• Stars
    star
    860
  • Rank 53,022 (Top 2 %)
  • Language
    Python
  • License
    GNU General Publi...
  • Created over 6 years ago
  • Updated about 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A parallel implementation of "graph2vec: Learning Distributed Representations of Graphs" (MLGWorkshop 2017).

Graph2Vec

Arxiv codebeat badge repo size benedekrozemberczki

Abstract


Recent works on representation learning for graph structured data predominantly focus on learning distributed representations of graph substructures such as nodes and subgraphs. However, many graph analytics tasks such as graph classification and clustering require representing entire graphs as fixed length feature vectors. While the aforementioned approaches are naturally unequipped to learn such representations, graph kernels remain as the most effective way of obtaining them. However, these graph kernels use handcrafted features (e.g., shortest paths, graphlets, etc.) and hence are hampered by problems such as poor generalization. To address this limitation, in this work, we propose a neural embedding framework named graph2vec to learn data-driven distributed representations of arbitrary sized graphs. graph2vec's embeddings are learnt in an unsupervised manner and are task agnostic. Hence, they could be used for any downstream task such as graph classification, clustering and even seeding supervised representation learning approaches. Our experiments on several benchmark and large real-world datasets show that graph2vec achieves significant improvements in classification and clustering accuracies over substructure representation learning approaches and are competitive with state-of-the-art graph kernels.

The model is now also available in the Karate Club package.

This repository provides an implementation for graph2vec as it is described in:

graph2vec: Learning distributed representations of graphs. Narayanan, Annamalai and Chandramohan, Mahinthan and Venkatesan, Rajasekar and Chen, Lihui and Liu, Yang MLG 2017, 13th International Workshop on Mining and Learning with Graphs (MLGWorkshop 2017).

The original TensorFlow implementation is available [here].

Requirements

The codebase is implemented in Python 3.5.2 | Anaconda 4.2.0 (64-bit). Package versions used for development are just below.

jsonschema        2.6.0
tqdm              4.28.1
numpy             1.15.4
pandas            0.23.4
texttable         1.5.0
gensim            3.6.0
networkx          2.4
joblib            0.13.0
logging           0.4.9.6  

Datasets

The code takes an input folder with json files. Every file is a graph and files have a numeric index as a name. The json files have two keys. The first key called "edges" corresponds to the edge list of the graph. The second key "features" corresponds to the node features. If the second key is not present the WL machine defaults to use the node degree as a feature. A sample graph dataset from NCI1 is included in the `dataset/` directory.

Options

Learning of the embedding is handled by the src/graph2vec.py script which provides the following command line arguments.

Input and output options

  --input-path   STR    Input folder.           Default is `dataset/`.
  --output-path  STR    Embeddings path.        Default is `features/nci1.csv`.

Model options

  --dimensions     INT          Number of dimensions.                             Default is 128.
  --workers        INT          Number of workers.                                Default is 4.
  --epochs         INT          Number of training epochs.                        Default is 1.
  --min-count      INT          Minimal feature count to keep.                    Default is 5.
  --wl-iterations  INT          Number of feature extraction recursions.          Default is 2.
  --learning-rate  FLOAT        Initial learning rate.                            Default is 0.025.
  --down-sampling  FLOAT        Down sampling rate for frequent features.         Default is 0.0001.

Examples

The following commands learn an embedding of the graphs and writes it to disk. The node representations are ordered by the ID. Creating a graph2vec embedding of the default dataset with the default hyperparameter settings. Saving the embedding at the default path.

$ python src/graph2vec.py

Creating an embedding of an other dataset. Saving the output in a custom place.

$ python src/graph2vec.py --input-path new_data/ --output-path features/nci2.csv

Creating an embedding of the default dataset in 32 dimensions.

$ python src/graph2vec.py --dimensions 32

License

More Repositories

1

awesome-graph-classification

A collection of important graph embedding, classification and representation learning papers with implementations.
Python
4,666
star
2

pytorch_geometric_temporal

PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models (CIKM 2021)
Python
2,621
star
3

awesome-decision-tree-papers

A collection of research papers on decision, classification and regression trees with implementations.
Python
2,248
star
4

awesome-community-detection

A curated list of community detection research papers with implementations.
Python
2,224
star
5

karateclub

Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Python
2,065
star
6

awesome-fraud-detection-papers

A curated list of data mining papers about fraud detection.
Python
1,481
star
7

CapsGNN

A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).
Python
1,216
star
8

awesome-gradient-boosting-papers

A curated list of gradient boosting research papers with implementations.
Python
966
star
9

ClusterGCN

A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).
Python
757
star
10

littleballoffur

Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)
Python
676
star
11

SimGNN

A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).
Python
657
star
12

awesome-monte-carlo-tree-search-papers

A curated list of Monte Carlo tree search papers with implementations.
Python
565
star
13

datasets

A repository of pretty cool datasets that I collected for network science and machine learning research.
551
star
14

GraphWaveletNeuralNetwork

A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)
Python
548
star
15

MixHop-and-N-GCN

An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).
Python
395
star
16

APPNP

A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).
Python
351
star
17

AttentionWalk

A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).
Python
309
star
18

SGCN

A PyTorch implementation of "Signed Graph Convolutional Network" (ICDM 2018).
Python
262
star
19

GAM

A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).
Python
261
star
20

GEMSEC

The TensorFlow reference implementation of 'GEMSEC: Graph Embedding with Self Clustering' (ASONAM 2019).
Python
244
star
21

SEAL-CI

A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)
Python
204
star
22

shapley

The official implementation of "The Shapley Value of Classifiers in Ensemble Games" (CIKM 2021).
Python
203
star
23

Splitter

A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).
Python
203
star
24

DANMF

A sparsity aware implementation of "Deep Autoencoder-like Nonnegative Matrix Factorization for Community Detection" (CIKM 2018).
Python
194
star
25

GraphWaveMachine

A scalable implementation of "Learning Structural Node Embeddings Via Diffusion Wavelets (KDD 2018)".
Python
176
star
26

role2vec

A scalable Gensim implementation of "Learning Role-based Graph Embeddings" (IJCAI 2018).
Python
158
star
27

MUSAE

The reference implementation of "Multi-scale Attributed Node Embedding". (Journal of Complex Networks 2021)
Python
136
star
28

EdMot

An implementation of "EdMot: An Edge Enhancement Approach for Motif-aware Community Detection" (KDD 2019)
Python
128
star
29

M-NMF

An implementation of "Community Preserving Network Embedding" (AAAI 2017)
Python
119
star
30

diff2vec

Reference implementation of Diffusion2Vec (Complenet 2018) built on Gensim and NetworkX.
Python
117
star
31

LabelPropagation

A NetworkX implementation of Label Propagation from a "Near Linear Time Algorithm to Detect Community Structures in Large-Scale Networks" (Physical Review E 2008).
Python
111
star
32

walklets

A lightweight implementation of Walklets from "Don't Walk Skip! Online Learning of Multi-scale Network Embeddings" (ASONAM 2017).
Python
98
star
33

tigerlily

TigerLily: Finding drug interactions in silico with the Graph.
Jupyter Notebook
95
star
34

BANE

A sparsity aware implementation of "Binarized Attributed Network Embedding" (ICDM 2018).
Python
85
star
35

EgoSplitting

A NetworkX implementation of "Ego-splitting Framework: from Non-Overlapping to Overlapping Clusters" (KDD 2017).
Python
80
star
36

ASNE

A sparsity aware and memory efficient implementation of "Attributed Social Network Embedding" (TKDE 2018).
Python
77
star
37

TENE

A sparsity aware implementation of "Enhanced Network Embedding with Text Information" (ICPR 2018).
Python
71
star
38

SINE

A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).
Python
69
star
39

RolX

An alternative implementation of Recursive Feature and Role Extraction (KDD11 & KDD12)
Python
58
star
40

GraRep

A SciPy implementation of "GraRep: Learning Graph Representations with Global Structural Information" (WWW 2015).
Python
58
star
41

PDN

The official PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf '21)
Python
55
star
42

TADW

An implementation of "Network Representation Learning with Rich Text Information" (IJCAI '15).
Python
54
star
43

spatiotemporal_datasets

Spatiotemporal datasets collected for network science, deep learning and general machine learning research.
43
star
44

NMFADMM

A sparsity aware implementation of "Alternating Direction Method of Multipliers for Non-Negative Matrix Factorization with the Beta-Divergence" (ICASSP 2014).
Python
40
star
45

FEATHER

The reference implementation of FEATHER from the CIKM '20 paper "Characteristic Functions on Graphs: Birds of a Feather, from Statistical Descriptors to Parametric Models".
Python
40
star
46

BoostedFactorization

An implementation of "Multi-Level Network Embedding with Boosted Low-Rank Matrix Approximation" (ASONAM 2019).
Python
33
star
47

resolutions-2019

A list of data mining and machine learning papers that I implemented in 2019.
20
star
48

OrbitalFeatures

A sparsity aware implementation of "Biological Network Comparison Using Graphlet Degree Distribution" (Bioinformatics 2007)
Python
19
star
49

FSCNMF

An implementation of "Fusing Structure and Content via Non-negative Matrix Factorization for Embedding Information Networks".
Python
18
star
50

GRAF

Inner product natural graph factorization machine used in 'GEMSEC: Graph Embedding with Self Clustering' .
Python
10
star
51

HullCoverConditionedUnitDiskGraph

A generator for unit disk graphs conditioned on concave hull cover.
Python
8
star
52

AV_Ultimate_Student_Hunt

Solution for the Ultimate Student Hunt Challenge (1st place).
R
8
star
53

NestedSubtreeHash

A distributed implementation of "Nested Subtree Hash Kernels for Large-Scale Graph Classification Over Streams" (ICDM 2012).
Python
7
star
54

Societe-General

Solution for ENS - Societe Generale Challenge (1st place).
R
5
star
55

resolutions-2020

4
star
56

graphmining.ai

Benedek Rozemberczki Personal Webpage
4
star
57

benedekrozemberczki

3
star