• Stars
    star
    255
  • Rank 153,822 (Top 4 %)
  • Language
    Go
  • License
    Apache License 2.0
  • Created about 5 years ago
  • Updated about 1 month ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

GPU plugin to the node feature discovery for Kubernetes

NVIDIA GPU feature discovery

Go Report Card License

Table of Contents

Overview

NVIDIA GPU Feature Discovery for Kubernetes is a software component that allows you to automatically generate labels for the set of GPUs available on a node. It leverages the Node Feature Discovery to perform this labeling.

Beta Version

This tool should be considered beta until it reaches v1.0.0. As such, we may break the API before reaching v1.0.0, but we will setup a deprecation policy to ease the transition.

Prerequisites

The list of prerequisites for running the NVIDIA GPU Feature Discovery is described below:

  • nvidia-docker version > 2.0 (see how to install and it's prerequisites)
  • docker configured with nvidia as the default runtime.
  • Kubernetes version >= 1.10
  • NVIDIA device plugin for Kubernetes (see how to setup)
  • NFD deployed on each node you want to label with the local source configured

Quick Start

The following assumes you have at least one node in your cluster with GPUs and the standard NVIDIA drivers have already been installed on it.

Node Feature Discovery (NFD)

The first step is to make sure that Node Feature Discovery is running on every node you want to label. NVIDIA GPU Feature Discovery use the local source so be sure to mount volumes. See https://github.com/kubernetes-sigs/node-feature-discovery for more details.

You also need to configure the Node Feature Discovery to only expose vendor IDs in the PCI source. To do so, please refer to the Node Feature Discovery documentation.

The following command will deploy NFD with the minimum required set of parameters to run gpu-feature-discovery.

kubectl apply -f https://raw.githubusercontent.com/NVIDIA/gpu-feature-discovery/v0.8.0/deployments/static/nfd.yaml

Note: This is a simple static daemonset meant to demonstrate the basic features required of node-feature-discovery in order to successfully run gpu-feature-discovery. Please see the instructions below for Deployment via helm when deploying in a production setting.

Preparing your GPU Nodes

Be sure that nvidia-docker2 is installed on your GPU nodes and Docker default runtime is set to nvidia. See https://github.com/NVIDIA/nvidia-docker/wiki/Advanced-topics#default-runtime.

Deploy NVIDIA GPU Feature Discovery (GFD)

The next step is to run NVIDIA GPU Feature Discovery on each node as a Daemonset or as a Job.

Daemonset

kubectl apply -f https://raw.githubusercontent.com/NVIDIA/gpu-feature-discovery/v0.8.0/deployments/static/gpu-feature-discovery-daemonset.yaml

Note: This is a simple static daemonset meant to demonstrate the basic features required of gpu-feature-discovery. Please see the instructions below for Deployment via helm when deploying in a production setting.

Job

You must change the NODE_NAME value in the template to match the name of the node you want to label:

$ export NODE_NAME=<your-node-name>
$ curl https://raw.githubusercontent.com/NVIDIA/gpu-feature-discovery/v0.8.0/deployments/static/gpu-feature-discovery-job.yaml.template \
    | sed "s/NODE_NAME/${NODE_NAME}/" > gpu-feature-discovery-job.yaml
$ kubectl apply -f gpu-feature-discovery-job.yaml

Note: This method should only be used for testing and not deployed in a productions setting.

Verifying Everything Works

With both NFD and GFD deployed and running, you should now be able to see GPU related labels appearing on any nodes that have GPUs installed on them.

$ kubectl get nodes -o yaml
apiVersion: v1
items:
- apiVersion: v1
  kind: Node
  metadata:
    ...

    labels:
      nvidia.com/cuda.driver.major: "455"
      nvidia.com/cuda.driver.minor: "06"
      nvidia.com/cuda.driver.rev: ""
      nvidia.com/cuda.runtime.major: "11"
      nvidia.com/cuda.runtime.minor: "1"
      nvidia.com/gpu.compute.major: "8"
      nvidia.com/gpu.compute.minor: "0"
      nvidia.com/gfd.timestamp: "1594644571"
      nvidia.com/gpu.count: "1"
      nvidia.com/gpu.family: ampere
      nvidia.com/gpu.machine: NVIDIA DGX-2H
      nvidia.com/gpu.memory: "39538"
      nvidia.com/gpu.product: A100-SXM4-40GB
      ...
...

The GFD Command line interface

Available options:

gpu-feature-discovery:
Usage:
  gpu-feature-discovery [--fail-on-init-error=<bool>] [--mig-strategy=<strategy>] [--oneshot | --sleep-interval=<seconds>] [--no-timestamp] [--output-file=<file> | -o <file>]
  gpu-feature-discovery -h | --help
  gpu-feature-discovery --version

Options:
  -h --help                       Show this help message and exit
  --version                       Display version and exit
  --oneshot                       Label once and exit
  --no-timestamp                  Do not add timestamp to the labels
  --fail-on-init-error=<bool>     Fail if there is an error during initialization of any label sources [Default: true]
  --sleep-interval=<seconds>      Time to sleep between labeling [Default: 60s]
  --mig-strategy=<strategy>       Strategy to use for MIG-related labels [Default: none]
  -o <file> --output-file=<file>  Path to output file
                                  [Default: /etc/kubernetes/node-feature-discovery/features.d/gfd]

Arguments:
  <strategy>: none | single | mixed

You can also use environment variables:

Env Variable Option Example
GFD_FAIL_ON_INIT_ERROR --fail-on-init-error true
GFD_MIG_STRATEGY --mig-strategy none
GFD_ONESHOT --oneshot TRUE
GFD_NO_TIMESTAMP --no-timestamp TRUE
GFD_OUTPUT_FILE --output-file output
GFD_SLEEP_INTERVAL --sleep-interval 10s

Environment variables override the command line options if they conflict.

Generated Labels

This is the list of the labels generated by NVIDIA GPU Feature Discovery and their meaning:

Label Name Value Type Meaning Example
nvidia.com/cuda.driver.major Integer Major of the version of NVIDIA driver 418
nvidia.com/cuda.driver.minor Integer Minor of the version of NVIDIA driver 30
nvidia.com/cuda.driver.rev Integer Revision of the version of NVIDIA driver 40
nvidia.com/cuda.runtime.major Integer Major of the version of CUDA 10
nvidia.com/cuda.runtime.minor Integer Minor of the version of CUDA 1
nvidia.com/gfd.timestamp Integer Timestamp of the generated labels (optional) 1555019244
nvidia.com/gpu.compute.major Integer Major of the compute capabilities 3
nvidia.com/gpu.compute.minor Integer Minor of the compute capabilities 3
nvidia.com/gpu.count Integer Number of GPUs 2
nvidia.com/gpu.family String Architecture family of the GPU kepler
nvidia.com/gpu.machine String Machine type DGX-1
nvidia.com/gpu.memory Integer Memory of the GPU in Mb 2048
nvidia.com/gpu.product String Model of the GPU GeForce-GT-710

Depending on the MIG strategy used, the following set of labels may also be available (or override the default values for some of the labels listed above):

MIG 'single' strategy

With this strategy, the single nvidia.com/gpu label is overloaded to provide information about MIG devices on the node, rather than full GPUs. This assumes all GPUs on the node have been divided into identical partitions of the same size. The example below shows info for a system with 8 full GPUs, each of which is partitioned into 7 equal sized MIG devices (56 total).

Label Name Value Type Meaning Example
nvidia.com/mig.strategy String MIG strategy in use single
nvidia.com/gpu.product (overridden) String Model of the GPU (with MIG info added) A100-SXM4-40GB-MIG-1g.5gb
nvidia.com/gpu.count (overridden) Integer Number of MIG devices 56
nvidia.com/gpu.memory (overridden) Integer Memory of each MIG device in Mb 5120
nvidia.com/gpu.multiprocessors Integer Number of Multiprocessors for MIG device 14
nvidia.com/gpu.slices.gi Integer Number of GPU Instance slices 1
nvidia.com/gpu.slices.ci Integer Number of Compute Instance slices 1
nvidia.com/gpu.engines.copy Integer Number of DMA engines for MIG device 1
nvidia.com/gpu.engines.decoder Integer Number of decoders for MIG device 1
nvidia.com/gpu.engines.encoder Integer Number of encoders for MIG device 1
nvidia.com/gpu.engines.jpeg Integer Number of JPEG engines for MIG device 0
nvidia.com/gpu.engines.ofa Integer Number of OfA engines for MIG device 0

MIG 'mixed' strategy

With this strategy, a separate set of labels for each MIG device type is generated. The name of each MIG device type is defines as follows:

MIG_TYPE=mig-<slice_count>g.<memory_size>.gb
e.g.  MIG_TYPE=mig-3g.20gb
Label Name Value Type Meaning Example
nvidia.com/mig.strategy String MIG strategy in use mixed
nvidia.com/MIG_TYPE.count Integer Number of MIG devices of this type 2
nvidia.com/MIG_TYPE.memory Integer Memory of MIG device type in Mb 10240
nvidia.com/MIG_TYPE.multiprocessors Integer Number of Multiprocessors for MIG device 14
nvidia.com/MIG_TYPE.slices.ci Integer Number of GPU Instance slices 1
nvidia.com/MIG_TYPE.slices.gi Integer Number of Compute Instance slices 1
nvidia.com/MIG_TYPE.engines.copy Integer Number of DMA engines for MIG device 1
nvidia.com/MIG_TYPE.engines.decoder Integer Number of decoders for MIG device 1
nvidia.com/MIG_TYPE.engines.encoder Integer Number of encoders for MIG device 1
nvidia.com/MIG_TYPE.engines.jpeg Integer Number of JPEG engines for MIG device 0
nvidia.com/MIG_TYPE.engines.ofa Integer Number of OfA engines for MIG device 0

Deployment via helm

The preferred method to deploy gpu-feature-discovery is as a daemonset using helm. Instructions for installing helm can be found here.

The helm chart for the latest release of GFD (v0.8.0) includes a number of customizable values. The most commonly overridden ones are:

  failOnInitError:
      Fail if there is an error during initialization of any label sources (default: true)
  sleepInterval:
      time to sleep between labeling (default "60s")
  migStrategy:
      pass the desired strategy for labeling MIG devices on GPUs that support it
      [none | single | mixed] (default "none)
  nfd.deploy, nfd.enabled:
      When set to true, deploy NFD as a subchart with all of the proper
      parameters set for it (default "true")
  runtimeClassName:
      the runtimeClassName to use, for use with clusters that have multiple runtimes

Note: The following document provides more information on the available MIG strategies and how they should be used Supporting Multi-Instance GPUs (MIG) in Kubernetes.

Please take a look in the following values.yaml files to see the full set of overridable parameters for both the top-level gpu-feature-discovery chart and the node-feature-discovery subchart.

Installing via helm install

Starting with v0.6.0 there are two ways to deploy gpu-feature-discovery via helm:

  1. As a standalone chart without configuration file or GPU sharing support
  2. As a subchart of the NVIDIA device plugin with configuration file and GPU sharing support
Deploying Standalone

When deploying standalone, begin by setting up GFD's helm repository and updating it at follows:

$ helm repo add nvgfd https://nvidia.github.io/gpu-feature-discovery
$ helm repo update

Then verify that the latest release (v0.8.0) of the plugin is available:

$ helm search repo nvgfd --devel
NAME                          CHART VERSION  APP VERSION    DESCRIPTION
nvgfd/gpu-feature-discovery   0.8.0     0.8.0     A Helm chart for ...

Once this repo is updated, you can begin installing packages from it to deploy the gpu-feature-discovery helm chart.

The most basic installation command without any options is then:

$ helm upgrade -i nvgfd nvgfd/gpu-feature-discovery \
  --version 0.8.0 \
  --namespace gpu-feature-discovery \
  --create-namespace

Disabling auto-deployment of NFD and running with a MIG strategy of 'mixed' in the default namespace.

$ helm upgrade -i nvgfd nvgfd/gpu-feature-discovery \
    --version=0.8.0 \
    --set allowDefaultNamespace=true \
    --set nfd.enabled=false \
    --set migStrategy=mixed

Note: You only need the to pass the --devel flag to helm search repo and the --version flag to helm upgrade -i if this is a pre-release version (e.g. <version>-rc.1). Full releases will be listed without this.

Deploying as a subchart of the NVIDIA device plugin

Starting with v0.12.0 of the NVIDIA device plugin, a configuration file can now be used to configure the plugin. This same configuration file can also be used to configure GFD. The GFD specific sections of the configuration file are specified in the gfd section as seen below:

version: v1
flags:
  migStrategy: "none"
  failOnInitError: true
  nvidiaDriverRoot: "/"
  plugin:
    passDeviceSpecs: false
    deviceListStrategy: "envvar"
    deviceIDStrategy: "uuid"
  gfd:
    oneshot: false
    noTimestamp: false
    outputFile: /etc/kubernetes/node-feature-discovery/features.d/gfd
    sleepInterval: 60s

The fields in this section map to the command line flags and environment variables available for configuring GFD.

For details on how to deploy GFD as part of the plugin please refer to:

Deploying via helm install with a direct URL to the helm package

If you prefer not to install from the gpu-feature-discovery helm repo, you can run helm install directly against the tarball of the components helm package. The examples below install the same daemonsets as the method above, except that they use direct URLs to the helm package instead of the helm repo.

Using the default values for the flags:

$ helm upgrade -i nvgfd \
    --set allowDefaultNamespace=true \
    https://nvidia.github.io/gpu-feature-discovery/stable/gpu-feature-discovery-0.8.0.tgz

Disabling auto-deployment of NFD and running with a MIG strategy of 'mixed' in the default namespace.

$ helm upgrade -i nvgfd \
    --set nfd.deploy=false \
    --set migStrategy=mixed \
    --set allowDefaultNamespace=true \
    https://nvidia.github.io/gpu-feature-discovery/stable/gpu-feature-discovery-0.8.0.tgz

Building and running locally with Docker

Download the source code:

git clone https://github.com/NVIDIA/gpu-feature-discovery

Build the docker image:

export GFD_VERSION=$(git describe --tags --dirty --always)
docker build . --build-arg GFD_VERSION=$GFD_VERSION -t nvcr.io/nvidia/gpu-feature-discovery:${GFD_VERSION}

Run it:

mkdir -p output-dir
docker run -v ${PWD}/output-dir:/etc/kubernetes/node-feature-discovery/features.d nvcr.io/nvidia/gpu-feature-discovery:${GFD_VERSION}

You should have set the default runtime of Docker to nvidia on your host or you can also use the --runtime=nvidia option:

docker run --runtime=nvidia nvcr.io/nvidia/gpu-feature-discovery:${GFD_VERSION}

Building and running locally on your native machine

Download the source code:

git clone https://github.com/NVIDIA/gpu-feature-discovery

Get dependies:

dep ensure

Build it:

export GFD_VERSION=$(git describe --tags --dirty --always)
go build -ldflags "-X main.Version=${GFD_VERSION}"

You can also use the Dockerfile.devel:

docker build . -f Dockerfile.devel -t gfd-devel
docker run -it gfd-devel
go build -ldflags "-X main.Version=devel"

Run it:

./gpu-feature-discovery --output=$(pwd)/gfd

More Repositories

1

nvidia-docker

Build and run Docker containers leveraging NVIDIA GPUs
16,896
star
2

open-gpu-kernel-modules

NVIDIA Linux open GPU kernel module source
C
13,784
star
3

DeepLearningExamples

State-of-the-Art Deep Learning scripts organized by models - easy to train and deploy with reproducible accuracy and performance on enterprise-grade infrastructure.
Jupyter Notebook
12,579
star
4

FastPhotoStyle

Style transfer, deep learning, feature transform
Python
11,020
star
5

NeMo

A scalable generative AI framework built for researchers and developers working on Large Language Models, Multimodal, and Speech AI (Automatic Speech Recognition and Text-to-Speech)
Python
10,077
star
6

TensorRT

NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference on NVIDIA GPUs. This repository contains the open source components of TensorRT.
C++
9,059
star
7

vid2vid

Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.
Python
8,482
star
8

Megatron-LM

Ongoing research training transformer models at scale
Python
8,169
star
9

apex

A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch
Python
7,915
star
10

pix2pixHD

Synthesizing and manipulating 2048x1024 images with conditional GANs
Python
6,488
star
11

TensorRT-LLM

TensorRT-LLM provides users with an easy-to-use Python API to define Large Language Models (LLMs) and build TensorRT engines that contain state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs. TensorRT-LLM also contains components to create Python and C++ runtimes that execute those TensorRT engines.
C++
6,429
star
12

FasterTransformer

Transformer related optimization, including BERT, GPT
C++
5,313
star
13

cuda-samples

Samples for CUDA Developers which demonstrates features in CUDA Toolkit
C
5,203
star
14

thrust

[ARCHIVED] The C++ parallel algorithms library. See https://github.com/NVIDIA/cccl
C++
4,845
star
15

DALI

A GPU-accelerated library containing highly optimized building blocks and an execution engine for data processing to accelerate deep learning training and inference applications.
C++
4,839
star
16

tacotron2

Tacotron 2 - PyTorch implementation with faster-than-realtime inference
Jupyter Notebook
4,562
star
17

cutlass

CUDA Templates for Linear Algebra Subroutines
C++
4,278
star
18

DIGITS

Deep Learning GPU Training System
HTML
4,105
star
19

NeMo-Guardrails

NeMo Guardrails is an open-source toolkit for easily adding programmable guardrails to LLM-based conversational systems.
Python
3,338
star
20

flownet2-pytorch

Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks
Python
2,938
star
21

nccl

Optimized primitives for collective multi-GPU communication
C++
2,786
star
22

libcudacxx

[ARCHIVED] The C++ Standard Library for your entire system. See https://github.com/NVIDIA/cccl
C++
2,286
star
23

k8s-device-plugin

NVIDIA device plugin for Kubernetes
Go
2,269
star
24

waveglow

A Flow-based Generative Network for Speech Synthesis
Python
2,133
star
25

trt-llm-rag-windows

A developer reference project for creating Retrieval Augmented Generation (RAG) chatbots on Windows using TensorRT-LLM
Python
2,011
star
26

MinkowskiEngine

Minkowski Engine is an auto-diff neural network library for high-dimensional sparse tensors
Python
2,007
star
27

semantic-segmentation

Nvidia Semantic Segmentation monorepo
Python
1,746
star
28

DeepRecommender

Deep learning for recommender systems
Python
1,662
star
29

Stable-Diffusion-WebUI-TensorRT

TensorRT Extension for Stable Diffusion Web UI
Python
1,660
star
30

cub

[ARCHIVED] Cooperative primitives for CUDA C++. See https://github.com/NVIDIA/cccl
Cuda
1,648
star
31

warp

A Python framework for high performance GPU simulation and graphics
Python
1,573
star
32

OpenSeq2Seq

Toolkit for efficient experimentation with Speech Recognition, Text2Speech and NLP
Python
1,511
star
33

GenerativeAIExamples

Generative AI reference workflows optimized for accelerated infrastructure and microservice architecture.
Python
1,450
star
34

TransformerEngine

A library for accelerating Transformer models on NVIDIA GPUs, including using 8-bit floating point (FP8) precision on Hopper and Ada GPUs, to provide better performance with lower memory utilization in both training and inference.
Python
1,400
star
35

VideoProcessingFramework

Set of Python bindings to C++ libraries which provides full HW acceleration for video decoding, encoding and GPU-accelerated color space and pixel format conversions
C++
1,253
star
36

nvidia-container-toolkit

Build and run containers leveraging NVIDIA GPUs
Go
1,239
star
37

trt-samples-for-hackathon-cn

Simple samples for TensorRT programming
Python
1,211
star
38

Q2RTX

NVIDIA’s implementation of RTX ray-tracing in Quake II
C
1,201
star
39

open-gpu-doc

Documentation of NVIDIA chip/hardware interfaces
C
1,193
star
40

stdexec

`std::execution`, the proposed C++ framework for asynchronous and parallel programming.
C++
1,182
star
41

deepops

Tools for building GPU clusters
Shell
1,165
star
42

partialconv

A New Padding Scheme: Partial Convolution based Padding
Python
1,145
star
43

CUDALibrarySamples

CUDA Library Samples
Cuda
1,122
star
44

gpu-operator

NVIDIA GPU Operator creates/configures/manages GPUs atop Kubernetes
Go
1,117
star
45

MatX

An efficient C++17 GPU numerical computing library with Python-like syntax
C++
1,104
star
46

aistore

AIStore: scalable storage for AI applications
Go
1,074
star
47

sentiment-discovery

Unsupervised Language Modeling at scale for robust sentiment classification
Python
1,055
star
48

nvidia-container-runtime

NVIDIA container runtime
Makefile
1,035
star
49

gpu-monitoring-tools

Tools for monitoring NVIDIA GPUs on Linux
C
974
star
50

retinanet-examples

Fast and accurate object detection with end-to-end GPU optimization
Python
876
star
51

flowtron

Flowtron is an auto-regressive flow-based generative network for text to speech synthesis with control over speech variation and style transfer
Jupyter Notebook
867
star
52

mellotron

Mellotron: a multispeaker voice synthesis model based on Tacotron 2 GST that can make a voice emote and sing without emotive or singing training data
Jupyter Notebook
842
star
53

jetson-gpio

A Python library that enables the use of Jetson's GPIOs
Python
834
star
54

gdrcopy

A fast GPU memory copy library based on NVIDIA GPUDirect RDMA technology
C++
766
star
55

nv-wavenet

Reference implementation of real-time autoregressive wavenet inference
Cuda
728
star
56

libnvidia-container

NVIDIA container runtime library
C
722
star
57

tensorflow

An Open Source Machine Learning Framework for Everyone
C++
719
star
58

spark-rapids

Spark RAPIDS plugin - accelerate Apache Spark with GPUs
Scala
717
star
59

cuda-python

CUDA Python Low-level Bindings
Python
695
star
60

cccl

CUDA C++ Core Libraries
C++
676
star
61

MAXINE-AR-SDK

NVIDIA AR SDK - API headers and sample applications
C
671
star
62

nvvl

A library that uses hardware acceleration to load sequences of video frames to facilitate machine learning training
C++
665
star
63

gvdb-voxels

Sparse volume compute and rendering on NVIDIA GPUs
C
656
star
64

nccl-tests

NCCL Tests
Cuda
648
star
65

modulus

Open-source deep-learning framework for building, training, and fine-tuning deep learning models using state-of-the-art Physics-ML methods
Python
636
star
66

BigVGAN

Official PyTorch implementation of BigVGAN (ICLR 2023)
Python
633
star
67

runx

Deep Learning Experiment Management
Python
630
star
68

DLSS

NVIDIA DLSS is a new and improved deep learning neural network that boosts frame rates and generates beautiful, sharp images for your games
C
588
star
69

dcgm-exporter

NVIDIA GPU metrics exporter for Prometheus leveraging DCGM
Go
551
star
70

Dataset_Synthesizer

NVIDIA Deep learning Dataset Synthesizer (NDDS)
C++
530
star
71

NVFlare

NVIDIA Federated Learning Application Runtime Environment
Python
528
star
72

nvcomp

Repository for nvCOMP docs and examples. nvCOMP is a library for fast lossless compression/decompression on the GPU that can be downloaded from https://developer.nvidia.com/nvcomp.
C++
510
star
73

jitify

A single-header C++ library for simplifying the use of CUDA Runtime Compilation (NVRTC).
C++
495
star
74

libglvnd

The GL Vendor-Neutral Dispatch library
C
462
star
75

enroot

A simple yet powerful tool to turn traditional container/OS images into unprivileged sandboxes.
Shell
459
star
76

multi-gpu-programming-models

Examples demonstrating available options to program multiple GPUs in a single node or a cluster
Cuda
438
star
77

MDL-SDK

NVIDIA Material Definition Language SDK
C++
438
star
78

PyProf

A GPU performance profiling tool for PyTorch models
Python
437
star
79

AMGX

Distributed multigrid linear solver library on GPU
Cuda
434
star
80

gpu-rest-engine

A REST API for Caffe using Docker and Go
C++
421
star
81

nvbench

CUDA Kernel Benchmarking Library
Cuda
413
star
82

framework-reproducibility

Providing reproducibility in deep learning frameworks
Python
412
star
83

cuCollections

C++
410
star
84

hpc-container-maker

HPC Container Maker
Python
404
star
85

NeMo-Framework-Launcher

NeMo Megatron launcher and tools
Python
391
star
86

NvPipe

NVIDIA-accelerated zero latency video compression library for interactive remoting applications
Cuda
384
star
87

cuda-quantum

C++ and Python support for the CUDA Quantum programming model for heterogeneous quantum-classical workflows
C++
363
star
88

data-science-stack

NVIDIA Data Science stack tools
Shell
317
star
89

cuQuantum

Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples
Jupyter Notebook
305
star
90

ai-assisted-annotation-client

Client side integration example source code and libraries for AI-Assisted Annotation SDK
C++
302
star
91

video-sdk-samples

Samples demonstrating how to use various APIs of NVIDIA Video Codec SDK
C++
301
star
92

nvidia-settings

NVIDIA driver control panel
C
284
star
93

DCGM

NVIDIA Data Center GPU Manager (DCGM) is a project for gathering telemetry and measuring the health of NVIDIA GPUs
C++
282
star
94

cnmem

A simple memory manager for CUDA designed to help Deep Learning frameworks manage memory
C++
280
star
95

radtts

Provides training, inference and voice conversion recipes for RADTTS and RADTTS++: Flow-based TTS models with Robust Alignment Learning, Diverse Synthesis, and Generative Modeling and Fine-Grained Control over of Low Dimensional (F0 and Energy) Speech Attributes.
Roff
269
star
96

fsi-samples

A collection of open-source GPU accelerated Python tools and examples for quantitative analyst tasks and leverages RAPIDS AI project, Numba, cuDF, and Dask.
Jupyter Notebook
265
star
97

tensorrt-laboratory

Explore the Capabilities of the TensorRT Platform
C++
259
star
98

CleanUNet

Official PyTorch Implementation of CleanUNet (ICASSP 2022)
Python
258
star
99

torch-harmonics

Differentiable spherical harmonic transforms and spherical convolutions in PyTorch
Jupyter Notebook
246
star
100

egl-wayland

The EGLStream-based Wayland external platform
C
243
star