• Stars
    star
    832
  • Rank 54,811 (Top 2 %)
  • Language
    C++
  • License
    MIT License
  • Created almost 10 years ago
  • Updated 4 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A fast GPU memory copy library based on NVIDIA GPUDirect RDMA technology

GDRCopy

A low-latency GPU memory copy library based on NVIDIA GPUDirect RDMA technology.

Introduction

While GPUDirect RDMA is meant for direct access to GPU memory from third-party devices, it is possible to use these same APIs to create perfectly valid CPU mappings of the GPU memory.

The advantage of a CPU driven copy is the very small overhead involved. That might be useful when low latencies are required.

What is inside

GDRCopy offers the infrastructure to create user-space mappings of GPU memory, which can then be manipulated as if it was plain host memory (caveats apply here).

A simple by-product of it is a copy library with the following characteristics:

  • very low overhead, as it is driven by the CPU. As a reference, currently a cudaMemcpy can incur in a 6-7us overhead.

  • An initial memory pinning phase is required, which is potentially expensive, 10us-1ms depending on the buffer size.

  • Fast H-D, because of write-combining. H-D bandwidth is 6-8GB/s on Ivy Bridge Xeon but it is subject to NUMA effects.

  • Slow D-H, because the GPU BAR, which backs the mappings, can't be prefetched and so burst reads transactions are not generated through PCIE

The library comes with a few tests like:

  • sanity, which contains unit tests for the library and the driver.
  • copybw, a minimal application which calculates the R/W bandwidth for a specific buffer size.
  • copylat, a benchmark application which calculates the R/W copy latency for a range of buffer sizes.

Requirements

GPUDirect RDMA requires NVIDIA Tesla or Quadro class GPUs based on Kepler, Pascal, Volta, or Turing, see GPUDirect RDMA. For more technical informations, please refer to the official GPUDirect RDMA design document.

The device driver requires GPU display driver >= 418.40 on ppc64le and >= 331.14 on other platforms. The library and tests require CUDA >= 6.0. Additionally, the sanity test requires check >= 0.9.8 and subunit.

DKMS is a prerequisite for installing GDRCopy kernel module package. On RHEL, however, users have an option to build kmod and install it instead of the DKMS package. See Build and installation section for more details.

# On RHEL
# dkms can be installed from epel-release. See https://fedoraproject.org/wiki/EPEL.
$ sudo yum install dkms check check-devel subunit subunit-devel

# On Debian
$ sudo apt install check libsubunit0 libsubunit-dev

CUDA and GPU display driver must be installed before building and/or installing GDRCopy. The installation instructions can be found in https://developer.nvidia.com/cuda-downloads.

GPU display driver header files are also required. They are installed as a part of the driver (or CUDA) installation with runfile. If you install the driver via package management, we suggest

  • On RHEL, sudo dnf module install nvidia-driver:latest-dkms.
  • On Debian, sudo apt install nvidia-dkms-<your-nvidia-driver-version>.

The supported architectures are Linux x86_64, ppc64le, and arm64. The supported platforms are RHEL7, RHEL8, Ubuntu16_04, Ubuntu18_04, and Ubuntu20_04.

Root privileges are necessary to load/install the kernel-mode device driver.

Build and installation

We provide three ways for building and installing GDRCopy.

rpm package

$ sudo yum groupinstall 'Development Tools'
$ sudo yum install dkms rpm-build make check check-devel subunit subunit-devel
$ cd packages
$ CUDA=<cuda-install-top-dir> ./build-rpm-packages.sh
$ sudo rpm -Uvh gdrcopy-kmod-<version>dkms.noarch.<platform>.rpm
$ sudo rpm -Uvh gdrcopy-<version>.<arch>.<platform>.rpm
$ sudo rpm -Uvh gdrcopy-devel-<version>.noarch.<platform>.rpm

DKMS package is the default kernel module package that build-rpm-packages.sh generates. To create kmod package, -m option must be passed to the script. Unlike the DKMS package, the kmod package contains a prebuilt GDRCopy kernel module which is specific to the NVIDIA driver version and the Linux kernel version used to build it.

deb package

$ sudo apt install build-essential devscripts debhelper check libsubunit-dev fakeroot pkg-config dkms
$ cd packages
$ CUDA=<cuda-install-top-dir> ./build-deb-packages.sh
$ sudo dpkg -i gdrdrv-dkms_<version>_<arch>.<platform>.deb
$ sudo dpkg -i libgdrapi_<version>_<arch>.<platform>.deb
$ sudo dpkg -i gdrcopy-tests_<version>_<arch>.<platform>.deb
$ sudo dpkg -i gdrcopy_<version>_<arch>.<platform>.deb

from source

$ make prefix=<install-to-this-location> CUDA=<cuda-install-top-dir> all install
$ sudo ./insmod.sh

If libcheck is installed in a non-standard path and therefore is not picked by pkg-config, you can set the PKG_CONFIG_PATH environment variable to the directory which contains the check.pc file and pass it down to make:

$ PKG_CONFIG_PATH=/check_install_path/lib/pkgconfig/ make <...>

Tests

Execute provided tests:

$ sanity 
Running suite(s): Sanity
100%: Checks: 27, Failures: 0, Errors: 0


$ copybw
GPU id:0; name: Tesla V100-SXM2-32GB; Bus id: 0000:06:00
GPU id:1; name: Tesla V100-SXM2-32GB; Bus id: 0000:07:00
GPU id:2; name: Tesla V100-SXM2-32GB; Bus id: 0000:0a:00
GPU id:3; name: Tesla V100-SXM2-32GB; Bus id: 0000:0b:00
GPU id:4; name: Tesla V100-SXM2-32GB; Bus id: 0000:85:00
GPU id:5; name: Tesla V100-SXM2-32GB; Bus id: 0000:86:00
GPU id:6; name: Tesla V100-SXM2-32GB; Bus id: 0000:89:00
GPU id:7; name: Tesla V100-SXM2-32GB; Bus id: 0000:8a:00
selecting device 0
testing size: 131072
rounded size: 131072
gpu alloc fn: cuMemAlloc
device ptr: 7f1153a00000
map_d_ptr: 0x7f1172257000
info.va: 7f1153a00000
info.mapped_size: 131072
info.page_size: 65536
info.mapped: 1
info.wc_mapping: 1
page offset: 0
user-space pointer:0x7f1172257000
writing test, size=131072 offset=0 num_iters=10000
write BW: 9638.54MB/s
reading test, size=131072 offset=0 num_iters=100
read BW: 530.135MB/s
unmapping buffer
unpinning buffer
closing gdrdrv


$ copylat
GPU id:0; name: Tesla V100-SXM2-32GB; Bus id: 0000:06:00
GPU id:1; name: Tesla V100-SXM2-32GB; Bus id: 0000:07:00
GPU id:2; name: Tesla V100-SXM2-32GB; Bus id: 0000:0a:00
GPU id:3; name: Tesla V100-SXM2-32GB; Bus id: 0000:0b:00
GPU id:4; name: Tesla V100-SXM2-32GB; Bus id: 0000:85:00
GPU id:5; name: Tesla V100-SXM2-32GB; Bus id: 0000:86:00
GPU id:6; name: Tesla V100-SXM2-32GB; Bus id: 0000:89:00
GPU id:7; name: Tesla V100-SXM2-32GB; Bus id: 0000:8a:00
selecting device 0
device ptr: 0x7fa2c6000000
allocated size: 16777216
gpu alloc fn: cuMemAlloc

map_d_ptr: 0x7fa2f9af9000
info.va: 7fa2c6000000
info.mapped_size: 16777216
info.page_size: 65536
info.mapped: 1
info.wc_mapping: 1
page offset: 0
user-space pointer: 0x7fa2f9af9000

gdr_copy_to_mapping num iters for each size: 10000
WARNING: Measuring the API invocation overhead as observed by the CPU. Data
might not be ordered all the way to the GPU internal visibility.
Test             Size(B)     Avg.Time(us)
gdr_copy_to_mapping             1         0.0889
gdr_copy_to_mapping             2         0.0884
gdr_copy_to_mapping             4         0.0884
gdr_copy_to_mapping             8         0.0884
gdr_copy_to_mapping            16         0.0905
gdr_copy_to_mapping            32         0.0902
gdr_copy_to_mapping            64         0.0902
gdr_copy_to_mapping           128         0.0952
gdr_copy_to_mapping           256         0.0983
gdr_copy_to_mapping           512         0.1176
gdr_copy_to_mapping          1024         0.1825
gdr_copy_to_mapping          2048         0.2549
gdr_copy_to_mapping          4096         0.4366
gdr_copy_to_mapping          8192         0.8141
gdr_copy_to_mapping         16384         1.6155
gdr_copy_to_mapping         32768         3.2284
gdr_copy_to_mapping         65536         6.4906
gdr_copy_to_mapping        131072        12.9761
gdr_copy_to_mapping        262144        25.9459
gdr_copy_to_mapping        524288        51.9100
gdr_copy_to_mapping       1048576       103.8028
gdr_copy_to_mapping       2097152       207.5990
gdr_copy_to_mapping       4194304       415.2856
gdr_copy_to_mapping       8388608       830.6355
gdr_copy_to_mapping      16777216      1661.3285

gdr_copy_from_mapping num iters for each size: 100
Test             Size(B)     Avg.Time(us)
gdr_copy_from_mapping           1         0.9069
gdr_copy_from_mapping           2         1.7170
gdr_copy_from_mapping           4         1.7169
gdr_copy_from_mapping           8         1.7164
gdr_copy_from_mapping          16         0.8601
gdr_copy_from_mapping          32         1.7024
gdr_copy_from_mapping          64         3.1016
gdr_copy_from_mapping         128         3.4944
gdr_copy_from_mapping         256         3.6400
gdr_copy_from_mapping         512         2.4394
gdr_copy_from_mapping        1024         2.8022
gdr_copy_from_mapping        2048         4.6615
gdr_copy_from_mapping        4096         7.9783
gdr_copy_from_mapping        8192        14.9209
gdr_copy_from_mapping       16384        28.9571
gdr_copy_from_mapping       32768        56.9373
gdr_copy_from_mapping       65536       114.1008
gdr_copy_from_mapping      131072       234.9382
gdr_copy_from_mapping      262144       496.4011
gdr_copy_from_mapping      524288       985.5196
gdr_copy_from_mapping     1048576      1970.7057
gdr_copy_from_mapping     2097152      3942.5611
gdr_copy_from_mapping     4194304      7888.9468
gdr_copy_from_mapping     8388608     18361.5673
gdr_copy_from_mapping    16777216     36758.8342
unmapping buffer
unpinning buffer
closing gdrdrv


$ apiperf -s 8
GPU id:0; name: Tesla V100-SXM2-32GB; Bus id: 0000:06:00
GPU id:1; name: Tesla V100-SXM2-32GB; Bus id: 0000:07:00
GPU id:2; name: Tesla V100-SXM2-32GB; Bus id: 0000:0a:00
GPU id:3; name: Tesla V100-SXM2-32GB; Bus id: 0000:0b:00
GPU id:4; name: Tesla V100-SXM2-32GB; Bus id: 0000:85:00
GPU id:5; name: Tesla V100-SXM2-32GB; Bus id: 0000:86:00
GPU id:6; name: Tesla V100-SXM2-32GB; Bus id: 0000:89:00
GPU id:7; name: Tesla V100-SXM2-32GB; Bus id: 0000:8a:00
selecting device 0
device ptr: 0x7f1563a00000
allocated size: 65536
Size(B) pin.Time(us)    map.Time(us)    get_info.Time(us)   unmap.Time(us)
unpin.Time(us)
65536   1346.034060 3.603800    0.340270    4.700930    676.612800
Histogram of gdr_pin_buffer latency for 65536 bytes
[1303.852000    -   2607.704000]    93
[2607.704000    -   3911.556000]    0
[3911.556000    -   5215.408000]    0
[5215.408000    -   6519.260000]    0
[6519.260000    -   7823.112000]    0
[7823.112000    -   9126.964000]    0
[9126.964000    -   10430.816000]   0
[10430.816000   -   11734.668000]   0
[11734.668000   -   13038.520000]   0
[13038.520000   -   14342.372000]   2

closing gdrdrv

NUMA effects

Depending on the platform architecture, like where the GPU are placed in the PCIe topology, performance may suffer if the processor which is driving the copy is not the one which is hosting the GPU, for example in a multi-socket server.

In the example below, GPU ID 0 is hosted by CPU socket 0. By explicitly playing with the OS process and memory affinity, it is possible to run the test onto the optimal processor:

$ numactl -N 0 -l copybw -d 0 -s $((64 * 1024)) -o $((0 * 1024)) -c $((64 * 1024))
GPU id:0; name: Tesla V100-SXM2-32GB; Bus id: 0000:06:00
GPU id:1; name: Tesla V100-SXM2-32GB; Bus id: 0000:07:00
GPU id:2; name: Tesla V100-SXM2-32GB; Bus id: 0000:0a:00
GPU id:3; name: Tesla V100-SXM2-32GB; Bus id: 0000:0b:00
GPU id:4; name: Tesla V100-SXM2-32GB; Bus id: 0000:85:00
GPU id:5; name: Tesla V100-SXM2-32GB; Bus id: 0000:86:00
GPU id:6; name: Tesla V100-SXM2-32GB; Bus id: 0000:89:00
GPU id:7; name: Tesla V100-SXM2-32GB; Bus id: 0000:8a:00
selecting device 0
testing size: 65536
rounded size: 65536
gpu alloc fn: cuMemAlloc
device ptr: 7f5817a00000
map_d_ptr: 0x7f583b186000
info.va: 7f5817a00000
info.mapped_size: 65536
info.page_size: 65536
info.mapped: 1
info.wc_mapping: 1
page offset: 0
user-space pointer:0x7f583b186000
writing test, size=65536 offset=0 num_iters=1000
write BW: 9768.3MB/s
reading test, size=65536 offset=0 num_iters=1000
read BW: 548.423MB/s
unmapping buffer
unpinning buffer
closing gdrdrv

or on the other socket:

$ numactl -N 1 -l copybw -d 0 -s $((64 * 1024)) -o $((0 * 1024)) -c $((64 * 1024))
GPU id:0; name: Tesla V100-SXM2-32GB; Bus id: 0000:06:00
GPU id:1; name: Tesla V100-SXM2-32GB; Bus id: 0000:07:00
GPU id:2; name: Tesla V100-SXM2-32GB; Bus id: 0000:0a:00
GPU id:3; name: Tesla V100-SXM2-32GB; Bus id: 0000:0b:00
GPU id:4; name: Tesla V100-SXM2-32GB; Bus id: 0000:85:00
GPU id:5; name: Tesla V100-SXM2-32GB; Bus id: 0000:86:00
GPU id:6; name: Tesla V100-SXM2-32GB; Bus id: 0000:89:00
GPU id:7; name: Tesla V100-SXM2-32GB; Bus id: 0000:8a:00
selecting device 0
testing size: 65536
rounded size: 65536
gpu alloc fn: cuMemAlloc
device ptr: 7fbb63a00000
map_d_ptr: 0x7fbb82ab0000
info.va: 7fbb63a00000
info.mapped_size: 65536
info.page_size: 65536
info.mapped: 1
info.wc_mapping: 1
page offset: 0
user-space pointer:0x7fbb82ab0000
writing test, size=65536 offset=0 num_iters=1000
write BW: 9224.36MB/s
reading test, size=65536 offset=0 num_iters=1000
read BW: 521.262MB/s
unmapping buffer
unpinning buffer
closing gdrdrv

Restrictions and known issues

GDRCopy works with regular CUDA device memory only, as returned by cudaMalloc. In particular, it does not work with CUDA managed memory.

gdr_pin_buffer() accepts any addresses returned by cudaMalloc and its family. In contrast, gdr_map() requires that the pinned address is aligned to the GPU page. Neither CUDA Runtime nor Driver APIs guarantees that GPU memory allocation functions return aligned addresses. Users are responsible for proper alignment of addresses passed to the library.

Two cudaMalloc'd memory regions may be contiguous. Users may call gdr_pin_buffer and gdr_map with address and size that extend across these two regions. This use case is not well-supported in GDRCopy. On rare occassions, users may experience 1.) an error in gdr_map, or 2.) low copy performance because gdr_map cannot provide write-combined mapping.

In some GPU driver versions, pinning the same GPU address multiple times consumes additional BAR1 space. This is because the space is not properly reused. If you encounter this issue, we suggest that you try the latest version of NVIDIA GPU driver.

On POWER9 where CPU and GPU are connected via NVLink, CUDA9.2 and GPU Driver v396.37 are the minimum requirements in order to achieve the full performance. GDRCopy works with ealier CUDA and GPU driver versions but the achievable bandwidth is substantially lower.

Bug filing

For reporting issues you may be having using any of NVIDIA software or reporting suspected bugs we would recommend you use the bug filing system which is available to NVIDIA registered developers on the developer site.

If you are not a member you can sign up.

Once a member you can submit issues using this form. Be sure to select GPUDirect in the "Relevant Area" field.

You can later track their progress using the My Bugs link on the left of this view.

Acknowledgment

If you find this software useful in your work, please cite: R. Shi et al., "Designing efficient small message transfer mechanism for inter-node MPI communication on InfiniBand GPU clusters," 2014 21st International Conference on High Performance Computing (HiPC), Dona Paula, 2014, pp. 1-10, doi: 10.1109/HiPC.2014.7116873.

More Repositories

1

nvidia-docker

Build and run Docker containers leveraging NVIDIA GPUs
16,896
star
2

open-gpu-kernel-modules

NVIDIA Linux open GPU kernel module source
C
14,997
star
3

DeepLearningExamples

State-of-the-Art Deep Learning scripts organized by models - easy to train and deploy with reproducible accuracy and performance on enterprise-grade infrastructure.
Jupyter Notebook
13,339
star
4

NeMo

A scalable generative AI framework built for researchers and developers working on Large Language Models, Multimodal, and Speech AI (Automatic Speech Recognition and Text-to-Speech)
Python
12,016
star
5

FastPhotoStyle

Style transfer, deep learning, feature transform
Python
11,020
star
6

TensorRT

NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference on NVIDIA GPUs. This repository contains the open source components of TensorRT.
C++
10,618
star
7

Megatron-LM

Ongoing research training transformer models at scale
Python
10,332
star
8

TensorRT-LLM

TensorRT-LLM provides users with an easy-to-use Python API to define Large Language Models (LLMs) and build TensorRT engines that contain state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs. TensorRT-LLM also contains components to create Python and C++ runtimes that execute those TensorRT engines.
C++
8,542
star
9

vid2vid

Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.
Python
8,482
star
10

apex

A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch
Python
8,239
star
11

pix2pixHD

Synthesizing and manipulating 2048x1024 images with conditional GANs
Python
6,488
star
12

cuda-samples

Samples for CUDA Developers which demonstrates features in CUDA Toolkit
C
6,119
star
13

cutlass

CUDA Templates for Linear Algebra Subroutines
C++
5,519
star
14

FasterTransformer

Transformer related optimization, including BERT, GPT
C++
5,313
star
15

DALI

A GPU-accelerated library containing highly optimized building blocks and an execution engine for data processing to accelerate deep learning training and inference applications.
C++
5,048
star
16

thrust

[ARCHIVED] The C++ parallel algorithms library. See https://github.com/NVIDIA/cccl
C++
4,914
star
17

tacotron2

Tacotron 2 - PyTorch implementation with faster-than-realtime inference
Jupyter Notebook
4,562
star
18

warp

A Python framework for high performance GPU simulation and graphics
Python
4,206
star
19

DIGITS

Deep Learning GPU Training System
HTML
4,105
star
20

NeMo-Guardrails

NeMo Guardrails is an open-source toolkit for easily adding programmable guardrails to LLM-based conversational systems.
Python
4,064
star
21

nccl

Optimized primitives for collective multi-GPU communication
C++
3,187
star
22

flownet2-pytorch

Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks
Python
2,938
star
23

ChatRTX

A developer reference project for creating Retrieval Augmented Generation (RAG) chatbots on Windows using TensorRT-LLM
TypeScript
2,635
star
24

k8s-device-plugin

NVIDIA device plugin for Kubernetes
Go
2,481
star
25

libcudacxx

[ARCHIVED] The C++ Standard Library for your entire system. See https://github.com/NVIDIA/cccl
C++
2,294
star
26

GenerativeAIExamples

Generative AI reference workflows optimized for accelerated infrastructure and microservice architecture.
Python
2,192
star
27

nvidia-container-toolkit

Build and run containers leveraging NVIDIA GPUs
Go
2,171
star
28

waveglow

A Flow-based Generative Network for Speech Synthesis
Python
2,133
star
29

MinkowskiEngine

Minkowski Engine is an auto-diff neural network library for high-dimensional sparse tensors
Python
2,007
star
30

TransformerEngine

A library for accelerating Transformer models on NVIDIA GPUs, including using 8-bit floating point (FP8) precision on Hopper and Ada GPUs, to provide better performance with lower memory utilization in both training and inference.
Python
1,917
star
31

Stable-Diffusion-WebUI-TensorRT

TensorRT Extension for Stable Diffusion Web UI
Python
1,886
star
32

semantic-segmentation

Nvidia Semantic Segmentation monorepo
Python
1,763
star
33

gpu-operator

NVIDIA GPU Operator creates/configures/manages GPUs atop Kubernetes
Go
1,735
star
34

cub

[ARCHIVED] Cooperative primitives for CUDA C++. See https://github.com/NVIDIA/cccl
Cuda
1,679
star
35

DeepRecommender

Deep learning for recommender systems
Python
1,662
star
36

stdexec

`std::execution`, the proposed C++ framework for asynchronous and parallel programming.
C++
1,554
star
37

OpenSeq2Seq

Toolkit for efficient experimentation with Speech Recognition, Text2Speech and NLP
Python
1,511
star
38

CUDALibrarySamples

CUDA Library Samples
Cuda
1,468
star
39

VideoProcessingFramework

Set of Python bindings to C++ libraries which provides full HW acceleration for video decoding, encoding and GPU-accelerated color space and pixel format conversions
C++
1,303
star
40

deepops

Tools for building GPU clusters
Shell
1,252
star
41

open-gpu-doc

Documentation of NVIDIA chip/hardware interfaces
C
1,243
star
42

aistore

AIStore: scalable storage for AI applications
Go
1,233
star
43

Q2RTX

NVIDIA’s implementation of RTX ray-tracing in Quake II
C
1,217
star
44

trt-samples-for-hackathon-cn

Simple samples for TensorRT programming
Python
1,211
star
45

cccl

CUDA Core Compute Libraries
C++
1,200
star
46

MatX

An efficient C++17 GPU numerical computing library with Python-like syntax
C++
1,187
star
47

partialconv

A New Padding Scheme: Partial Convolution based Padding
Python
1,145
star
48

sentiment-discovery

Unsupervised Language Modeling at scale for robust sentiment classification
Python
1,055
star
49

nvidia-container-runtime

NVIDIA container runtime
Makefile
1,035
star
50

modulus

Open-source deep-learning framework for building, training, and fine-tuning deep learning models using state-of-the-art Physics-ML methods
Python
991
star
51

gpu-monitoring-tools

Tools for monitoring NVIDIA GPUs on Linux
C
974
star
52

jetson-gpio

A Python library that enables the use of Jetson's GPIOs
Python
898
star
53

dcgm-exporter

NVIDIA GPU metrics exporter for Prometheus leveraging DCGM
Go
886
star
54

retinanet-examples

Fast and accurate object detection with end-to-end GPU optimization
Python
885
star
55

flowtron

Flowtron is an auto-regressive flow-based generative network for text to speech synthesis with control over speech variation and style transfer
Jupyter Notebook
867
star
56

nccl-tests

NCCL Tests
Cuda
864
star
57

cuda-python

CUDA Python Low-level Bindings
Python
859
star
58

mellotron

Mellotron: a multispeaker voice synthesis model based on Tacotron 2 GST that can make a voice emote and sing without emotive or singing training data
Jupyter Notebook
852
star
59

libnvidia-container

NVIDIA container runtime library
C
818
star
60

BigVGAN

Official PyTorch implementation of BigVGAN (ICLR 2023)
Python
806
star
61

spark-rapids

Spark RAPIDS plugin - accelerate Apache Spark with GPUs
Scala
800
star
62

nv-wavenet

Reference implementation of real-time autoregressive wavenet inference
Cuda
728
star
63

DLSS

NVIDIA DLSS is a new and improved deep learning neural network that boosts frame rates and generates beautiful, sharp images for your games
C
727
star
64

tensorflow

An Open Source Machine Learning Framework for Everyone
C++
719
star
65

gvdb-voxels

Sparse volume compute and rendering on NVIDIA GPUs
C
674
star
66

MAXINE-AR-SDK

NVIDIA AR SDK - API headers and sample applications
C
671
star
67

nvvl

A library that uses hardware acceleration to load sequences of video frames to facilitate machine learning training
C++
665
star
68

runx

Deep Learning Experiment Management
Python
633
star
69

NVFlare

NVIDIA Federated Learning Application Runtime Environment
Python
630
star
70

NeMo-Aligner

Scalable toolkit for efficient model alignment
Python
564
star
71

nvcomp

Repository for nvCOMP docs and examples. nvCOMP is a library for fast lossless compression/decompression on the GPU that can be downloaded from https://developer.nvidia.com/nvcomp.
C++
545
star
72

multi-gpu-programming-models

Examples demonstrating available options to program multiple GPUs in a single node or a cluster
Cuda
535
star
73

Dataset_Synthesizer

NVIDIA Deep learning Dataset Synthesizer (NDDS)
C++
530
star
74

TensorRT-Model-Optimizer

TensorRT Model Optimizer is a unified library of state-of-the-art model optimization techniques such as quantization, pruning, distillation, etc. It compresses deep learning models for downstream deployment frameworks like TensorRT-LLM or TensorRT to optimize inference speed on NVIDIA GPUs.
Python
513
star
75

jitify

A single-header C++ library for simplifying the use of CUDA Runtime Compilation (NVRTC).
C++
512
star
76

nvbench

CUDA Kernel Benchmarking Library
Cuda
501
star
77

libglvnd

The GL Vendor-Neutral Dispatch library
C
501
star
78

NeMo-Curator

Scalable data pre processing and curation toolkit for LLMs
Jupyter Notebook
500
star
79

cuda-quantum

C++ and Python support for the CUDA Quantum programming model for heterogeneous quantum-classical workflows
C++
496
star
80

AMGX

Distributed multigrid linear solver library on GPU
Cuda
474
star
81

cuCollections

C++
470
star
82

enroot

A simple yet powerful tool to turn traditional container/OS images into unprivileged sandboxes.
Shell
459
star
83

NeMo-Framework-Launcher

Provides end-to-end model development pipelines for LLMs and Multimodal models that can be launched on-prem or cloud-native.
Python
459
star
84

hpc-container-maker

HPC Container Maker
Python
442
star
85

MDL-SDK

NVIDIA Material Definition Language SDK
C++
438
star
86

PyProf

A GPU performance profiling tool for PyTorch models
Python
437
star
87

framework-reproducibility

Providing reproducibility in deep learning frameworks
Python
424
star
88

gpu-rest-engine

A REST API for Caffe using Docker and Go
C++
421
star
89

DCGM

NVIDIA Data Center GPU Manager (DCGM) is a project for gathering telemetry and measuring the health of NVIDIA GPUs
C++
394
star
90

NvPipe

NVIDIA-accelerated zero latency video compression library for interactive remoting applications
Cuda
390
star
91

torch-harmonics

Differentiable signal processing on the sphere for PyTorch
Jupyter Notebook
386
star
92

cuQuantum

Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples
Jupyter Notebook
344
star
93

data-science-stack

NVIDIA Data Science stack tools
Shell
317
star
94

ai-assisted-annotation-client

Client side integration example source code and libraries for AI-Assisted Annotation SDK
C++
308
star
95

video-sdk-samples

Samples demonstrating how to use various APIs of NVIDIA Video Codec SDK
C++
301
star
96

egl-wayland

The EGLStream-based Wayland external platform
C
299
star
97

nvidia-settings

NVIDIA driver control panel
C
292
star
98

NVTX

The NVIDIA® Tools Extension SDK (NVTX) is a C-based Application Programming Interface (API) for annotating events, code ranges, and resources in your applications.
C
290
star
99

go-nvml

Go Bindings for the NVIDIA Management Library (NVML)
C
288
star
100

gpu-feature-discovery

GPU plugin to the node feature discovery for Kubernetes
Go
286
star