• Stars
    star
    4,278
  • Rank 9,567 (Top 0.2 %)
  • Language
    C++
  • License
    Other
  • Created over 6 years ago
  • Updated 2 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

CUDA Templates for Linear Algebra Subroutines

ALT

CUTLASS 3.2

CUTLASS 3.2 - August 2023

CUTLASS is a collection of CUDA C++ template abstractions for implementing high-performance matrix-matrix multiplication (GEMM) and related computations at all levels and scales within CUDA. It incorporates strategies for hierarchical decomposition and data movement similar to those used to implement cuBLAS and cuDNN. CUTLASS decomposes these "moving parts" into reusable, modular software components abstracted by C++ template classes. Primitives for different levels of a conceptual parallelization hierarchy can be specialized and tuned via custom tiling sizes, data types, and other algorithmic policy. The resulting flexibility simplifies their use as building blocks within custom kernels and applications.

To support a wide variety of applications, CUTLASS provides extensive support for mixed-precision computations, providing specialized data-movement and multiply-accumulate abstractions for half-precision floating point (FP16), BFloat16 (BF16), Tensor Float 32 (TF32), single-precision floating point (FP32), FP32 emulation via tensor core instruction, double-precision floating point (FP64) types, integer data types (4b and 8b), and binary data types (1b). CUTLASS demonstrates warp-synchronous matrix multiply operations targeting the programmable, high-throughput Tensor Cores implemented by NVIDIA's Volta, Turing, Ampere, and Hopper architectures.

See the Quick Start Guide to get started quickly.

See the functionality listing for the list of operations supported at each level of the execution model hierarchy.

CUTLASS 3.0 introduced a new core library, CuTe, to describe and manipulate tensors of threads and data. CuTe is a collection of C++ CUDA template abstractions for defining and operating on hierarchically multidimensional layouts of threads and data. CuTe provides Layout and Tensor objects that compactly package the type, shape, memory space, and layout of data, while performing the complicated indexing for the user. This lets programmers focus on the logical descriptions of their algorithms while CuTe does the mechanical bookkeeping for them. With these tools, we can quickly design, implement, and modify all dense linear algebra operations.

The core abstractions of CuTe are hierarchically multidimensional layouts which can be composed with data arrays to represent tensors. The representation of layouts is powerful enough to represent nearly everything we need to implement efficient dense linear algebra. Layouts can also be combined and manipulated via functional composition, on which we build a large set of common operations such as tiling and partitioning.

CUTLASS 3.0 and beyond adopts CuTe throughout the GEMM hierarchy in its templates. This greatly simplifies the design and improves code composability and readability. More documentation specific to CuTe can be found in its dedicated documentation directory.

In addition to GEMMs, CUTLASS implements high-performance convolution via the implicit GEMM algorithm. Implicit GEMM is the formulation of a convolution operation as a GEMM thereby taking advantage of CUTLASS's modular GEMM pipeline. This allows CUTLASS to build convolutions by reusing highly-optimized GEMM components.

What's New in CUTLASS 3.2

CUTLASS 3.2 is an update to CUTLASS adding:

  • New warp-specialized persistent FP8 GEMM kernel kernel schedules and mainloops targeting Hopper architecture that achieve great performance with TMA, WGMMA, and threadblock clusters. An example showcasing Hopper warp-specialized FP8 GEMMs.
  • New Epilogue Visitor Tree (EVT) support for Hopper TMA epilogues. EVTs allows for user-defined customized epilogue fusion patterns without having to write a new epilogue.
  • Stream-K feature for Hopper. Note that this is only a functional implementation of stream-K, and should not be used for performance comparison. Optimizations are expected in a future release.
  • Improved CTA rasterization and support for CTA swizzling for Hopper kernels using the Tile Scheduler.
  • Improved performance for warp-specialized TensorFloat-32 (TF32) GEMM kernels targeting Hopper TMA.
  • Hopper GEMM+Permute, an example of fusing tensor reordering (permutation) with GEMM mainloop or epilogue.
  • New CUTLASS 2D Convolution Python interface. New example here.
  • Support for Windows (MSVC) builds.

Minimum requirements:

  • Architecture: Volta
  • Compiler: Must support at least C++17
  • CUDA Toolkit version: 11.4

Starting from CUTLASS 3.0, CUTLASS removed support for the following:

  • Maxwell and Pascal GPU architectures
  • Ubuntu 16.04
  • CUDA 10.2
  • C++ language versions less than 17.

See the CHANGELOG for a detailed listing of releases and updates.

Performance

CUTLASS primitives are very efficient. When used to construct device-wide GEMM kernels, they exhibit peak performance comparable to cuBLAS for scalar GEMM computations. The above figure shows CUTLASS performance relative to cuBLAS for large matrix dimensions on an NVIDIA H100 (NVIDIA Hopper architecture), an NVIDIA L40 (NVIDIA Ada architecture), an NVIDIA A100 (NVIDIA Ampere architecture),
and an NVIDIA A40 (NVIDIA Ampere architecture). CUTLASS 3.0 was compiled with the CUDA 12.0 Toolkit. Tensor Core operations are implemented using CUDA's mma and wgmma instructions.

When using CUTLASS building blocks to construct device-wide implicit gemm (Fprop, Dgrad, and Wgrad) kernels, CUTLASS performance is also comparable to cuDNN when running Resnet-50 layers on an NVIDIA A100 as shown in the above figure. Tensor Core operations are implemented using CUDA's mma instruction.

Compatibility

CUTLASS requires a C++17 host compiler and performs best when built with the CUDA 12.2 Toolkit. It is also compatible with CUDA 11.4, CUDA 11.5, CUDA 11.6, CUDA 11.7, CUDA 11.8, CUDA 12.0 and CUDA 12.1.

Operating Systems

We have tested the following environments.

Operating System Compiler
Ubuntu 18.04 GCC 7.5.0
Ubuntu 20.04 GCC 10.3.0
Ubuntu 22.04 GCC 11.2.0
Windows 10.0 Visual Studio 2019 v16.11.27

Note: We plan to add Clang compiler support soon. Note: GCC 8.5.0 has known regressions regarding fold expressions and overloaded operators. Using GCC 7.5.0 or (preferred) GCC >= 9 is recommended.

Hardware

CUTLASS runs successfully on the following NVIDIA GPUs, and it is expected to be efficient on Volta, Turing, Ampere, Ada, and Hopper architecture based NVIDIA GPUs.

GPU CUDA Compute Capability Minimum CUDA Toolkit Required by CUTLASS-3
NVIDIA V100 Tensor Core GPU 7.0 11.4
NVIDIA TitanV 7.0 11.4
NVIDIA GeForce RTX 2080 TI, 2080, 2070 7.5 11.4
NVIDIA T4 7.5 11.4
NVIDIA A100 Tensor Core GPU 8.0 11.4
NVIDIA A10 8.6 11.4
NVIDIA GeForce RTX 3090 8.6 11.4
NVIDIA GeForce RTX 4090 8.9 11.8
NVIDIA L40 8.9 11.8
NVIDIA H100 Tensor Core GPU 9.0 11.8

Target Architecture

In general, PTX code generated for one target architecture can be run on future architectures (i.e., it is forward compatible). However, CUDA 12.0 introduced the concept of "architecture-accelerated features" whose PTX does not have forward compatibility guarantees. Several Hopper PTX instructions fall under this category of architecture-accelerated features, and thus require a sm_90a target architecture (note the "a" appended). For more details on this and other architecture-accelerated instructions, please refer to the CUDA Documentation.

The target architecture information is passed on to CUTLASS via the cmake flag CUTLASS_NVCC_ARCHS. In order to maximize performance on Hopper GH100, users are required to build CUTLASS with 90a as the target architecture. If a user accidentally builds a kernel which uses SM90a features (e.g. Hopper Tensor Core Instructions), using the SM90 target (note the lack of "a"), with either CTK 12 or 11.8, the kernel is expected to fail with a runtime error.

cmake .. -DCUTLASS_NVCC_ARCHS="90a" 

Please refer to the functionality documentation for details on which kernels require which target architectures.

Documentation

CUTLASS is described in the following documents and the accompanying Doxygen documentation.

Resources

We have also described the structure of an efficient GEMM in our talk at the GPU Technology Conference 2018.

Building CUTLASS

CUTLASS is a header-only template library and does not need to be built to be used by other projects. Client applications should target CUTLASS's include/ directory in their include paths.

CUTLASS unit tests, examples, and utilities can be build with CMake starting version 3.12. Make sure the CUDACXX environment variable points to NVCC in the CUDA Toolkit installed on your system.

$ export CUDACXX=${CUDA_INSTALL_PATH}/bin/nvcc

Create a build directory within the CUTLASS project, then run CMake. By default CUTLASS will build kernels for CUDA architecture versions 5.0, 6.0, 6.1, 7.0, 7.5, 8.0, 8.6, 8.9, and 9.0. To reduce compile time you can specify the architectures to build CUTLASS for by changing the CMake configuration setting CUTLASS_NVCC_ARCHS.

$ mkdir build && cd build

$ cmake .. -DCUTLASS_NVCC_ARCHS=80               # compiles for NVIDIA's Ampere Architecture

From the build/ directory, compile and run the CUTLASS unit tests by building the target test_unit with make.

The unit tests are organized as several binaries mirroring the top-level namespaces of CUTLASS, and they may be executed in parallel via make's -j command line argument.

$ make test_unit -j
...
...
...
[----------] Global test environment tear-down
[==========] 946 tests from 57 test cases ran. (10812 ms total)
[  PASSED  ] 946 tests.

All tests should pass on supported platforms, though the exact number of tests may vary over time.

Project Structure

CUTLASS is arranged as a header-only library along with Utilities, Tools, Examples, and unit tests. Doxygen documentation provides a complete list of files, classes, and template concepts defined in the CUTLASS project.

A detailed explanation of the source code organization may be found in the CUTLASS documentation, but several main components are summarized below.

CUTLASS Template Library

include/                     # client applications should target this directory in their build's include paths

  cutlass/                   # CUDA Templates for Linear Algebra Subroutines and Solvers - headers only

    arch/                    # direct exposure of architecture features (including instruction-level GEMMs)

    conv/                    # code specialized for convolution

    epilogue/                # code specialized for the epilogue of gemm/convolution

    gemm/                    # code specialized for general matrix product computations

    layout/                  # layout definitions for matrices, tensors, and other mathematical objects in memory

    platform/                # CUDA-capable Standard Library components

    reduction/               # bandwidth-limited reduction kernels that do not fit the "gemm" model

    thread/                  # simt code that can be performed within a CUDA thread
    
    transform/               # code specialized for layout, type, and domain transformations

    *                        # core vocabulary types, containers, and basic numeric operations

  cute/                      # CuTe Layout, layout algebra, MMA/Copy atoms, tiled MMA/Copy

    algorithm/               # Definitions of core operations such as copy, gemm, and operations on cute::tuples

    arch/                    # Bare bones PTX wrapper structs for copy and math instructions

    atom/                    # Meta-information either link to or built from arch/ operators

      mma_atom.hpp           # cute::Mma_Atom and cute::TiledMma

      copy_atom.hpp          # cute::Copy_Atom and cute::TiledCopy

      *sm*.hpp               # Arch specific meta-information for copy and math operations

    *                        # Core library types such as Shape, Stride, Layout, Tensor, and associated operations

CUTLASS SDK Examples

CUTLASS SDK examples apply CUTLASS templates to implement basic computations.

Tools

tools/
  library/                   # CUTLASS Instance Library - contains instantiations of all supported CUTLASS templates
    include/
      cutlass/
        library/

  profiler/                  # CUTLASS Profiler         - command-line utility for executing operations in the
                             #                            CUTLASS Library
  
  util/                      # CUTLASS Utilities        - contains numerous helper classes for
    include/                 #                            manging tensors in device memory, reference
      cutlass/               #                            implementations for GEMM, random initialization
        util/                #                            of tensors, and I/O.

Test

The test/unit/ directory consist of unit tests implemented with Google Test that demonstrate basic usage of Core API components and complete tests of the CUTLASS GEMM computations.

Instructions for building and running the Unit tests are described in the Quickstart guide.

Performance Profiling

The tools/profiler/ directory contains a command-line utility for launching each of the GEMM kernels. It can be built as follows:

$ make cutlass_profiler -j16

Building all GEMM and Convolution kernels (long build times)

By default, only one tile size is instantiated for each data type, math instruction, and layout. To instantiate all, set the following environment variable when running CMake from an empty build/ directory. Beware, this results in tens of thousands of kernels and long build times. This would also result in a large binary size and on some platforms linker to fail on building the library. Therefore, it's highly recommended to generate only a subset of kernels as demonstrated in the sub-section below.

$ cmake .. -DCUTLASS_NVCC_ARCHS=90a -DCUTLASS_LIBRARY_KERNELS=all
...
$ make cutlass_profiler -j16

Building a subset of GEMM and Convolution kernels (reduced build times)

To compile strictly one kernel or a small set of kernels, a comma-delimited list of kernel names with wildcard characters may be used to reduce the set of kernels. The following examples show building exactly one or a subset of kernels for NVIDIA Ampere and Turing architecture:

Building a subset Tensor Core GEMM kernels

To compile a subset of Tensor Core GEMM kernels with FP32 accumulation and FP16 input targeting NVIDIA Ampere and Turing architecture, use the below cmake command line:

$ cmake .. -DCUTLASS_NVCC_ARCHS='75;80' -DCUTLASS_LIBRARY_KERNELS=cutlass_tensorop_s*gemm_f16_*_nt_align8
...
$ make cutlass_profiler -j16

Example command line for profiling a subset of Tensor Core GEMM kernels is as follows:

./tools/profiler/cutlass_profiler --kernels=cutlass_tensorop_s*gemm_f16_*_nt_align8 --m=3456 --n=4096 --k=4096

...
=============================
  Problem ID: 1

        Provider: CUTLASS
   OperationKind: gemm
       Operation: cutlass_tensorop_s1688gemm_f16_256x128_32x2_nt_align8

          Status: Success
    Verification: ON
     Disposition: Passed

reference_device: Passed
          cuBLAS: Passed

       Arguments: --gemm_kind=universal --m=3456 --n=4096 --k=4096 --A=f16:column --B=f16:row --C=f32:column --alpha=1  \
                  --beta=0 --split_k_slices=1 --batch_count=1 --op_class=tensorop --accum=f32 --cta_m=256 --cta_n=128  \
                  --cta_k=32 --stages=2 --warps_m=4 --warps_n=2 --warps_k=1 --inst_m=16 --inst_n=8 --inst_k=8 --min_cc=75  \
                  --max_cc=1024

           Bytes: 118489088  bytes
           FLOPs: 115992428544  flops

         Runtime: 1.55948  ms
          Memory: 70.7616 GiB/s

            Math: 74378.8 GFLOP/s



=============================
...

Building one CUDA Core GEMM kernel

To compile one SGEMM kernel targeting NVIDIA Ampere and Turing architecture, use the below cmake command line:

$ cmake .. -DCUTLASS_NVCC_ARCHS='75;80' -DCUTLASS_LIBRARY_KERNELS=cutlass_simt_sgemm_128x128_8x2_nn_align1
...
$ make cutlass_profiler -j16

Example command line for profiling single SGEMM CUDA kernel is as follows:

$ ./tools/profiler/cutlass_profiler --kernels=sgemm --m=3456 --n=4096 --k=4096

=============================
  Problem ID: 1

        Provider: CUTLASS
   OperationKind: gemm
       Operation: cutlass_simt_sgemm_128x128_8x2_nn_align1

          Status: Success
    Verification: ON
     Disposition: Passed

          cuBLAS: Passed

       Arguments: --m=3456 --n=4096 --k=4096 --A=f32:column --B=f32:column --C=f32:column --alpha=1 --beta=0 --split_k_slices=1  \
                  --batch_count=1 --op_class=simt --accum=f32 --cta_m=128 --cta_n=128 --cta_k=8 --stages=2 --warps_m=4  \
                  --warps_n=2 --warps_k=1 --inst_m=1 --inst_n=1 --inst_k=1 --min_cc=50 --max_cc=1024

           Bytes: 180355072  bytes
           FLOPs: 115992428544  flops

         Runtime: 6.73655  ms
          Memory: 24.934 GiB/s

            Math: 17218.4 GFLOP/s

=============================

Building a subset of Tensor Core Convolution kernels

To compile a subset of Tensor core convolution kernels implementing forward propagation (fprop) with FP32 accumulation and FP16 input targeting NVIDIA Ampere and Turing architecture, use the below cmake command line:

$ cmake .. -DCUTLASS_NVCC_ARCHS='75;80' -DCUTLASS_LIBRARY_KERNELS=cutlass_tensorop_s*fprop_optimized_f16
...
$ make cutlass_profiler -j16

Example command line for profiling a subset of Tensor Core convolution kernels is as follows:

$ ./tools/profiler/cutlass_profiler --kernels=cutlass_tensorop_s*fprop_optimized_f16 --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3

...
=============================
  Problem ID: 1

        Provider: CUTLASS
   OperationKind: conv2d
       Operation: cutlass_tensorop_s16816fprop_optimized_f16_128x128_32x5_nhwc

          Status: Success
    Verification: ON
     Disposition: Passed

reference_device: Passed

       Arguments: --conv_kind=fprop --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3 --p=224 --q=224 --pad_h=1 --pad_w=1  \
                  --stride_h=1 --stride_w=1 --dilation_h=1 --dilation_w=1 --Activation=f16:nhwc --Filter=f16:nhwc --Output=f32:nhwc  \
                  --conv_mode=cross --iterator_algorithm=optimized --alpha=1 --beta=0 --split_k_mode=serial --split_k_slices=1  \
                  --eq_gemm_provider=none --op_class=tensorop --accum=f32 --cta_m=128 --cta_n=128 --cta_k=32 --stages=5  \
                  --warps_m=2 --warps_n=2 --warps_k=1 --inst_m=16 --inst_n=8 --inst_k=16 --min_cc=80 --max_cc=1024

           Bytes: 1130659840  bytes
           FLOPs: 118482796544  flops

         Runtime: 0.711496  ms
          Memory: 1479.99 GiB/s

            Math: 166526 GFLOP/s

=============================
...

Building one Convolution CUDA kernel

To compile and run one CUDA Core convolution kernel implementing forward propagation (fprop) with F32 accumulation and FP32 input targeting NVIDIA Ampere and Turing architecture, use the below cmake command line:

$ cmake .. -DCUTLASS_NVCC_ARCHS='75;80' -DCUTLASS_LIBRARY_KERNELS=cutlass_simt_sfprop_optimized_128x128_8x2_nhwc
...
$ make cutlass_profiler -j16

Example command line for profiling one CUDA Core convolution kernel:

$ ./tools/profiler/cutlass_profiler --kernels=cutlass_simt_sfprop_optimized_128x128_8x2_nhwc --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3


=============================
  Problem ID: 1

        Provider: CUTLASS
   OperationKind: conv2d
       Operation: cutlass_simt_sfprop_optimized_128x128_8x2_nhwc

          Status: Success
    Verification: ON
     Disposition: Passed

reference_device: Passed

       Arguments: --conv_kind=fprop --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3 --p=224 --q=224 --pad_h=1 --pad_w=1  \
                  --stride_h=1 --stride_w=1 --dilation_h=1 --dilation_w=1 --Activation=f32:nhwc --Filter=f32:nhwc --Output=f32:nhwc  \
                  --conv_mode=cross --iterator_algorithm=optimized --alpha=1 --beta=0 --split_k_mode=serial --split_k_slices=1  \
                  --eq_gemm_provider=none --op_class=simt --accum=f32 --cta_m=128 --cta_n=128 --cta_k=8 --stages=2 --warps_m=4  \
                  --warps_n=2 --warps_k=1 --inst_m=1 --inst_n=1 --inst_k=1 --min_cc=50 --max_cc=1024

           Bytes: 2055798784  bytes
           FLOPs: 118482796544  flops

         Runtime: 7.34266  ms
          Memory: 260.752 GiB/s

            Math: 16136.2 GFLOP/s


=============================

More Details on Compiling CUTLASS Kernels and CUTLASS Profiler

About

CUTLASS is released by NVIDIA Corporation as Open Source software under the 3-clause "New" BSD license.

Contributors

The official list of CUTLASS developers and contributors is available here: CONTRIBUTORS.

Copyright

Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. SPDX-License-Identifier: BSD-3-Clause

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions are met:

  1. Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.

  2. Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.

  3. Neither the name of the copyright holder nor the names of its
  contributors may be used to endorse or promote products derived from
  this software without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

More Repositories

1

nvidia-docker

Build and run Docker containers leveraging NVIDIA GPUs
16,896
star
2

open-gpu-kernel-modules

NVIDIA Linux open GPU kernel module source
C
13,784
star
3

DeepLearningExamples

State-of-the-Art Deep Learning scripts organized by models - easy to train and deploy with reproducible accuracy and performance on enterprise-grade infrastructure.
Jupyter Notebook
12,579
star
4

FastPhotoStyle

Style transfer, deep learning, feature transform
Python
11,020
star
5

NeMo

A scalable generative AI framework built for researchers and developers working on Large Language Models, Multimodal, and Speech AI (Automatic Speech Recognition and Text-to-Speech)
Python
10,032
star
6

TensorRT

NVIDIAยฎ TensorRTโ„ข is an SDK for high-performance deep learning inference on NVIDIA GPUs. This repository contains the open source components of TensorRT.
C++
9,059
star
7

vid2vid

Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.
Python
8,482
star
8

Megatron-LM

Ongoing research training transformer models at scale
Python
8,169
star
9

apex

A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch
Python
7,915
star
10

pix2pixHD

Synthesizing and manipulating 2048x1024 images with conditional GANs
Python
6,488
star
11

TensorRT-LLM

TensorRT-LLM provides users with an easy-to-use Python API to define Large Language Models (LLMs) and build TensorRT engines that contain state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs. TensorRT-LLM also contains components to create Python and C++ runtimes that execute those TensorRT engines.
C++
6,429
star
12

FasterTransformer

Transformer related optimization, including BERT, GPT
C++
5,313
star
13

cuda-samples

Samples for CUDA Developers which demonstrates features in CUDA Toolkit
C
5,203
star
14

thrust

[ARCHIVED] The C++ parallel algorithms library. See https://github.com/NVIDIA/cccl
C++
4,845
star
15

DALI

A GPU-accelerated library containing highly optimized building blocks and an execution engine for data processing to accelerate deep learning training and inference applications.
C++
4,839
star
16

tacotron2

Tacotron 2 - PyTorch implementation with faster-than-realtime inference
Jupyter Notebook
4,562
star
17

DIGITS

Deep Learning GPU Training System
HTML
4,105
star
18

NeMo-Guardrails

NeMo Guardrails is an open-source toolkit for easily adding programmable guardrails to LLM-based conversational systems.
Python
3,309
star
19

flownet2-pytorch

Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks
Python
2,938
star
20

nccl

Optimized primitives for collective multi-GPU communication
C++
2,786
star
21

libcudacxx

[ARCHIVED] The C++ Standard Library for your entire system. See https://github.com/NVIDIA/cccl
C++
2,290
star
22

k8s-device-plugin

NVIDIA device plugin for Kubernetes
Go
2,269
star
23

waveglow

A Flow-based Generative Network for Speech Synthesis
Python
2,133
star
24

trt-llm-rag-windows

A developer reference project for creating Retrieval Augmented Generation (RAG) chatbots on Windows using TensorRT-LLM
Python
2,011
star
25

MinkowskiEngine

Minkowski Engine is an auto-diff neural network library for high-dimensional sparse tensors
Python
2,007
star
26

semantic-segmentation

Nvidia Semantic Segmentation monorepo
Python
1,746
star
27

DeepRecommender

Deep learning for recommender systems
Python
1,662
star
28

Stable-Diffusion-WebUI-TensorRT

TensorRT Extension for Stable Diffusion Web UI
Python
1,660
star
29

cub

[ARCHIVED] Cooperative primitives for CUDA C++. See https://github.com/NVIDIA/cccl
Cuda
1,645
star
30

warp

A Python framework for high performance GPU simulation and graphics
Python
1,573
star
31

OpenSeq2Seq

Toolkit for efficient experimentation with Speech Recognition, Text2Speech and NLP
Python
1,511
star
32

GenerativeAIExamples

Generative AI reference workflows optimized for accelerated infrastructure and microservice architecture.
Python
1,450
star
33

TransformerEngine

A library for accelerating Transformer models on NVIDIA GPUs, including using 8-bit floating point (FP8) precision on Hopper and Ada GPUs, to provide better performance with lower memory utilization in both training and inference.
Python
1,400
star
34

VideoProcessingFramework

Set of Python bindings to C++ libraries which provides full HW acceleration for video decoding, encoding and GPU-accelerated color space and pixel format conversions
C++
1,253
star
35

nvidia-container-toolkit

Build and run containers leveraging NVIDIA GPUs
Go
1,239
star
36

trt-samples-for-hackathon-cn

Simple samples for TensorRT programming
Python
1,211
star
37

Q2RTX

NVIDIAโ€™s implementation of RTX ray-tracing in Quake II
C
1,201
star
38

open-gpu-doc

Documentation of NVIDIA chip/hardware interfaces
C
1,193
star
39

stdexec

`std::execution`, the proposed C++ framework for asynchronous and parallel programming.
C++
1,182
star
40

deepops

Tools for building GPU clusters
Shell
1,165
star
41

partialconv

A New Padding Scheme: Partial Convolution based Padding
Python
1,145
star
42

CUDALibrarySamples

CUDA Library Samples
Cuda
1,122
star
43

gpu-operator

NVIDIA GPU Operator creates/configures/manages GPUs atop Kubernetes
Go
1,117
star
44

MatX

An efficient C++17 GPU numerical computing library with Python-like syntax
C++
1,104
star
45

aistore

AIStore: scalable storage for AI applications
Go
1,074
star
46

sentiment-discovery

Unsupervised Language Modeling at scale for robust sentiment classification
Python
1,055
star
47

nvidia-container-runtime

NVIDIA container runtime
Makefile
1,035
star
48

gpu-monitoring-tools

Tools for monitoring NVIDIA GPUs on Linux
C
974
star
49

retinanet-examples

Fast and accurate object detection with end-to-end GPU optimization
Python
876
star
50

flowtron

Flowtron is an auto-regressive flow-based generative network for text to speech synthesis with control over speech variation and style transfer
Jupyter Notebook
867
star
51

mellotron

Mellotron: a multispeaker voice synthesis model based on Tacotron 2 GST that can make a voice emote and sing without emotive or singing training data
Jupyter Notebook
842
star
52

jetson-gpio

A Python library that enables the use of Jetson's GPIOs
Python
834
star
53

gdrcopy

A fast GPU memory copy library based on NVIDIA GPUDirect RDMA technology
C++
766
star
54

nv-wavenet

Reference implementation of real-time autoregressive wavenet inference
Cuda
728
star
55

tensorflow

An Open Source Machine Learning Framework for Everyone
C++
719
star
56

spark-rapids

Spark RAPIDS plugin - accelerate Apache Spark with GPUs
Scala
717
star
57

cuda-python

CUDA Python Low-level Bindings
Python
695
star
58

libnvidia-container

NVIDIA container runtime library
C
679
star
59

cccl

CUDA C++ Core Libraries
C++
676
star
60

MAXINE-AR-SDK

NVIDIA AR SDK - API headers and sample applications
C
671
star
61

nvvl

A library that uses hardware acceleration to load sequences of video frames to facilitate machine learning training
C++
665
star
62

nccl-tests

NCCL Tests
Cuda
648
star
63

gvdb-voxels

Sparse volume compute and rendering on NVIDIA GPUs
C
643
star
64

modulus

Open-source deep-learning framework for building, training, and fine-tuning deep learning models using state-of-the-art Physics-ML methods
Python
636
star
65

BigVGAN

Official PyTorch implementation of BigVGAN (ICLR 2023)
Python
633
star
66

runx

Deep Learning Experiment Management
Python
630
star
67

DLSS

NVIDIA DLSS is a new and improved deep learning neural network that boosts frame rates and generates beautiful, sharp images for your games
C
588
star
68

dcgm-exporter

NVIDIA GPU metrics exporter for Prometheus leveraging DCGM
Go
551
star
69

Dataset_Synthesizer

NVIDIA Deep learning Dataset Synthesizer (NDDS)
C++
530
star
70

NVFlare

NVIDIA Federated Learning Application Runtime Environment
Python
528
star
71

nvcomp

Repository for nvCOMP docs and examples. nvCOMP is a library for fast lossless compression/decompression on the GPU that can be downloaded from https://developer.nvidia.com/nvcomp.
C++
510
star
72

jitify

A single-header C++ library for simplifying the use of CUDA Runtime Compilation (NVRTC).
C++
495
star
73

libglvnd

The GL Vendor-Neutral Dispatch library
C
462
star
74

enroot

A simple yet powerful tool to turn traditional container/OS images into unprivileged sandboxes.
Shell
459
star
75

multi-gpu-programming-models

Examples demonstrating available options to program multiple GPUs in a single node or a cluster
Cuda
438
star
76

MDL-SDK

NVIDIA Material Definition Language SDK
C++
438
star
77

PyProf

A GPU performance profiling tool for PyTorch models
Python
437
star
78

AMGX

Distributed multigrid linear solver library on GPU
Cuda
434
star
79

gpu-rest-engine

A REST API for Caffe using Docker and Go
C++
421
star
80

nvbench

CUDA Kernel Benchmarking Library
Cuda
413
star
81

framework-reproducibility

Providing reproducibility in deep learning frameworks
Python
412
star
82

cuCollections

C++
410
star
83

hpc-container-maker

HPC Container Maker
Python
404
star
84

NeMo-Megatron-Launcher

NeMo Megatron launcher and tools
Python
384
star
85

NvPipe

NVIDIA-accelerated zero latency video compression library for interactive remoting applications
Cuda
384
star
86

cuda-quantum

C++ and Python support for the CUDA Quantum programming model for heterogeneous quantum-classical workflows
C++
357
star
87

data-science-stack

NVIDIA Data Science stack tools
Shell
317
star
88

cuQuantum

Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples
Jupyter Notebook
306
star
89

ai-assisted-annotation-client

Client side integration example source code and libraries for AI-Assisted Annotation SDK
C++
302
star
90

video-sdk-samples

Samples demonstrating how to use various APIs of NVIDIA Video Codec SDK
C++
301
star
91

nvidia-settings

NVIDIA driver control panel
C
284
star
92

DCGM

NVIDIA Data Center GPU Manager (DCGM) is a project for gathering telemetry and measuring the health of NVIDIA GPUs
C++
282
star
93

cnmem

A simple memory manager for CUDA designed to help Deep Learning frameworks manage memory
C++
280
star
94

radtts

Provides training, inference and voice conversion recipes for RADTTS and RADTTS++: Flow-based TTS models with Robust Alignment Learning, Diverse Synthesis, and Generative Modeling and Fine-Grained Control over of Low Dimensional (F0 and Energy) Speech Attributes.
Roff
269
star
95

fsi-samples

A collection of open-source GPU accelerated Python tools and examples for quantitative analyst tasks and leverages RAPIDS AI project, Numba, cuDF, and Dask.
Jupyter Notebook
265
star
96

tensorrt-laboratory

Explore the Capabilities of the TensorRT Platform
C++
259
star
97

CleanUNet

Official PyTorch Implementation of CleanUNet (ICASSP 2022)
Python
258
star
98

gpu-feature-discovery

GPU plugin to the node feature discovery for Kubernetes
Go
255
star
99

torch-harmonics

Differentiable spherical harmonic transforms and spherical convolutions in PyTorch
Jupyter Notebook
246
star
100

egl-wayland

The EGLStream-based Wayland external platform
C
243
star