• Stars
    star
    2,007
  • Rank 22,075 (Top 0.5 %)
  • Language
    Python
  • License
    Other
  • Created about 5 years ago
  • Updated 11 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Minkowski Engine is an auto-diff neural network library for high-dimensional sparse tensors

Minkowski Engine

PyPI Version pypi monthly download slack chat

The Minkowski Engine is an auto-differentiation library for sparse tensors. It supports all standard neural network layers such as convolution, pooling, unpooling, and broadcasting operations for sparse tensors. For more information, please visit the documentation page.

News

  • 2021-08-11 Docker installation instruction added
  • 2021-08-06 All installation errors with pytorch 1.8 and 1.9 have been resolved.
  • 2021-04-08 Due to recent errors in pytorch 1.8 + CUDA 11, it is recommended to use anaconda for installation.
  • 2020-12-24 v0.5 is now available! The new version provides CUDA accelerations for all coordinate management functions.

Example Networks

The Minkowski Engine supports various functions that can be built on a sparse tensor. We list a few popular network architectures and applications here. To run the examples, please install the package and run the command in the package root directory.

Examples Networks and Commands
Semantic Segmentation

python -m examples.indoor
Classification
python -m examples.classification_modelnet40
Reconstruction

python -m examples.reconstruction
Completion
python -m examples.completion
Detection

Sparse Tensor Networks: Neural Networks for Spatially Sparse Tensors

Compressing a neural network to speedup inference and minimize memory footprint has been studied widely. One of the popular techniques for model compression is pruning the weights in convnets, is also known as sparse convolutional networks. Such parameter-space sparsity used for model compression compresses networks that operate on dense tensors and all intermediate activations of these networks are also dense tensors.

However, in this work, we focus on spatially sparse data, in particular, spatially sparse high-dimensional inputs and 3D data and convolution on the surface of 3D objects, first proposed in Siggraph'17. We can also represent these data as sparse tensors, and these sparse tensors are commonplace in high-dimensional problems such as 3D perception, registration, and statistical data. We define neural networks specialized for these inputs as sparse tensor networks and these sparse tensor networks process and generate sparse tensors as outputs. To construct a sparse tensor network, we build all standard neural network layers such as MLPs, non-linearities, convolution, normalizations, pooling operations as the same way we define them on a dense tensor and implemented in the Minkowski Engine.

We visualized a sparse tensor network operation on a sparse tensor, convolution, below. The convolution layer on a sparse tensor works similarly to that on a dense tensor. However, on a sparse tensor, we compute convolution outputs on a few specified points which we can control in the generalized convolution. For more information, please visit the documentation page on sparse tensor networks and the terminology page.

Dense Tensor Sparse Tensor

Features

  • Unlimited high-dimensional sparse tensor support
  • All standard neural network layers (Convolution, Pooling, Broadcast, etc.)
  • Dynamic computation graph
  • Custom kernel shapes
  • Multi-GPU training
  • Multi-threaded kernel map
  • Multi-threaded compilation
  • Highly-optimized GPU kernels

Requirements

  • Ubuntu >= 14.04
  • CUDA >= 10.1.243 and the same CUDA version used for pytorch (e.g. if you use conda cudatoolkit=11.1, use CUDA=11.1 for MinkowskiEngine compilation)
  • pytorch >= 1.7 To specify CUDA version, please use conda for installation. You must match the CUDA version pytorch uses and CUDA version used for Minkowski Engine installation. conda install -y -c nvidia -c pytorch pytorch=1.8.1 cudatoolkit=10.2)
  • python >= 3.6
  • ninja (for installation)
  • GCC >= 7.4.0

Installation

You can install the Minkowski Engine with pip, with anaconda, or on the system directly. If you experience issues installing the package, please checkout the the installation wiki page. If you cannot find a relevant problem, please report the issue on the github issue page.

Pip

The MinkowskiEngine is distributed via PyPI MinkowskiEngine which can be installed simply with pip. First, install pytorch following the instruction. Next, install openblas.

sudo apt install build-essential python3-dev libopenblas-dev
pip install torch ninja
pip install -U MinkowskiEngine --install-option="--blas=openblas" -v --no-deps

# For pip installation from the latest source
# pip install -U git+https://github.com/NVIDIA/MinkowskiEngine --no-deps

If you want to specify arguments for the setup script, please refer to the following command.

# Uncomment some options if things don't work
# export CXX=c++; # set this if you want to use a different C++ compiler
# export CUDA_HOME=/usr/local/cuda-11.1; # or select the correct cuda version on your system.
pip install -U git+https://github.com/NVIDIA/MinkowskiEngine -v --no-deps \
#                           \ # uncomment the following line if you want to force cuda installation
#                           --install-option="--force_cuda" \
#                           \ # uncomment the following line if you want to force no cuda installation. force_cuda supercedes cpu_only
#                           --install-option="--cpu_only" \
#                           \ # uncomment the following line to override to openblas, atlas, mkl, blas
#                           --install-option="--blas=openblas" \

Anaconda

MinkowskiEngine supports both CUDA 10.2 and cuda 11.1, which work for most of latest pytorch versions.

CUDA 10.2

We recommend python>=3.6 for installation. First, follow the anaconda documentation to install anaconda on your computer.

sudo apt install g++-7  # For CUDA 10.2, must use GCC < 8
# Make sure `g++-7 --version` is at least 7.4.0
conda create -n py3-mink python=3.8
conda activate py3-mink

conda install openblas-devel -c anaconda
conda install pytorch=1.9.0 torchvision cudatoolkit=10.2 -c pytorch -c nvidia

# Install MinkowskiEngine
export CXX=g++-7
# Uncomment the following line to specify the cuda home. Make sure `$CUDA_HOME/nvcc --version` is 10.2
# export CUDA_HOME=/usr/local/cuda-10.2
pip install -U git+https://github.com/NVIDIA/MinkowskiEngine -v --no-deps --install-option="--blas_include_dirs=${CONDA_PREFIX}/include" --install-option="--blas=openblas"

# Or if you want local MinkowskiEngine
git clone https://github.com/NVIDIA/MinkowskiEngine.git
cd MinkowskiEngine
export CXX=g++-7
python setup.py install --blas_include_dirs=${CONDA_PREFIX}/include --blas=openblas

CUDA 11.X

We recommend python>=3.6 for installation. First, follow the anaconda documentation to install anaconda on your computer.

conda create -n py3-mink python=3.8
conda activate py3-mink

conda install openblas-devel -c anaconda
conda install pytorch=1.9.0 torchvision cudatoolkit=11.1 -c pytorch -c nvidia

# Install MinkowskiEngine

# Uncomment the following line to specify the cuda home. Make sure `$CUDA_HOME/nvcc --version` is 11.X
# export CUDA_HOME=/usr/local/cuda-11.1
pip install -U git+https://github.com/NVIDIA/MinkowskiEngine -v --no-deps --install-option="--blas_include_dirs=${CONDA_PREFIX}/include" --install-option="--blas=openblas"

# Or if you want local MinkowskiEngine
git clone https://github.com/NVIDIA/MinkowskiEngine.git
cd MinkowskiEngine
python setup.py install --blas_include_dirs=${CONDA_PREFIX}/include --blas=openblas

System Python

Like the anaconda installation, make sure that you install pytorch with the same CUDA version that nvcc uses.

# install system requirements
sudo apt install build-essential python3-dev libopenblas-dev

# Skip if you already have pip installed on your python3
curl https://bootstrap.pypa.io/get-pip.py | python3

# Get pip and install python requirements
python3 -m pip install torch numpy ninja

git clone https://github.com/NVIDIA/MinkowskiEngine.git

cd MinkowskiEngine

python setup.py install
# To specify blas, CXX, CUDA_HOME and force CUDA installation, use the following command
# export CXX=c++; export CUDA_HOME=/usr/local/cuda-11.1; python setup.py install --blas=openblas --force_cuda

Docker

git clone https://github.com/NVIDIA/MinkowskiEngine
cd MinkowskiEngine
docker build -t minkowski_engine docker

Once the docker is built, check it loads MinkowskiEngine correctly.

docker run MinkowskiEngine python3 -c "import MinkowskiEngine; print(MinkowskiEngine.__version__)"

CPU only build and BLAS configuration (MKL)

The Minkowski Engine supports CPU only build on other platforms that do not have NVidia GPUs. Please refer to quick start for more details.

Quick Start

To use the Minkowski Engine, you first would need to import the engine. Then, you would need to define the network. If the data you have is not quantized, you would need to voxelize or quantize the (spatial) data into a sparse tensor. Fortunately, the Minkowski Engine provides the quantization function (MinkowskiEngine.utils.sparse_quantize).

Creating a Network

import torch.nn as nn
import MinkowskiEngine as ME

class ExampleNetwork(ME.MinkowskiNetwork):

    def __init__(self, in_feat, out_feat, D):
        super(ExampleNetwork, self).__init__(D)
        self.conv1 = nn.Sequential(
            ME.MinkowskiConvolution(
                in_channels=in_feat,
                out_channels=64,
                kernel_size=3,
                stride=2,
                dilation=1,
                bias=False,
                dimension=D),
            ME.MinkowskiBatchNorm(64),
            ME.MinkowskiReLU())
        self.conv2 = nn.Sequential(
            ME.MinkowskiConvolution(
                in_channels=64,
                out_channels=128,
                kernel_size=3,
                stride=2,
                dimension=D),
            ME.MinkowskiBatchNorm(128),
            ME.MinkowskiReLU())
        self.pooling = ME.MinkowskiGlobalPooling()
        self.linear = ME.MinkowskiLinear(128, out_feat)

    def forward(self, x):
        out = self.conv1(x)
        out = self.conv2(out)
        out = self.pooling(out)
        return self.linear(out)

Forward and backward using the custom network

    # loss and network
    criterion = nn.CrossEntropyLoss()
    net = ExampleNetwork(in_feat=3, out_feat=5, D=2)
    print(net)

    # a data loader must return a tuple of coords, features, and labels.
    coords, feat, label = data_loader()
    input = ME.SparseTensor(feat, coordinates=coords)
    # Forward
    output = net(input)

    # Loss
    loss = criterion(output.F, label)

Discussion and Documentation

For discussion and questions, please use [email protected]. For API and general usage, please refer to the MinkowskiEngine documentation page for more detail.

For issues not listed on the API and feature requests, feel free to submit an issue on the github issue page.

Known Issues

Specifying CUDA architecture list

In some cases, you need to explicitly specify which compute capability your GPU uses. The default list might not contain your architecture.

export TORCH_CUDA_ARCH_LIST="5.2 6.0 6.1 7.0 7.5 8.0 8.6+PTX"; python setup.py install --force_cuda

Unhandled Out-Of-Memory thrust::system exception

There is a known issue in thrust with CUDA 10 that leads to an unhandled thrust exception. Please refer to the issue for detail.

Too much GPU memory usage or Frequent Out of Memory

There are a few causes for this error.

  1. Out of memory during a long running training

MinkowskiEngine is a specialized library that can handle different number of points or different number of non-zero elements at every iteration during training, which is common in point cloud data. However, pytorch is implemented assuming that the number of point, or size of the activations do not change at every iteration. Thus, the GPU memory caching used by pytorch can result in unnecessarily large memory consumption.

Specifically, pytorch caches chunks of memory spaces to speed up allocation used in every tensor creation. If it fails to find the memory space, it splits an existing cached memory or allocate new space if there's no cached memory large enough for the requested size. Thus, every time we use different number of point (number of non-zero elements) with pytorch, it either split existing cache or reserve new memory. If the cache is too fragmented and allocated all GPU space, it will raise out of memory error.

To prevent this, you must clear the cache at regular interval with torch.cuda.empty_cache().

CUDA 11.1 Installation

wget https://developer.download.nvidia.com/compute/cuda/11.1.1/local_installers/cuda_11.1.1_455.32.00_linux.run
sudo sh cuda_11.1.1_455.32.00_linux.run --toolkit --silent --override

# Install MinkowskiEngine with CUDA 11.1
export CUDA_HOME=/usr/local/cuda-11.1; pip install MinkowskiEngine -v --no-deps

Running the MinkowskiEngine on nodes with a large number of CPUs

The MinkowskiEngine uses OpenMP to parallelize the kernel map generation. However, when the number of threads used for parallelization is too large (e.g. OMP_NUM_THREADS=80), the efficiency drops rapidly as all threads simply wait for multithread locks to be released. In such cases, set the number of threads used for OpenMP. Usually, any number below 24 would be fine, but search for the optimal setup on your system.

export OMP_NUM_THREADS=<number of threads to use>; python <your_program.py>

Citing Minkowski Engine

If you use the Minkowski Engine, please cite:

@inproceedings{choy20194d,
  title={4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks},
  author={Choy, Christopher and Gwak, JunYoung and Savarese, Silvio},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={3075--3084},
  year={2019}
}

For multi-threaded kernel map generation, please cite:

@inproceedings{choy2019fully,
  title={Fully Convolutional Geometric Features},
  author={Choy, Christopher and Park, Jaesik and Koltun, Vladlen},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={8958--8966},
  year={2019}
}

For strided pooling layers for high-dimensional convolutions, please cite:

@inproceedings{choy2020high,
  title={High-dimensional Convolutional Networks for Geometric Pattern Recognition},
  author={Choy, Christopher and Lee, Junha and Ranftl, Rene and Park, Jaesik and Koltun, Vladlen},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2020}
}

For generative transposed convolution, please cite:

@inproceedings{gwak2020gsdn,
  title={Generative Sparse Detection Networks for 3D Single-shot Object Detection},
  author={Gwak, JunYoung and Choy, Christopher B and Savarese, Silvio},
  booktitle={European conference on computer vision},
  year={2020}
}

Unittest

For unittests and gradcheck, use torch >= 1.7

Projects using Minkowski Engine

Please feel free to update the wiki page to add your projects!

More Repositories

1

nvidia-docker

Build and run Docker containers leveraging NVIDIA GPUs
16,896
star
2

open-gpu-kernel-modules

NVIDIA Linux open GPU kernel module source
C
13,784
star
3

DeepLearningExamples

State-of-the-Art Deep Learning scripts organized by models - easy to train and deploy with reproducible accuracy and performance on enterprise-grade infrastructure.
Jupyter Notebook
12,579
star
4

FastPhotoStyle

Style transfer, deep learning, feature transform
Python
11,020
star
5

NeMo

A scalable generative AI framework built for researchers and developers working on Large Language Models, Multimodal, and Speech AI (Automatic Speech Recognition and Text-to-Speech)
Python
10,077
star
6

TensorRT

NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference on NVIDIA GPUs. This repository contains the open source components of TensorRT.
C++
9,059
star
7

vid2vid

Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.
Python
8,482
star
8

Megatron-LM

Ongoing research training transformer models at scale
Python
8,169
star
9

apex

A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch
Python
7,915
star
10

pix2pixHD

Synthesizing and manipulating 2048x1024 images with conditional GANs
Python
6,488
star
11

TensorRT-LLM

TensorRT-LLM provides users with an easy-to-use Python API to define Large Language Models (LLMs) and build TensorRT engines that contain state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs. TensorRT-LLM also contains components to create Python and C++ runtimes that execute those TensorRT engines.
C++
6,429
star
12

FasterTransformer

Transformer related optimization, including BERT, GPT
C++
5,313
star
13

cuda-samples

Samples for CUDA Developers which demonstrates features in CUDA Toolkit
C
5,203
star
14

thrust

[ARCHIVED] The C++ parallel algorithms library. See https://github.com/NVIDIA/cccl
C++
4,845
star
15

DALI

A GPU-accelerated library containing highly optimized building blocks and an execution engine for data processing to accelerate deep learning training and inference applications.
C++
4,839
star
16

tacotron2

Tacotron 2 - PyTorch implementation with faster-than-realtime inference
Jupyter Notebook
4,562
star
17

cutlass

CUDA Templates for Linear Algebra Subroutines
C++
4,278
star
18

DIGITS

Deep Learning GPU Training System
HTML
4,105
star
19

NeMo-Guardrails

NeMo Guardrails is an open-source toolkit for easily adding programmable guardrails to LLM-based conversational systems.
Python
3,309
star
20

flownet2-pytorch

Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks
Python
2,938
star
21

nccl

Optimized primitives for collective multi-GPU communication
C++
2,786
star
22

libcudacxx

[ARCHIVED] The C++ Standard Library for your entire system. See https://github.com/NVIDIA/cccl
C++
2,290
star
23

k8s-device-plugin

NVIDIA device plugin for Kubernetes
Go
2,269
star
24

waveglow

A Flow-based Generative Network for Speech Synthesis
Python
2,133
star
25

trt-llm-rag-windows

A developer reference project for creating Retrieval Augmented Generation (RAG) chatbots on Windows using TensorRT-LLM
Python
2,011
star
26

semantic-segmentation

Nvidia Semantic Segmentation monorepo
Python
1,746
star
27

DeepRecommender

Deep learning for recommender systems
Python
1,662
star
28

Stable-Diffusion-WebUI-TensorRT

TensorRT Extension for Stable Diffusion Web UI
Python
1,660
star
29

cub

[ARCHIVED] Cooperative primitives for CUDA C++. See https://github.com/NVIDIA/cccl
Cuda
1,645
star
30

warp

A Python framework for high performance GPU simulation and graphics
Python
1,573
star
31

OpenSeq2Seq

Toolkit for efficient experimentation with Speech Recognition, Text2Speech and NLP
Python
1,511
star
32

GenerativeAIExamples

Generative AI reference workflows optimized for accelerated infrastructure and microservice architecture.
Python
1,450
star
33

TransformerEngine

A library for accelerating Transformer models on NVIDIA GPUs, including using 8-bit floating point (FP8) precision on Hopper and Ada GPUs, to provide better performance with lower memory utilization in both training and inference.
Python
1,400
star
34

VideoProcessingFramework

Set of Python bindings to C++ libraries which provides full HW acceleration for video decoding, encoding and GPU-accelerated color space and pixel format conversions
C++
1,253
star
35

nvidia-container-toolkit

Build and run containers leveraging NVIDIA GPUs
Go
1,239
star
36

trt-samples-for-hackathon-cn

Simple samples for TensorRT programming
Python
1,211
star
37

Q2RTX

NVIDIA’s implementation of RTX ray-tracing in Quake II
C
1,201
star
38

open-gpu-doc

Documentation of NVIDIA chip/hardware interfaces
C
1,193
star
39

stdexec

`std::execution`, the proposed C++ framework for asynchronous and parallel programming.
C++
1,182
star
40

deepops

Tools for building GPU clusters
Shell
1,165
star
41

partialconv

A New Padding Scheme: Partial Convolution based Padding
Python
1,145
star
42

CUDALibrarySamples

CUDA Library Samples
Cuda
1,122
star
43

gpu-operator

NVIDIA GPU Operator creates/configures/manages GPUs atop Kubernetes
Go
1,117
star
44

MatX

An efficient C++17 GPU numerical computing library with Python-like syntax
C++
1,104
star
45

aistore

AIStore: scalable storage for AI applications
Go
1,074
star
46

sentiment-discovery

Unsupervised Language Modeling at scale for robust sentiment classification
Python
1,055
star
47

nvidia-container-runtime

NVIDIA container runtime
Makefile
1,035
star
48

gpu-monitoring-tools

Tools for monitoring NVIDIA GPUs on Linux
C
974
star
49

retinanet-examples

Fast and accurate object detection with end-to-end GPU optimization
Python
876
star
50

flowtron

Flowtron is an auto-regressive flow-based generative network for text to speech synthesis with control over speech variation and style transfer
Jupyter Notebook
867
star
51

mellotron

Mellotron: a multispeaker voice synthesis model based on Tacotron 2 GST that can make a voice emote and sing without emotive or singing training data
Jupyter Notebook
842
star
52

jetson-gpio

A Python library that enables the use of Jetson's GPIOs
Python
834
star
53

gdrcopy

A fast GPU memory copy library based on NVIDIA GPUDirect RDMA technology
C++
766
star
54

nv-wavenet

Reference implementation of real-time autoregressive wavenet inference
Cuda
728
star
55

tensorflow

An Open Source Machine Learning Framework for Everyone
C++
719
star
56

spark-rapids

Spark RAPIDS plugin - accelerate Apache Spark with GPUs
Scala
717
star
57

cuda-python

CUDA Python Low-level Bindings
Python
695
star
58

libnvidia-container

NVIDIA container runtime library
C
679
star
59

cccl

CUDA C++ Core Libraries
C++
676
star
60

MAXINE-AR-SDK

NVIDIA AR SDK - API headers and sample applications
C
671
star
61

nvvl

A library that uses hardware acceleration to load sequences of video frames to facilitate machine learning training
C++
665
star
62

nccl-tests

NCCL Tests
Cuda
648
star
63

gvdb-voxels

Sparse volume compute and rendering on NVIDIA GPUs
C
643
star
64

modulus

Open-source deep-learning framework for building, training, and fine-tuning deep learning models using state-of-the-art Physics-ML methods
Python
636
star
65

BigVGAN

Official PyTorch implementation of BigVGAN (ICLR 2023)
Python
633
star
66

runx

Deep Learning Experiment Management
Python
630
star
67

DLSS

NVIDIA DLSS is a new and improved deep learning neural network that boosts frame rates and generates beautiful, sharp images for your games
C
588
star
68

dcgm-exporter

NVIDIA GPU metrics exporter for Prometheus leveraging DCGM
Go
551
star
69

Dataset_Synthesizer

NVIDIA Deep learning Dataset Synthesizer (NDDS)
C++
530
star
70

NVFlare

NVIDIA Federated Learning Application Runtime Environment
Python
528
star
71

nvcomp

Repository for nvCOMP docs and examples. nvCOMP is a library for fast lossless compression/decompression on the GPU that can be downloaded from https://developer.nvidia.com/nvcomp.
C++
510
star
72

jitify

A single-header C++ library for simplifying the use of CUDA Runtime Compilation (NVRTC).
C++
495
star
73

libglvnd

The GL Vendor-Neutral Dispatch library
C
462
star
74

enroot

A simple yet powerful tool to turn traditional container/OS images into unprivileged sandboxes.
Shell
459
star
75

multi-gpu-programming-models

Examples demonstrating available options to program multiple GPUs in a single node or a cluster
Cuda
438
star
76

MDL-SDK

NVIDIA Material Definition Language SDK
C++
438
star
77

PyProf

A GPU performance profiling tool for PyTorch models
Python
437
star
78

AMGX

Distributed multigrid linear solver library on GPU
Cuda
434
star
79

gpu-rest-engine

A REST API for Caffe using Docker and Go
C++
421
star
80

nvbench

CUDA Kernel Benchmarking Library
Cuda
413
star
81

framework-reproducibility

Providing reproducibility in deep learning frameworks
Python
412
star
82

cuCollections

C++
410
star
83

hpc-container-maker

HPC Container Maker
Python
404
star
84

NeMo-Framework-Launcher

NeMo Megatron launcher and tools
Python
391
star
85

NvPipe

NVIDIA-accelerated zero latency video compression library for interactive remoting applications
Cuda
384
star
86

cuda-quantum

C++ and Python support for the CUDA Quantum programming model for heterogeneous quantum-classical workflows
C++
363
star
87

data-science-stack

NVIDIA Data Science stack tools
Shell
317
star
88

cuQuantum

Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples
Jupyter Notebook
306
star
89

ai-assisted-annotation-client

Client side integration example source code and libraries for AI-Assisted Annotation SDK
C++
302
star
90

video-sdk-samples

Samples demonstrating how to use various APIs of NVIDIA Video Codec SDK
C++
301
star
91

nvidia-settings

NVIDIA driver control panel
C
284
star
92

DCGM

NVIDIA Data Center GPU Manager (DCGM) is a project for gathering telemetry and measuring the health of NVIDIA GPUs
C++
282
star
93

cnmem

A simple memory manager for CUDA designed to help Deep Learning frameworks manage memory
C++
280
star
94

radtts

Provides training, inference and voice conversion recipes for RADTTS and RADTTS++: Flow-based TTS models with Robust Alignment Learning, Diverse Synthesis, and Generative Modeling and Fine-Grained Control over of Low Dimensional (F0 and Energy) Speech Attributes.
Roff
269
star
95

fsi-samples

A collection of open-source GPU accelerated Python tools and examples for quantitative analyst tasks and leverages RAPIDS AI project, Numba, cuDF, and Dask.
Jupyter Notebook
265
star
96

tensorrt-laboratory

Explore the Capabilities of the TensorRT Platform
C++
259
star
97

CleanUNet

Official PyTorch Implementation of CleanUNet (ICASSP 2022)
Python
258
star
98

gpu-feature-discovery

GPU plugin to the node feature discovery for Kubernetes
Go
255
star
99

torch-harmonics

Differentiable spherical harmonic transforms and spherical convolutions in PyTorch
Jupyter Notebook
246
star
100

egl-wayland

The EGLStream-based Wayland external platform
C
243
star