• This repository has been archived on 27/May/2024
  • Stars
    star
    286
  • Rank 144,690 (Top 3 %)
  • Language
    Go
  • License
    Apache License 2.0
  • Created over 5 years ago
  • Updated 6 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

GPU plugin to the node feature discovery for Kubernetes

NVIDIA GPU feature discovery

Go Report Card License

Table of Contents

Overview

NVIDIA GPU Feature Discovery for Kubernetes is a software component that allows you to automatically generate labels for the set of GPUs available on a node. It leverages the Node Feature Discovery to perform this labeling.

Beta Version

This tool should be considered beta until it reaches v1.0.0. As such, we may break the API before reaching v1.0.0, but we will setup a deprecation policy to ease the transition.

Prerequisites

The list of prerequisites for running the NVIDIA GPU Feature Discovery is described below:

  • nvidia-docker version > 2.0 (see how to install and it's prerequisites)
  • docker configured with nvidia as the default runtime.
  • Kubernetes version >= 1.10
  • NVIDIA device plugin for Kubernetes (see how to setup)
  • NFD deployed on each node you want to label with the local source configured

Quick Start

The following assumes you have at least one node in your cluster with GPUs and the standard NVIDIA drivers have already been installed on it.

Node Feature Discovery (NFD)

The first step is to make sure that Node Feature Discovery is running on every node you want to label. NVIDIA GPU Feature Discovery use the local source so be sure to mount volumes. See https://github.com/kubernetes-sigs/node-feature-discovery for more details.

You also need to configure the Node Feature Discovery to only expose vendor IDs in the PCI source. To do so, please refer to the Node Feature Discovery documentation.

The following command will deploy NFD with the minimum required set of parameters to run gpu-feature-discovery.

kubectl apply -f https://raw.githubusercontent.com/NVIDIA/gpu-feature-discovery/v0.8.0/deployments/static/nfd.yaml

Note: This is a simple static daemonset meant to demonstrate the basic features required of node-feature-discovery in order to successfully run gpu-feature-discovery. Please see the instructions below for Deployment via helm when deploying in a production setting.

Preparing your GPU Nodes

Be sure that nvidia-docker2 is installed on your GPU nodes and Docker default runtime is set to nvidia. See https://github.com/NVIDIA/nvidia-docker/wiki/Advanced-topics#default-runtime.

Deploy NVIDIA GPU Feature Discovery (GFD)

The next step is to run NVIDIA GPU Feature Discovery on each node as a Daemonset or as a Job.

Daemonset

kubectl apply -f https://raw.githubusercontent.com/NVIDIA/gpu-feature-discovery/v0.8.0/deployments/static/gpu-feature-discovery-daemonset.yaml

Note: This is a simple static daemonset meant to demonstrate the basic features required of gpu-feature-discovery. Please see the instructions below for Deployment via helm when deploying in a production setting.

Job

You must change the NODE_NAME value in the template to match the name of the node you want to label:

$ export NODE_NAME=<your-node-name>
$ curl https://raw.githubusercontent.com/NVIDIA/gpu-feature-discovery/v0.8.0/deployments/static/gpu-feature-discovery-job.yaml.template \
    | sed "s/NODE_NAME/${NODE_NAME}/" > gpu-feature-discovery-job.yaml
$ kubectl apply -f gpu-feature-discovery-job.yaml

Note: This method should only be used for testing and not deployed in a productions setting.

Verifying Everything Works

With both NFD and GFD deployed and running, you should now be able to see GPU related labels appearing on any nodes that have GPUs installed on them.

$ kubectl get nodes -o yaml
apiVersion: v1
items:
- apiVersion: v1
  kind: Node
  metadata:
    ...

    labels:
      nvidia.com/cuda.driver.major: "455"
      nvidia.com/cuda.driver.minor: "06"
      nvidia.com/cuda.driver.rev: ""
      nvidia.com/cuda.runtime.major: "11"
      nvidia.com/cuda.runtime.minor: "1"
      nvidia.com/gpu.compute.major: "8"
      nvidia.com/gpu.compute.minor: "0"
      nvidia.com/gfd.timestamp: "1594644571"
      nvidia.com/gpu.count: "1"
      nvidia.com/gpu.family: ampere
      nvidia.com/gpu.machine: NVIDIA DGX-2H
      nvidia.com/gpu.memory: "39538"
      nvidia.com/gpu.product: A100-SXM4-40GB
      ...
...

The GFD Command line interface

Available options:

gpu-feature-discovery:
Usage:
  gpu-feature-discovery [--fail-on-init-error=<bool>] [--mig-strategy=<strategy>] [--oneshot | --sleep-interval=<seconds>] [--no-timestamp] [--output-file=<file> | -o <file>]
  gpu-feature-discovery -h | --help
  gpu-feature-discovery --version

Options:
  -h --help                       Show this help message and exit
  --version                       Display version and exit
  --oneshot                       Label once and exit
  --no-timestamp                  Do not add timestamp to the labels
  --fail-on-init-error=<bool>     Fail if there is an error during initialization of any label sources [Default: true]
  --sleep-interval=<seconds>      Time to sleep between labeling [Default: 60s]
  --mig-strategy=<strategy>       Strategy to use for MIG-related labels [Default: none]
  -o <file> --output-file=<file>  Path to output file
                                  [Default: /etc/kubernetes/node-feature-discovery/features.d/gfd]

Arguments:
  <strategy>: none | single | mixed

You can also use environment variables:

Env Variable Option Example
GFD_FAIL_ON_INIT_ERROR --fail-on-init-error true
GFD_MIG_STRATEGY --mig-strategy none
GFD_ONESHOT --oneshot TRUE
GFD_NO_TIMESTAMP --no-timestamp TRUE
GFD_OUTPUT_FILE --output-file output
GFD_SLEEP_INTERVAL --sleep-interval 10s

Environment variables override the command line options if they conflict.

Generated Labels

This is the list of the labels generated by NVIDIA GPU Feature Discovery and their meaning:

Label Name Value Type Meaning Example
nvidia.com/cuda.driver.major Integer Major of the version of NVIDIA driver 418
nvidia.com/cuda.driver.minor Integer Minor of the version of NVIDIA driver 30
nvidia.com/cuda.driver.rev Integer Revision of the version of NVIDIA driver 40
nvidia.com/cuda.runtime.major Integer Major of the version of CUDA 10
nvidia.com/cuda.runtime.minor Integer Minor of the version of CUDA 1
nvidia.com/gfd.timestamp Integer Timestamp of the generated labels (optional) 1555019244
nvidia.com/gpu.compute.major Integer Major of the compute capabilities 3
nvidia.com/gpu.compute.minor Integer Minor of the compute capabilities 3
nvidia.com/gpu.count Integer Number of GPUs 2
nvidia.com/gpu.family String Architecture family of the GPU kepler
nvidia.com/gpu.machine String Machine type DGX-1
nvidia.com/gpu.memory Integer Memory of the GPU in Mb 2048
nvidia.com/gpu.product String Model of the GPU GeForce-GT-710

Depending on the MIG strategy used, the following set of labels may also be available (or override the default values for some of the labels listed above):

MIG 'single' strategy

With this strategy, the single nvidia.com/gpu label is overloaded to provide information about MIG devices on the node, rather than full GPUs. This assumes all GPUs on the node have been divided into identical partitions of the same size. The example below shows info for a system with 8 full GPUs, each of which is partitioned into 7 equal sized MIG devices (56 total).

Label Name Value Type Meaning Example
nvidia.com/mig.strategy String MIG strategy in use single
nvidia.com/gpu.product (overridden) String Model of the GPU (with MIG info added) A100-SXM4-40GB-MIG-1g.5gb
nvidia.com/gpu.count (overridden) Integer Number of MIG devices 56
nvidia.com/gpu.memory (overridden) Integer Memory of each MIG device in Mb 5120
nvidia.com/gpu.multiprocessors Integer Number of Multiprocessors for MIG device 14
nvidia.com/gpu.slices.gi Integer Number of GPU Instance slices 1
nvidia.com/gpu.slices.ci Integer Number of Compute Instance slices 1
nvidia.com/gpu.engines.copy Integer Number of DMA engines for MIG device 1
nvidia.com/gpu.engines.decoder Integer Number of decoders for MIG device 1
nvidia.com/gpu.engines.encoder Integer Number of encoders for MIG device 1
nvidia.com/gpu.engines.jpeg Integer Number of JPEG engines for MIG device 0
nvidia.com/gpu.engines.ofa Integer Number of OfA engines for MIG device 0

MIG 'mixed' strategy

With this strategy, a separate set of labels for each MIG device type is generated. The name of each MIG device type is defines as follows:

MIG_TYPE=mig-<slice_count>g.<memory_size>.gb
e.g.  MIG_TYPE=mig-3g.20gb
Label Name Value Type Meaning Example
nvidia.com/mig.strategy String MIG strategy in use mixed
nvidia.com/MIG_TYPE.count Integer Number of MIG devices of this type 2
nvidia.com/MIG_TYPE.memory Integer Memory of MIG device type in Mb 10240
nvidia.com/MIG_TYPE.multiprocessors Integer Number of Multiprocessors for MIG device 14
nvidia.com/MIG_TYPE.slices.ci Integer Number of GPU Instance slices 1
nvidia.com/MIG_TYPE.slices.gi Integer Number of Compute Instance slices 1
nvidia.com/MIG_TYPE.engines.copy Integer Number of DMA engines for MIG device 1
nvidia.com/MIG_TYPE.engines.decoder Integer Number of decoders for MIG device 1
nvidia.com/MIG_TYPE.engines.encoder Integer Number of encoders for MIG device 1
nvidia.com/MIG_TYPE.engines.jpeg Integer Number of JPEG engines for MIG device 0
nvidia.com/MIG_TYPE.engines.ofa Integer Number of OfA engines for MIG device 0

Deployment via helm

The preferred method to deploy gpu-feature-discovery is as a daemonset using helm. Instructions for installing helm can be found here.

The helm chart for the latest release of GFD (v0.8.0) includes a number of customizable values. The most commonly overridden ones are:

  failOnInitError:
      Fail if there is an error during initialization of any label sources (default: true)
  sleepInterval:
      time to sleep between labeling (default "60s")
  migStrategy:
      pass the desired strategy for labeling MIG devices on GPUs that support it
      [none | single | mixed] (default "none)
  nfd.deploy, nfd.enabled:
      When set to true, deploy NFD as a subchart with all of the proper
      parameters set for it (default "true")
  runtimeClassName:
      the runtimeClassName to use, for use with clusters that have multiple runtimes

Note: The following document provides more information on the available MIG strategies and how they should be used Supporting Multi-Instance GPUs (MIG) in Kubernetes.

Please take a look in the following values.yaml files to see the full set of overridable parameters for both the top-level gpu-feature-discovery chart and the node-feature-discovery subchart.

Installing via helm install

Starting with v0.6.0 there are two ways to deploy gpu-feature-discovery via helm:

  1. As a standalone chart without configuration file or GPU sharing support
  2. As a subchart of the NVIDIA device plugin with configuration file and GPU sharing support
Deploying Standalone

When deploying standalone, begin by setting up GFD's helm repository and updating it at follows:

$ helm repo add nvgfd https://nvidia.github.io/gpu-feature-discovery
$ helm repo update

Then verify that the latest release (v0.8.0) of the plugin is available:

$ helm search repo nvgfd --devel
NAME                          CHART VERSION  APP VERSION    DESCRIPTION
nvgfd/gpu-feature-discovery   0.8.0     0.8.0     A Helm chart for ...

Once this repo is updated, you can begin installing packages from it to deploy the gpu-feature-discovery helm chart.

The most basic installation command without any options is then:

$ helm upgrade -i nvgfd nvgfd/gpu-feature-discovery \
  --version 0.8.0 \
  --namespace gpu-feature-discovery \
  --create-namespace

Disabling auto-deployment of NFD and running with a MIG strategy of 'mixed' in the default namespace.

$ helm upgrade -i nvgfd nvgfd/gpu-feature-discovery \
    --version=0.8.0 \
    --set allowDefaultNamespace=true \
    --set nfd.enabled=false \
    --set migStrategy=mixed

Note: You only need the to pass the --devel flag to helm search repo and the --version flag to helm upgrade -i if this is a pre-release version (e.g. <version>-rc.1). Full releases will be listed without this.

Deploying as a subchart of the NVIDIA device plugin

Starting with v0.12.0 of the NVIDIA device plugin, a configuration file can now be used to configure the plugin. This same configuration file can also be used to configure GFD. The GFD specific sections of the configuration file are specified in the gfd section as seen below:

version: v1
flags:
  migStrategy: "none"
  failOnInitError: true
  nvidiaDriverRoot: "/"
  plugin:
    passDeviceSpecs: false
    deviceListStrategy: "envvar"
    deviceIDStrategy: "uuid"
  gfd:
    oneshot: false
    noTimestamp: false
    outputFile: /etc/kubernetes/node-feature-discovery/features.d/gfd
    sleepInterval: 60s

The fields in this section map to the command line flags and environment variables available for configuring GFD.

For details on how to deploy GFD as part of the plugin please refer to:

Deploying via helm install with a direct URL to the helm package

If you prefer not to install from the gpu-feature-discovery helm repo, you can run helm install directly against the tarball of the components helm package. The examples below install the same daemonsets as the method above, except that they use direct URLs to the helm package instead of the helm repo.

Using the default values for the flags:

$ helm upgrade -i nvgfd \
    --set allowDefaultNamespace=true \
    https://nvidia.github.io/gpu-feature-discovery/stable/gpu-feature-discovery-0.8.0.tgz

Disabling auto-deployment of NFD and running with a MIG strategy of 'mixed' in the default namespace.

$ helm upgrade -i nvgfd \
    --set nfd.deploy=false \
    --set migStrategy=mixed \
    --set allowDefaultNamespace=true \
    https://nvidia.github.io/gpu-feature-discovery/stable/gpu-feature-discovery-0.8.0.tgz

Building and running locally with Docker

Download the source code:

git clone https://github.com/NVIDIA/gpu-feature-discovery

Build the docker image:

export GFD_VERSION=$(git describe --tags --dirty --always)
docker build . --build-arg GFD_VERSION=$GFD_VERSION -t nvcr.io/nvidia/gpu-feature-discovery:${GFD_VERSION}

Run it:

mkdir -p output-dir
docker run -v ${PWD}/output-dir:/etc/kubernetes/node-feature-discovery/features.d nvcr.io/nvidia/gpu-feature-discovery:${GFD_VERSION}

You should have set the default runtime of Docker to nvidia on your host or you can also use the --runtime=nvidia option:

docker run --runtime=nvidia nvcr.io/nvidia/gpu-feature-discovery:${GFD_VERSION}

Building and running locally on your native machine

Download the source code:

git clone https://github.com/NVIDIA/gpu-feature-discovery

Get dependies:

dep ensure

Build it:

export GFD_VERSION=$(git describe --tags --dirty --always)
go build -ldflags "-X main.Version=${GFD_VERSION}"

You can also use the Dockerfile.devel:

docker build . -f Dockerfile.devel -t gfd-devel
docker run -it gfd-devel
go build -ldflags "-X main.Version=devel"

Run it:

./gpu-feature-discovery --output=$(pwd)/gfd

More Repositories

1

nvidia-docker

Build and run Docker containers leveraging NVIDIA GPUs
16,896
star
2

open-gpu-kernel-modules

NVIDIA Linux open GPU kernel module source
C
14,997
star
3

DeepLearningExamples

State-of-the-Art Deep Learning scripts organized by models - easy to train and deploy with reproducible accuracy and performance on enterprise-grade infrastructure.
Jupyter Notebook
13,339
star
4

NeMo

A scalable generative AI framework built for researchers and developers working on Large Language Models, Multimodal, and Speech AI (Automatic Speech Recognition and Text-to-Speech)
Python
12,016
star
5

FastPhotoStyle

Style transfer, deep learning, feature transform
Python
11,020
star
6

TensorRT

NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference on NVIDIA GPUs. This repository contains the open source components of TensorRT.
C++
10,618
star
7

Megatron-LM

Ongoing research training transformer models at scale
Python
10,332
star
8

TensorRT-LLM

TensorRT-LLM provides users with an easy-to-use Python API to define Large Language Models (LLMs) and build TensorRT engines that contain state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs. TensorRT-LLM also contains components to create Python and C++ runtimes that execute those TensorRT engines.
C++
8,542
star
9

vid2vid

Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.
Python
8,482
star
10

apex

A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch
Python
8,239
star
11

pix2pixHD

Synthesizing and manipulating 2048x1024 images with conditional GANs
Python
6,488
star
12

cuda-samples

Samples for CUDA Developers which demonstrates features in CUDA Toolkit
C
6,119
star
13

cutlass

CUDA Templates for Linear Algebra Subroutines
C++
5,519
star
14

FasterTransformer

Transformer related optimization, including BERT, GPT
C++
5,313
star
15

DALI

A GPU-accelerated library containing highly optimized building blocks and an execution engine for data processing to accelerate deep learning training and inference applications.
C++
5,048
star
16

thrust

[ARCHIVED] The C++ parallel algorithms library. See https://github.com/NVIDIA/cccl
C++
4,914
star
17

tacotron2

Tacotron 2 - PyTorch implementation with faster-than-realtime inference
Jupyter Notebook
4,562
star
18

warp

A Python framework for high performance GPU simulation and graphics
Python
4,206
star
19

DIGITS

Deep Learning GPU Training System
HTML
4,105
star
20

NeMo-Guardrails

NeMo Guardrails is an open-source toolkit for easily adding programmable guardrails to LLM-based conversational systems.
Python
4,064
star
21

nccl

Optimized primitives for collective multi-GPU communication
C++
3,187
star
22

flownet2-pytorch

Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks
Python
2,938
star
23

ChatRTX

A developer reference project for creating Retrieval Augmented Generation (RAG) chatbots on Windows using TensorRT-LLM
TypeScript
2,635
star
24

k8s-device-plugin

NVIDIA device plugin for Kubernetes
Go
2,481
star
25

libcudacxx

[ARCHIVED] The C++ Standard Library for your entire system. See https://github.com/NVIDIA/cccl
C++
2,294
star
26

GenerativeAIExamples

Generative AI reference workflows optimized for accelerated infrastructure and microservice architecture.
Python
2,192
star
27

nvidia-container-toolkit

Build and run containers leveraging NVIDIA GPUs
Go
2,171
star
28

waveglow

A Flow-based Generative Network for Speech Synthesis
Python
2,133
star
29

MinkowskiEngine

Minkowski Engine is an auto-diff neural network library for high-dimensional sparse tensors
Python
2,007
star
30

TransformerEngine

A library for accelerating Transformer models on NVIDIA GPUs, including using 8-bit floating point (FP8) precision on Hopper and Ada GPUs, to provide better performance with lower memory utilization in both training and inference.
Python
1,917
star
31

Stable-Diffusion-WebUI-TensorRT

TensorRT Extension for Stable Diffusion Web UI
Python
1,886
star
32

semantic-segmentation

Nvidia Semantic Segmentation monorepo
Python
1,763
star
33

gpu-operator

NVIDIA GPU Operator creates/configures/manages GPUs atop Kubernetes
Go
1,735
star
34

cub

[ARCHIVED] Cooperative primitives for CUDA C++. See https://github.com/NVIDIA/cccl
Cuda
1,679
star
35

DeepRecommender

Deep learning for recommender systems
Python
1,662
star
36

stdexec

`std::execution`, the proposed C++ framework for asynchronous and parallel programming.
C++
1,554
star
37

OpenSeq2Seq

Toolkit for efficient experimentation with Speech Recognition, Text2Speech and NLP
Python
1,511
star
38

CUDALibrarySamples

CUDA Library Samples
Cuda
1,468
star
39

VideoProcessingFramework

Set of Python bindings to C++ libraries which provides full HW acceleration for video decoding, encoding and GPU-accelerated color space and pixel format conversions
C++
1,303
star
40

deepops

Tools for building GPU clusters
Shell
1,252
star
41

open-gpu-doc

Documentation of NVIDIA chip/hardware interfaces
C
1,243
star
42

aistore

AIStore: scalable storage for AI applications
Go
1,233
star
43

Q2RTX

NVIDIA’s implementation of RTX ray-tracing in Quake II
C
1,217
star
44

trt-samples-for-hackathon-cn

Simple samples for TensorRT programming
Python
1,211
star
45

cccl

CUDA Core Compute Libraries
C++
1,200
star
46

MatX

An efficient C++17 GPU numerical computing library with Python-like syntax
C++
1,187
star
47

partialconv

A New Padding Scheme: Partial Convolution based Padding
Python
1,145
star
48

sentiment-discovery

Unsupervised Language Modeling at scale for robust sentiment classification
Python
1,055
star
49

nvidia-container-runtime

NVIDIA container runtime
Makefile
1,035
star
50

modulus

Open-source deep-learning framework for building, training, and fine-tuning deep learning models using state-of-the-art Physics-ML methods
Python
991
star
51

gpu-monitoring-tools

Tools for monitoring NVIDIA GPUs on Linux
C
974
star
52

jetson-gpio

A Python library that enables the use of Jetson's GPIOs
Python
898
star
53

dcgm-exporter

NVIDIA GPU metrics exporter for Prometheus leveraging DCGM
Go
886
star
54

retinanet-examples

Fast and accurate object detection with end-to-end GPU optimization
Python
885
star
55

flowtron

Flowtron is an auto-regressive flow-based generative network for text to speech synthesis with control over speech variation and style transfer
Jupyter Notebook
867
star
56

nccl-tests

NCCL Tests
Cuda
864
star
57

cuda-python

CUDA Python Low-level Bindings
Python
859
star
58

mellotron

Mellotron: a multispeaker voice synthesis model based on Tacotron 2 GST that can make a voice emote and sing without emotive or singing training data
Jupyter Notebook
852
star
59

gdrcopy

A fast GPU memory copy library based on NVIDIA GPUDirect RDMA technology
C++
832
star
60

libnvidia-container

NVIDIA container runtime library
C
818
star
61

BigVGAN

Official PyTorch implementation of BigVGAN (ICLR 2023)
Python
806
star
62

spark-rapids

Spark RAPIDS plugin - accelerate Apache Spark with GPUs
Scala
800
star
63

nv-wavenet

Reference implementation of real-time autoregressive wavenet inference
Cuda
728
star
64

DLSS

NVIDIA DLSS is a new and improved deep learning neural network that boosts frame rates and generates beautiful, sharp images for your games
C
727
star
65

tensorflow

An Open Source Machine Learning Framework for Everyone
C++
719
star
66

gvdb-voxels

Sparse volume compute and rendering on NVIDIA GPUs
C
674
star
67

MAXINE-AR-SDK

NVIDIA AR SDK - API headers and sample applications
C
671
star
68

nvvl

A library that uses hardware acceleration to load sequences of video frames to facilitate machine learning training
C++
665
star
69

runx

Deep Learning Experiment Management
Python
633
star
70

NVFlare

NVIDIA Federated Learning Application Runtime Environment
Python
630
star
71

NeMo-Aligner

Scalable toolkit for efficient model alignment
Python
564
star
72

nvcomp

Repository for nvCOMP docs and examples. nvCOMP is a library for fast lossless compression/decompression on the GPU that can be downloaded from https://developer.nvidia.com/nvcomp.
C++
545
star
73

multi-gpu-programming-models

Examples demonstrating available options to program multiple GPUs in a single node or a cluster
Cuda
535
star
74

Dataset_Synthesizer

NVIDIA Deep learning Dataset Synthesizer (NDDS)
C++
530
star
75

TensorRT-Model-Optimizer

TensorRT Model Optimizer is a unified library of state-of-the-art model optimization techniques such as quantization, pruning, distillation, etc. It compresses deep learning models for downstream deployment frameworks like TensorRT-LLM or TensorRT to optimize inference speed on NVIDIA GPUs.
Python
513
star
76

jitify

A single-header C++ library for simplifying the use of CUDA Runtime Compilation (NVRTC).
C++
512
star
77

nvbench

CUDA Kernel Benchmarking Library
Cuda
501
star
78

libglvnd

The GL Vendor-Neutral Dispatch library
C
501
star
79

NeMo-Curator

Scalable data pre processing and curation toolkit for LLMs
Jupyter Notebook
500
star
80

cuda-quantum

C++ and Python support for the CUDA Quantum programming model for heterogeneous quantum-classical workflows
C++
496
star
81

AMGX

Distributed multigrid linear solver library on GPU
Cuda
474
star
82

cuCollections

C++
470
star
83

enroot

A simple yet powerful tool to turn traditional container/OS images into unprivileged sandboxes.
Shell
459
star
84

NeMo-Framework-Launcher

Provides end-to-end model development pipelines for LLMs and Multimodal models that can be launched on-prem or cloud-native.
Python
459
star
85

hpc-container-maker

HPC Container Maker
Python
442
star
86

MDL-SDK

NVIDIA Material Definition Language SDK
C++
438
star
87

PyProf

A GPU performance profiling tool for PyTorch models
Python
437
star
88

framework-reproducibility

Providing reproducibility in deep learning frameworks
Python
424
star
89

gpu-rest-engine

A REST API for Caffe using Docker and Go
C++
421
star
90

DCGM

NVIDIA Data Center GPU Manager (DCGM) is a project for gathering telemetry and measuring the health of NVIDIA GPUs
C++
394
star
91

NvPipe

NVIDIA-accelerated zero latency video compression library for interactive remoting applications
Cuda
390
star
92

torch-harmonics

Differentiable signal processing on the sphere for PyTorch
Jupyter Notebook
386
star
93

cuQuantum

Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples
Jupyter Notebook
344
star
94

data-science-stack

NVIDIA Data Science stack tools
Shell
317
star
95

ai-assisted-annotation-client

Client side integration example source code and libraries for AI-Assisted Annotation SDK
C++
308
star
96

video-sdk-samples

Samples demonstrating how to use various APIs of NVIDIA Video Codec SDK
C++
301
star
97

egl-wayland

The EGLStream-based Wayland external platform
C
299
star
98

nvidia-settings

NVIDIA driver control panel
C
292
star
99

NVTX

The NVIDIA® Tools Extension SDK (NVTX) is a C-based Application Programming Interface (API) for annotating events, code ranges, and resources in your applications.
C
290
star
100

go-nvml

Go Bindings for the NVIDIA Management Library (NVML)
C
288
star