macklin, M. (2022)
  • DiSECt: Differentiable Simulator for Robotic Cutting - Heiden, E., Macklin, M., Narang, Y., Fox, D., Garg, A., & Ramos, F (2021)
  • gradSim: Differentiable Simulation for System Identification and Visuomotor Control - Murthy, J. Krishna, Miles Macklin, Florian Golemo, Vikram Voleti, Linda Petrini, Martin Weiss, Breandan Considine et al. (2021)

Citing

If you use Warp in your research please use the following citation:

@misc{warp2022,
title= {Warp: A High-performance Python Framework for GPU Simulation and Graphics},
author = {Miles Macklin},
month = {March},
year = {2022},
note= {NVIDIA GPU Technology Conference (GTC)},
howpublished = {\url{https://github.com/nvidia/warp}}
}

FAQ

How does Warp relate to other Python projects for GPU programming, e.g.: Numba, Taichi, cuPy, PyTorch, etc?


Warp is inspired by many of these projects, and is closely related to Numba and Taichi which both expose kernel programming to Python. These frameworks map to traditional GPU programming models, so many of the high-level concepts are similar, however there are some functionality and implementation differences.

Compared to Numba, Warp supports a smaller subset of Python, but offering auto-differentiation of kernel programs, which is useful for machine learning. Compared to Taichi Warp uses C++/CUDA as an intermediate representation, which makes it convenient to implement and expose low-level routines. In addition, we are building in data structures to support geometry processing (meshes, sparse volumes, point clouds, USD data) as first-class citizens that are not exposed in other runtimes.

Warp does not offer a full tensor-based programming model like PyTorch and JAX, but is designed to work well with these frameworks through data sharing mechanisms like __cuda_array_interface__. For computations that map well to tensors (e.g.: neural-network inference) it makes sense to use these existing tools. For problems with a lot of e.g.: sparsity, conditional logic, hetergenous workloads (like the ones we often find in simulation and graphics), then the kernel-based programming model like the one in Warp are often more convenient since users have control over individual threads.

Does Warp support all of the Python language?


No, Warp supports a subset of Python that maps well to the GPU. Our goal is to not have any performance cliffs so that users can expect consistently good behavior from kernels that is close to native code. Examples of unsupported concepts that don't map well to the GPU are dynamic types, list comprehensions, exceptions, garbage collection, etc.

When should I call wp.synchronize()?


One of the common sources of confusion for new users is when calls to wp.synchronize() are necessary. The answer is "almost never"! Synchronization is quite expensive, and should generally be avoided unless necessary. Warp naturally takes care of synchronization between operations (e.g.: kernel launches, device memory copies).

For example, the following requires no manual synchronization, as the conversion to NumPy will automatically synchronize:

# run some kernels
wp.launch(kernel_1, dim, [array_x, array_y], device="cuda")
wp.launch(kernel_2, dim, [array_y, array_z], device="cuda")

# bring data back to host (and implicitly synchronize)
x = array_z.numpy()

The only case where manual synchronization is needed is when copies are being performed back to CPU asynchronously, e.g.:

# copy data back to cpu from gpu, all copies will happen asynchronously to Python
wp.copy(cpu_array_1, gpu_array_1)
wp.copy(cpu_array_2, gpu_array_2)
wp.copy(cpu_array_3, gpu_array_3)

# ensure that the copies have finished
wp.synchronize()

# return a numpy wrapper around the cpu arrays, note there is no implicit synchronization here
a1 = cpu_array_1.numpy()
a2 = cpu_array_2.numpy()
a3 = cpu_array_3.numpy()

What happens when you differentiate a function like wp.abs(x)?


Non-smooth functions such as y=|x| do not have a single unique gradient at x=0, rather they have what is known as a subgradient, which is formally the convex hull of directional derivatives at that point. The way that Warp (and most auto-differentiation framworks) handles these points is to pick an arbitrary gradient from this set, e.g.: for wp.abs(), it will arbitrarily choose the gradient to be 1.0 at the origin. You can find the implementation for these functions in warp/native/builtin.h.

Most optimizers (particularly ones that exploit stochasticity), are not sensitive to the choice of which gradient to use from the subgradient, although there are exceptions.

Does Warp support multi-GPU programming?


Yes! Since version 0.4.0 we support allocating, launching, and copying between multiple GPUs in a single process. We follow the naming conventions of PyTorch and use aliases such as cuda:0, cuda:1, cpu to identify individual devices.

Should I switch to Warp over IsaacGym / PhysX?


Warp is not a replacement for IsaacGym, IsaacSim, or PhysX - while Warp does offer some physical simulation capabilities this is primarily aimed at developers who need differentiable physics, rather than a fully featured physics engine. Warp is also integrated with IsaacGym and is great for performing auxiliary tasks such as reward and observation computations for reinforcement learning.

Discord

We have a #warp channel on the public Omniverse Discord sever, come chat to us!

License

Warp is provided under the NVIDIA Source Code License (NVSCL), please see LICENSE.md for full license text. Note that the license currently allows only non-commercial use of this code.

More Repositories

1

nvidia-docker

Build and run Docker containers leveraging NVIDIA GPUs
16,896
star
2

open-gpu-kernel-modules

NVIDIA Linux open GPU kernel module source
C
14,997
star
3

DeepLearningExamples

State-of-the-Art Deep Learning scripts organized by models - easy to train and deploy with reproducible accuracy and performance on enterprise-grade infrastructure.
Jupyter Notebook
13,339
star
4

NeMo

A scalable generative AI framework built for researchers and developers working on Large Language Models, Multimodal, and Speech AI (Automatic Speech Recognition and Text-to-Speech)
Python
12,016
star
5

FastPhotoStyle

Style transfer, deep learning, feature transform
Python
11,020
star
6

TensorRT

NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference on NVIDIA GPUs. This repository contains the open source components of TensorRT.
C++
10,618
star
7

Megatron-LM

Ongoing research training transformer models at scale
Python
10,332
star
8

TensorRT-LLM

TensorRT-LLM provides users with an easy-to-use Python API to define Large Language Models (LLMs) and build TensorRT engines that contain state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs. TensorRT-LLM also contains components to create Python and C++ runtimes that execute those TensorRT engines.
C++
8,542
star
9

vid2vid

Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.
Python
8,482
star
10

apex

A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch
Python
8,239
star
11

pix2pixHD

Synthesizing and manipulating 2048x1024 images with conditional GANs
Python
6,488
star
12

cuda-samples

Samples for CUDA Developers which demonstrates features in CUDA Toolkit
C
6,119
star
13

cutlass

CUDA Templates for Linear Algebra Subroutines
C++
5,519
star
14

FasterTransformer

Transformer related optimization, including BERT, GPT
C++
5,313
star
15

DALI

A GPU-accelerated library containing highly optimized building blocks and an execution engine for data processing to accelerate deep learning training and inference applications.
C++
5,048
star
16

thrust

[ARCHIVED] The C++ parallel algorithms library. See https://github.com/NVIDIA/cccl
C++
4,914
star
17

tacotron2

Tacotron 2 - PyTorch implementation with faster-than-realtime inference
Jupyter Notebook
4,562
star
18

DIGITS

Deep Learning GPU Training System
HTML
4,105
star
19

NeMo-Guardrails

NeMo Guardrails is an open-source toolkit for easily adding programmable guardrails to LLM-based conversational systems.
Python
4,064
star
20

nccl

Optimized primitives for collective multi-GPU communication
C++
3,187
star
21

flownet2-pytorch

Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks
Python
2,938
star
22

ChatRTX

A developer reference project for creating Retrieval Augmented Generation (RAG) chatbots on Windows using TensorRT-LLM
TypeScript
2,635
star
23

k8s-device-plugin

NVIDIA device plugin for Kubernetes
Go
2,481
star
24

libcudacxx

[ARCHIVED] The C++ Standard Library for your entire system. See https://github.com/NVIDIA/cccl
C++
2,294
star
25

GenerativeAIExamples

Generative AI reference workflows optimized for accelerated infrastructure and microservice architecture.
Python
2,192
star
26

nvidia-container-toolkit

Build and run containers leveraging NVIDIA GPUs
Go
2,171
star
27

waveglow

A Flow-based Generative Network for Speech Synthesis
Python
2,133
star
28

MinkowskiEngine

Minkowski Engine is an auto-diff neural network library for high-dimensional sparse tensors
Python
2,007
star
29

TransformerEngine

A library for accelerating Transformer models on NVIDIA GPUs, including using 8-bit floating point (FP8) precision on Hopper and Ada GPUs, to provide better performance with lower memory utilization in both training and inference.
Python
1,917
star
30

Stable-Diffusion-WebUI-TensorRT

TensorRT Extension for Stable Diffusion Web UI
Python
1,886
star
31

semantic-segmentation

Nvidia Semantic Segmentation monorepo
Python
1,763
star
32

gpu-operator

NVIDIA GPU Operator creates/configures/manages GPUs atop Kubernetes
Go
1,735
star
33

cub

[ARCHIVED] Cooperative primitives for CUDA C++. See https://github.com/NVIDIA/cccl
Cuda
1,679
star
34

DeepRecommender

Deep learning for recommender systems
Python
1,662
star
35

stdexec

`std::execution`, the proposed C++ framework for asynchronous and parallel programming.
C++
1,554
star
36

OpenSeq2Seq

Toolkit for efficient experimentation with Speech Recognition, Text2Speech and NLP
Python
1,511
star
37

CUDALibrarySamples

CUDA Library Samples
Cuda
1,468
star
38

VideoProcessingFramework

Set of Python bindings to C++ libraries which provides full HW acceleration for video decoding, encoding and GPU-accelerated color space and pixel format conversions
C++
1,303
star
39

deepops

Tools for building GPU clusters
Shell
1,252
star
40

open-gpu-doc

Documentation of NVIDIA chip/hardware interfaces
C
1,243
star
41

aistore

AIStore: scalable storage for AI applications
Go
1,233
star
42

Q2RTX

NVIDIA’s implementation of RTX ray-tracing in Quake II
C
1,217
star
43

trt-samples-for-hackathon-cn

Simple samples for TensorRT programming
Python
1,211
star
44

cccl

CUDA Core Compute Libraries
C++
1,200
star
45

MatX

An efficient C++17 GPU numerical computing library with Python-like syntax
C++
1,187
star
46

partialconv

A New Padding Scheme: Partial Convolution based Padding
Python
1,145
star
47

sentiment-discovery

Unsupervised Language Modeling at scale for robust sentiment classification
Python
1,055
star
48

nvidia-container-runtime

NVIDIA container runtime
Makefile
1,035
star
49

modulus

Open-source deep-learning framework for building, training, and fine-tuning deep learning models using state-of-the-art Physics-ML methods
Python
991
star
50

gpu-monitoring-tools

Tools for monitoring NVIDIA GPUs on Linux
C
974
star
51

jetson-gpio

A Python library that enables the use of Jetson's GPIOs
Python
898
star
52

dcgm-exporter

NVIDIA GPU metrics exporter for Prometheus leveraging DCGM
Go
886
star
53

retinanet-examples

Fast and accurate object detection with end-to-end GPU optimization
Python
885
star
54

flowtron

Flowtron is an auto-regressive flow-based generative network for text to speech synthesis with control over speech variation and style transfer
Jupyter Notebook
867
star
55

nccl-tests

NCCL Tests
Cuda
864
star
56

cuda-python

CUDA Python Low-level Bindings
Python
859
star
57

mellotron

Mellotron: a multispeaker voice synthesis model based on Tacotron 2 GST that can make a voice emote and sing without emotive or singing training data
Jupyter Notebook
852
star
58

gdrcopy

A fast GPU memory copy library based on NVIDIA GPUDirect RDMA technology
C++
832
star
59

libnvidia-container

NVIDIA container runtime library
C
818
star
60

BigVGAN

Official PyTorch implementation of BigVGAN (ICLR 2023)
Python
806
star
61

spark-rapids

Spark RAPIDS plugin - accelerate Apache Spark with GPUs
Scala
800
star
62

nv-wavenet

Reference implementation of real-time autoregressive wavenet inference
Cuda
728
star
63

DLSS

NVIDIA DLSS is a new and improved deep learning neural network that boosts frame rates and generates beautiful, sharp images for your games
C
727
star
64

tensorflow

An Open Source Machine Learning Framework for Everyone
C++
719
star
65

gvdb-voxels

Sparse volume compute and rendering on NVIDIA GPUs
C
674
star
66

MAXINE-AR-SDK

NVIDIA AR SDK - API headers and sample applications
C
671
star
67

nvvl

A library that uses hardware acceleration to load sequences of video frames to facilitate machine learning training
C++
665
star
68

runx

Deep Learning Experiment Management
Python
633
star
69

NVFlare

NVIDIA Federated Learning Application Runtime Environment
Python
630
star
70

NeMo-Aligner

Scalable toolkit for efficient model alignment
Python
564
star
71

nvcomp

Repository for nvCOMP docs and examples. nvCOMP is a library for fast lossless compression/decompression on the GPU that can be downloaded from https://developer.nvidia.com/nvcomp.
C++
545
star
72

multi-gpu-programming-models

Examples demonstrating available options to program multiple GPUs in a single node or a cluster
Cuda
535
star
73

Dataset_Synthesizer

NVIDIA Deep learning Dataset Synthesizer (NDDS)
C++
530
star
74

TensorRT-Model-Optimizer

TensorRT Model Optimizer is a unified library of state-of-the-art model optimization techniques such as quantization, pruning, distillation, etc. It compresses deep learning models for downstream deployment frameworks like TensorRT-LLM or TensorRT to optimize inference speed on NVIDIA GPUs.
Python
513
star
75

jitify

A single-header C++ library for simplifying the use of CUDA Runtime Compilation (NVRTC).
C++
512
star
76

nvbench

CUDA Kernel Benchmarking Library
Cuda
501
star
77

libglvnd

The GL Vendor-Neutral Dispatch library
C
501
star
78

NeMo-Curator

Scalable data pre processing and curation toolkit for LLMs
Jupyter Notebook
500
star
79

cuda-quantum

C++ and Python support for the CUDA Quantum programming model for heterogeneous quantum-classical workflows
C++
496
star
80

AMGX

Distributed multigrid linear solver library on GPU
Cuda
474
star
81

cuCollections

C++
470
star
82

enroot

A simple yet powerful tool to turn traditional container/OS images into unprivileged sandboxes.
Shell
459
star
83

NeMo-Framework-Launcher

Provides end-to-end model development pipelines for LLMs and Multimodal models that can be launched on-prem or cloud-native.
Python
459
star
84

hpc-container-maker

HPC Container Maker
Python
442
star
85

MDL-SDK

NVIDIA Material Definition Language SDK
C++
438
star
86

PyProf

A GPU performance profiling tool for PyTorch models
Python
437
star
87

framework-reproducibility

Providing reproducibility in deep learning frameworks
Python
424
star
88

gpu-rest-engine

A REST API for Caffe using Docker and Go
C++
421
star
89

DCGM

NVIDIA Data Center GPU Manager (DCGM) is a project for gathering telemetry and measuring the health of NVIDIA GPUs
C++
394
star
90

NvPipe

NVIDIA-accelerated zero latency video compression library for interactive remoting applications
Cuda
390
star
91

torch-harmonics

Differentiable signal processing on the sphere for PyTorch
Jupyter Notebook
386
star
92

cuQuantum

Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples
Jupyter Notebook
344
star
93

data-science-stack

NVIDIA Data Science stack tools
Shell
317
star
94

ai-assisted-annotation-client

Client side integration example source code and libraries for AI-Assisted Annotation SDK
C++
308
star
95

video-sdk-samples

Samples demonstrating how to use various APIs of NVIDIA Video Codec SDK
C++
301
star
96

egl-wayland

The EGLStream-based Wayland external platform
C
299
star
97

nvidia-settings

NVIDIA driver control panel
C
292
star
98

NVTX

The NVIDIA® Tools Extension SDK (NVTX) is a C-based Application Programming Interface (API) for annotating events, code ranges, and resources in your applications.
C
290
star
99

go-nvml

Go Bindings for the NVIDIA Management Library (NVML)
C
288
star
100

gpu-feature-discovery

GPU plugin to the node feature discovery for Kubernetes
Go
286
star