• Stars
    star
    1,481
  • Rank 31,741 (Top 0.7 %)
  • Language
    Python
  • License
    Creative Commons ...
  • Created over 5 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A curated list of data mining papers about fraud detection.

Awesome Fraud Detection Research Papers.

Awesome PRs Welcome repo size License benedekrozemberczki

A curated list of fraud detection papers from the following conferences:

Similar collections about graph classification, classification/regression tree, gradient boosting, Monte Carlo tree search, and community detection papers with implementations.

2023

  • Anti-Money Laundering by Group-Aware Deep Graph Learning (TKDE 2023)

    • Dawei Cheng, Yujia Ye, Sheng Xiang, Zhenwei Ma, Ying Zhang, Changjun Jiang
    • [Paper]
  • Semi-supervised Credit Card Fraud Detection via Attribute-driven Graph Representation (AAAI 2023)

    • Sheng Xiang, Mingzhi Zhu, Dawei Cheng, Enxia Li, Ruihui Zhao, Yi Ouyang, Ling Chen, Yefeng Zheng
    • [Paper]
    • [Code]
  • A Framework for Detecting Frauds from Extremely Few Labels (WSDM 2023)

    • Ya-Lin Zhang, Yi-Xuan Sun, Fangfang Fan, Meng Li, Yeyu Zhao, Wei Wang, Longfei Li, Jun Zhou, Jinghua Feng
    • [Paper]
  • Label Information Enhanced Fraud Detection against Low Homophily in Graphs (WWW 2023)

    • Yuchen Wang, Jinghui Zhang, Zhengjie Huang, Weibin Li, Shikun Feng, Ziheng Ma, Yu Sun, Dianhai Yu, Fang Dong, Jiahui Jin, Beilun Wang, Junzhou Luo (WWW 2023)
    • [Paper]
  • BERT4ETH: A Pre-trained Transformer for Ethereum Fraud Detection (WWW 2023)

    • Sihao Hu, Zhen Zhang, Bingqiao Luo, Shengliang Lu, Bingsheng He, Ling Liu
    • [Paper]

2022

  • The Importance of Future Information in Credit Card Fraud Detection (AISTATS 2022)

    • Van Bach Nguyen, Kanishka Ghosh Dastidar, Michael Granitzer, Wissam Siblini
    • [Paper]
  • BRIGHT - Graph Neural Networks in Real-time Fraud Detection (CIKM 2022)

    • Mingxuan Lu, Zhichao Han, Susie Xi Rao, Zitao Zhang, Yang Zhao, Yinan Shan, Ramesh Raghunathan, Ce Zhang, Jiawei Jiang
    • [Paper]
  • Dual-Augment Graph Neural Network for Fraud Detection (CIKM 2022)

    • Qiutong Li, Yanshen He, Cong Xu, Feng Wu, Jianliang Gao, Zhao Li
    • [Paper]
  • Explainable Graph-based Fraud Detection via Neural Meta-graph Search (CIKM 2022)

    • Zidi Qin, Yang Liu, Qing He, Xiang Ao
    • [Paper]
  • MetaRule: A Meta-path Guided Ensemble Rule Set Learning for Explainable Fraud Detection (CIKM 2022)

    • Lu Yu, Meng Li, Xiaoguang Huang, Wei Zhu, Yanming Fang, Jun Zhou, Longfei Li
    • [Paper]
  • User Behavior Pre-training for Online Fraud Detection (KDD 2022)

    • Can Liu, Yuncong Gao, Li Sun, Jinghua Feng, Hao Yang, Xiang Ao
    • [Paper]
  • Accelerated GNN Training with DGL and RAPIDS cuGraph in a Fraud Detection Workflow (KDD 2022)

    • Brad Rees, Xiaoyun Wang, Joe Eaton, Onur Yilmaz, Rick Ratzel, Dominque LaSalle
    • [Paper]
  • A View into YouTube View Fraud (WWW 2022)

  • Beyond Bot Detection: Combating Fraudulent Online Survey Takers (WWW 2022)

    • Ziyi Zhang, Shuofei Zhu, Jaron Mink, Aiping Xiong, Linhai Song, Gang Wang
    • [Paper]
  • AUC-oriented Graph Neural Network for Fraud Detection (WWW 2022)

    • Mengda Huang, Yang Liu, Xiang Ao, Kuan Li, Jianfeng Chi, Jinghua Feng, Hao Yang, Qing He
    • [Paper]
  • H2-FDetector: A GNN-based Fraud Detector with Homophilic and Heterophilic Connections (WWW 2022)

    • Fengzhao Shi, Yanan Cao, Yanmin Shang, Yuchen Zhou, Chuan Zhou, Jia Wu
    • [Paper]
  • Active Learning for Human-in-the-loop Customs Inspection (TKDE 2022)

    • Sundong Kim, Tung-Duong Mai, Thi Nguyen Duc Khanh, Sungwon Han, Sungwon Park, Karandeep Singh, Meeyoung Cha
    • [Paper]
    • [Code]
  • Knowledge Sharing via Domain Adaptation in Customs Fraud Detection (AAAI 2022)

    • Sungwon Park, Sundong Kim, Meeyoung Cha
    • [Paper]

2021

  • Towards Consumer Loan Fraud Detection: Graph Neural Networks with Role-Constrained Conditional Random Field (AAAI 2021)

    • Bingbing Xu, Huawei Shen, Bing-Jie Sun, Rong An, Qi Cao, Xueqi Cheng
    • [Paper]
  • Modeling the Field Value Variations and Field Interactions Simultaneously for Fraud Detection (AAAI 2021)

    • Dongbo Xi, Bowen Song, Fuzhen Zhuang, Yongchun Zhu, Shuai Chen, Tianyi Zhang, Yuan Qi, Qing He
    • [Paper]
  • IFDDS: An Anti-fraud Outbound Robot (AAAI 2021)

    • Zihao Wang, Minghui Yang, Chunxiang Jin, Jia Liu, Zujie Wen, Saishuai Liu, Zhe Zhang
    • [Paper]
  • Modeling Heterogeneous Graph Network on Fraud Detection: A Community-based Framework with Attention Mechanism (CIKM 2021)

    • Li Wang, Peipei Li, Kai Xiong, Jiashu Zhao, Rui Lin
    • [Paper]
  • Fraud Detection under Multi-Sourced Extremely Noisy Annotations (CIKM 2021)

    • Chuang Zhang, Qizhou Wang, Tengfei Liu, Xun Lu, Jin Hong, Bo Han, Chen Gong
    • [Paper]
  • Adversarial Reprogramming of Pretrained Neural Networks for Fraud Detection (CIKM 2021)

    • Lingwei Chen, Yujie Fan, Yanfang Ye
    • [Paper]
  • Fine-Grained Element Identification in Complaint Text of Internet Fraud (CIKM 2021)

    • Tong Liu, Siyuan Wang, Jingchao Fu, Lei Chen, Zhongyu Wei, Yaqi Liu, Heng Ye, Liaosa Xu, Weiqiang Wang, Xuanjing Huang
    • [Paper]
  • Could You Describe the Reason for the Transfer: A Reinforcement Learning Based Voice-Enabled Bot Protecting Customers from Financial Frauds (CIKM 2021)

    • Zihao Wang, Fudong Wang, Haipeng Zhang, Minghui Yang, Shaosheng Cao, Zujie Wen, Zhe Zhang
    • [Paper]
  • Online Credit Payment Fraud Detection via Structure-Aware Hierarchical Recurrent Neural Network (IJCAI 2021)

    • Wangli Lin, Li Sun, Qiwei Zhong, Can Liu, Jinghua Feng, Xiang Ao, Hao Yang
    • [Paper]
  • Intention-aware Heterogeneous Graph Attention Networks for Fraud Transactions Detection (KDD 2021)

    • Can Liu, Li Sun, Xiang Ao, Jinghua Feng, Qing He, Hao Yang
    • [Paper]
  • Live-Streaming Fraud Detection: A Heterogeneous Graph Neural Network Approach (KDD 2021)

    • Haishuai Wang, Zhao Li, Peng Zhang, Jiaming Huang, Pengrui Hui, Jian Liao, Ji Zhang, Jiajun Bu
    • [Paper]
  • Customs Fraud Detection in the Presence of Concept Drift (IncrLearn@ICDM 2021)

    • Tung-Duong Mai, Kien Hoang, Aitolkyn Baigutanova, Gaukhartas Alina, Sundong Kim
    • [Paper]
  • Pick and Choose: A GNN-based Imbalanced Learning Approach for Fraud Detection (WWW 2021)

    • Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang, Qing He
    • [Paper]

2020

  • Spatio-Temporal Attention-Based Neural Network for Credit Card Fraud Detection (AAAI 2020)

    • Dawei Cheng, Sheng Xiang, Chencheng Shang, Yiyi Zhang, Fangzhou Yang, Liqing Zhang
    • [Paper]
  • FlowScope: Spotting Money Laundering Based on Graphs (AAAI 2020)

    • Xiangfeng Li, Shenghua Liu, Zifeng Li, Xiaotian Han, Chuan Shi, Bryan Hooi, He Huang, Xueqi Cheng
    • [Paper]
    • [Code]
  • Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged Fraudsters (CIKM 2020)

    • Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, Philip S. Yu
    • [Paper]
    • [Code]
  • Loan Default Analysis with Multiplex Graph Learning (CIKM 2020)

    • Binbin Hu, Zhiqiang Zhang, Jun Zhou, Jingli Fang, Quanhui Jia, Yanming Fang, Quan Yu, Yuan Qi
    • [Paper]
  • Error-Bounded Graph Anomaly Loss for GNNs (CIKM 2020)

    • Tong Zhao, Chuchen Deng, Kaifeng Yu, Tianwen Jiang, Daheng Wang, Meng Jiang
    • [Paper]
    • [Code]
  • BotSpot: A Hybrid Learning Framework to Uncover Bot Install Fraud in Mobile Advertising (CIKM 2020)

    • Tianjun Yao, Qing Li, Shangsong Liang, Yadong Zhu
    • [Paper]
    • [Code]
  • Early Fraud Detection with Augmented Graph Learning (DLG@KDD 2020)

    • Tong Zhao, Bo Ni, Wenhao Yu, Meng Jiang
    • [Paper]
  • NAG: Neural Feature Aggregation Framework for Credit Card Fraud Detection (ICDM 2020)

    • Kanishka Ghosh Dastidar, Johannes Jurgovsky, Wissam Siblini, Liyun He-Guelton, Michael Granitzer
    • [Paper]
  • Heterogeneous Mini-Graph Neural Network and Its Application to Fraud Invitation Detection (ICDM 2020)

    • Yong-Nan Zhu, Xiaotian Luo, Yu-Feng Li, Bin Bu, Kaibo Zhou, Wenbin Zhang, Mingfan Lu
    • [Paper]
  • Collaboration Based Multi-Label Propagation for Fraud Detection (IJCAI 2020)

    • Haobo Wang, Zhao Li, Jiaming Huang, Pengrui Hui, Weiwei Liu, Tianlei Hu, Gang Chen
    • [Paper]
  • The Behavioral Sign of Account Theft: Realizing Online Payment Fraud Alert (IJCAI 2020)

  • Federated Meta-Learning for Fraudulent Credit Card Detection (IJCAI 2020)

    • Wenbo Zheng, Lan Yan, Chao Gou, Fei-Yue Wang
    • [Paper]
  • Robust Spammer Detection by Nash Reinforcement Learning (KDD 2020)

    • Yingtong Dou, Guixiang Ma, Philip S. Yu, Sihong Xie
    • [Paper]
    • [Code]
  • DATE: Dual Attentive Tree-aware Embedding for Customs Fraud Detection (KDD 2020)

    • Sundong Kim, Yu-Che Tsai, Karandeep Singh, Yeonsoo Choi, Etim Ibok, Cheng-Te Li, Meeyoung Cha
    • [Paper]
    • [Code]
  • Fraud Transactions Detection via Behavior Tree with Local Intention Calibration (KDD 2020)

    • Can Liu, Qiwei Zhong, Xiang Ao, Li Sun, Wangli Lin, Jinghua Feng, Qing He, Jiayu Tang
    • [Paper]
  • Interleaved Sequence RNNs for Fraud Detection (KDD 2020)

    • Bernardo Branco, Pedro Abreu, Ana Sofia Gomes, Mariana S. C. Almeida, JoΓ£o Tiago AscensΓ£o, Pedro Bizarro
    • [Paper]
  • GCN-Based User Representation Learning for Unifying Robust Recommendation and Fraudster Detection (SIGIR 2020)

    • Shijie Zhang, Hongzhi Yin, Tong Chen, Quoc Viet Nguyen Hung, Zi Huang, Lizhen Cui
    • [Paper]
  • Alleviating the Inconsistency Problem of Applying Graph Neural Network to Fraud Detection (SIGIR 2020)

    • Zhiwei Liu, Yingtong Dou, Philip S. Yu, Yutong Deng, Hao Peng
    • [Paper]
    • [Code]
  • Friend or Faux: Graph-Based Early Detection of Fake Accounts on Social Networks (WWW 2020)

    • Adam Breuer, Roee Eilat, Udi Weinsberg
    • [Paper]
  • Financial Defaulter Detection on Online Credit Payment via Multi-view Attributed Heterogeneous Information Network (WWW 2020)

    • Qiwei Zhong, Yang Liu, Xiang Ao, Binbin Hu, Jinghua Feng, Jiayu Tang, Qing He
    • [Paper]
  • ASA: Adversary Situation Awareness via Heterogeneous Graph Convolutional Networks (WWW 2020)

    • Rui Wen, Jianyu Wang, Chunming Wu, Jian Xiong
    • [Paper]
  • Modeling Users' Behavior Sequences with Hierarchical Explainable Network for Cross-domain Fraud Detection (WWW 2020)

    • Yongchun Zhu, Dongbo Xi, Bowen Song, Fuzhen Zhuang, Shuai Chen, Xi Gu, Qing He
    • [Paper]

2019

  • SliceNDice: Mining Suspicious Multi-attribute Entity Groups with Multi-view Graphs (DSAA 2019)

  • FARE: Schema-Agnostic Anomaly Detection in Social Event Logs (DSAA 2019)

  • Cash-Out User Detection Based on Attributed Heterogeneous Information Network with a Hierarchical Attention Mechanism (AAAI 2019)

    • Binbin Hu, Zhiqiang Zhang, Chuan Shi, Jun Zhou, Xiaolong Li, Yuan Qi
    • [Paper]
    • [Code]
  • GeniePath: Graph Neural Networks with Adaptive Receptive Paths (AAAI 2019)

    • Ziqi Liu, Chaochao Chen, Longfei Li, Jun Zhou, Xiaolong Li, Le Song, Yuan Qi
    • [Paper]
    • [Code]
  • SAFE: A Neural Survival Analysis Model for Fraud Early Detection (AAAI 2019)

  • One-Class Adversarial Nets for Fraud Detection (AAAI 2019)

    • Panpan Zheng, Shuhan Yuan, Xintao Wu, Jun Li, Aidong Lu
    • [Paper]
    • [Code]
  • Uncovering Download Fraud Activities in Mobile App Markets (ASONAM 2019)

    • Yingtong Dou, Weijian Li, Zhirong Liu, Zhenhua Dong, Jiebo Luo, Philip S. Yu
    • [Paper]
  • Spam Review Detection with Graph Convolutional Networks (CIKM 2019)

    • Ao Li, Zhou Qin, Runshi Liu, Yiqun Yang, Dong Li
    • [Paper]
    • [Code]
  • Key Player Identification in Underground Forums Over Attributed Heterogeneous Information Network Embedding Framework (CIKM 2019)

    • Yiming Zhang, Yujie Fan, Yanfang Ye, Liang Zhao, Chuan Shi
    • [Paper]
    • [Code]
  • CatchCore: Catching Hierarchical Dense Subtensor (ECML-PKDD 2019)

    • Wenjie Feng, Shenghua Liu, Huawei Shen, and Xueqi Cheng
    • [Paper]
    • [Code]
  • Spotting Collective Behaviour of Online Frauds in Customer Reviews (IJCAI 2019)

    • Sarthika Dhawan, Siva Charan Reddy Gangireddy, Shiv Kumar, Tanmoy Chakraborty
    • [Paper]
    • [Code]
  • A Semi-Supervised Graph Attentive Network for Fraud Detection (ICDM 2019)

    • Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang, Quan Yu, Jun Zhou, Shuang Yang, and Qi Yuan
    • [Paper]
    • [Code]
  • EigenPulse: Detecting Surges in Large Streaming Graphs with Row Augmentation (PAKDD 2019)

    • Jiabao Zhang, Shenghua Liu, Wenjian Yu, Wenjie Feng, Xueqi Cheng
    • [Paper]
  • Uncovering Insurance Fraud Conspiracy with Network Learning (SIGIR 2019)

    • Chen Liang, Ziqi Liu, Bin Liu, Jun Zhou, Xiaolong Li, Shuang Yang, Yuan Qi
    • [Paper]
  • A Contrast Metric for Fraud Detection in Rich Graphs (TKDE 2019)

    • Shenghua Liu, Bryan Hooi, Christos Faloutsos
    • [Paper]
  • Think Outside the Dataset: Finding Fraudulent Reviews using Cross-Dataset Analysis (WWW 2019)

    • Shirin Nilizadeh, Hojjat Aghakhani, Eric Gustafson, Christopher Kruegel, Giovanni Vigna
    • [Paper]
  • Securing the Deep Fraud Detector in Large-Scale E-Commerce Platform via Adversarial Machine Learning Approach (WWW 2019)

    • Qingyu Guo, Zhao Li, Bo An, Pengrui Hui, Jiaming Huang, Long Zhang, Mengchen Zhao
    • [Paper]
  • No Place to Hide: Catching Fraudulent Entities in Tensors (WWW 2019)

    • Yikun Ban, Xin Liu, Ling Huang, Yitao Duan, Xue Liu, Wei Xu
    • [Paper]
  • FdGars: Fraudster Detection via Graph Convolutional Networks in Online App Review System (WWW 2019)

2018

  • Heterogeneous Graph Neural Networks for Malicious Account Detection (CIKM 2018)

    • Ziqi Liu, Chaochao Chen, Xinxing Yang, Jun Zhou, Xiaolong Li, and Le Song
    • [Paper]
    • [Code]
  • Reinforcement Mechanism Design for Fraudulent Behaviour in e-Commerce (AAAI 2018)

    • Qingpeng Cai, Aris Filos-Ratsikas, Pingzhong Tang, Yiwei Zhang
    • [Paper]
  • Adapting to Concept Drift in Credit Card Transaction Data Streams Using Contextual Bandits and Decision Trees (AAAI 2018)

    • Dennis J. N. J. Soemers, Tim Brys, Kurt Driessens, Mark H. M. Winands, Ann NowΓ©
    • [Paper]
  • Nextgen AML: Distributed Deep Learning Based Language Technologies to Augment Anti Money Laundering Investigation(ACL 2018)

    • Jingguang Han, Utsab Barman, Jeremiah Hayes, Jinhua Du, Edward Burgin, Dadong Wan
    • [Paper]
  • Preserving Privacy of Fraud Detection Rule Sharing Using Intel's SGX (CIKM 2018)

    • Daniel Deutch, Yehonatan Ginzberg, Tova Milo
    • [Paper]
  • Deep Structure Learning for Fraud Detection (ICDM 2018)

    • Haibo Wang, Chuan Zhou, Jia Wu, Weizhen Dang, Xingquan Zhu, Jilong Wang
    • [Paper]
  • Learning Sequential Behavior Representations for Fraud Detection (ICDM 2018)

    • Jia Guo, Guannan Liu, Yuan Zuo, Junjie Wu
    • [Paper]
  • Impression Allocation for Combating Fraud in E-commerce Via Deep Reinforcement Learning with Action Norm Penalty (IJCAI 2018)

    • Mengchen Zhao, Zhao Li, Bo An, Haifeng Lu, Yifan Yang, Chen Chu
    • [Paper]
  • Tax Fraud Detection for Under-Reporting Declarations Using an Unsupervised Machine Learning Approach (KDD 2018)

    • Daniel de Roux, Boris Perez, AndrΓ©s Moreno, MarΓ­a-Del-Pilar Villamil, CΓ©sar Figueroa
    • [Paper]
  • Collective Fraud Detection Capturing Inter-Transaction Dependency (KDD 2018)

    • Bokai Cao, Mia Mao, Siim Viidu, Philip Yu
    • [Paper]
  • Fraud Detection with Density Estimation Trees (KDD 2018)

    • Fraud Detection with Density Estimation Trees
    • [Paper]
  • Real-time Constrained Cycle Detection in Large Dynamic Graphs (VLDB 2018)

    • Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin, Jingren Zhou
    • [Paper]
  • REV2: Fraudulent User Prediction in Rating Platforms (WSDM 2018)

    • Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, V. S. Subrahmanian
    • [Paper]
    • [Code]
  • Exposing Search and Advertisement Abuse Tactics and Infrastructure of Technical Support Scammers (WWW 2018)

    • Bharat Srinivasan, Athanasios Kountouras, Najmeh Miramirkhani, Monjur Alam, Nick Nikiforakis, Manos Antonakakis, Mustaque Ahamad
    • [Paper]

2017

  • ZooBP: Belief Propagation for Heterogeneous Networks (VLDB 2017)

    • Dhivya Eswaran, Stephan Gunnemann, Christos Faloutsos, Disha Makhija, Mohit Kumar
    • [Paper]
    • [Code]
  • Behavioral Analysis of Review Fraud: Linking Malicious Crowdsourcing to Amazon and Beyond (AAAI 2017)

    • Parisa Kaghazgaran, James Caverlee, Majid Alfifi
    • [Paper]
  • Detection of Money Laundering Groups: Supervised Learning on Small Networks (AAAI 2017)

    • David Savage, Qingmai Wang, Xiuzhen Zhang, Pauline Chou, Xinghuo Yu
    • [Paper]
  • Spectrum-based Deep Neural Networks for Fraud Detection (CIKM 2017)

    • Shuhan Yuan, Xintao Wu, Jun Li, Aidong Lu
    • [Paper]
  • HoloScope: Topology-and-Spike Aware Fraud Detection (CIKM 2017)

    • Shenghua Liu, Bryan Hooi, Christos Faloutsos
    • [Paper]
  • The Many Faces of Link Fraud (ICDM 2017)

    • Neil Shah, Hemank Lamba, Alex Beutel, Christos Faloutsos
    • [Paper]
  • HitFraud: A Broad Learning Approach for Collective Fraud Detection in Heterogeneous Information Networks (ICDM 2017)

    • Bokai Cao, Mia Mao, Siim Viidu, Philip S. Yu
    • [Paper]
  • GANG: Detecting Fraudulent Users in Online Social Networks via Guilt-by-Association on Directed Graphs (ICDM 2017)

  • Improving Card Fraud Detection Through Suspicious Pattern Discovery (IEA/AIE 2017)

    • Fabian Braun, Olivier Caelen, Evgueni N. Smirnov, Steven Kelk, Bertrand Lebichot:
    • [Paper]
  • Online Reputation Fraud Campaign Detection in User Ratings (IJCAI 2017)

    • Chang Xu, Jie Zhang, Zhu Sun
    • [Paper]
  • Uncovering Unknown Unknowns in Financial Services Big Data by Unsupervised Methodologies: Present and Future trends (KDD 2017)

    • Gil Shabat, David Segev, Amir Averbuch
    • [Paper]
  • PD-FDS: Purchase Density based Online Credit Card Fraud Detection System (KDD 2017)

    • Youngjoon Ki, Ji Won Yoon
    • [Paper]
  • HiDDen: Hierarchical Dense Subgraph Detection with Application to Financial Fraud Detection (SDM 2017)

    • Si Zhang, Dawei Zhou, Mehmet Yigit Yildirim, Scott Alcorn, Jingrui He, Hasan Davulcu, Hanghang Tong
    • [Paper]

2016

  • A Fraud Resilient Medical Insurance Claim System (AAAI 2016)

    • Yuliang Shi, Chenfei Sun, Qingzhong Li, Lizhen Cui, Han Yu, Chunyan Miao
    • [Paper]
  • A Graph-Based, Semi-Supervised, Credit Card Fraud Detection System (COMPLEX NETWORKS 2016)

    • Bertrand Lebichot, Fabian Braun, Olivier Caelen, Marco Saerens
    • [Paper]
  • FRAUDAR: Bounding Graph Fraud in the Face of Camouflage (KDD 2016)

    • Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, Christos Faloutsos
    • [Paper]
    • [Code]
  • Identifying Anomalies in Graph Streams Using Change Detection (KDD 2016)

    • William Eberle and Lawrence Holde
    • [Paper]
  • FairPlay: Fraud and Malware Detection in Google Play (SDM 2016)

    • Mahmudur Rahman, Mizanur Rahman, Bogdan Carbunar, Duen Horng Chau
    • [Paper]
  • BIRDNEST: Bayesian Inference for Ratings-Fraud Detection (SDM 2016)

    • Bryan Hooi, Neil Shah, Alex Beutel, Stephan GΓΌnnemann, Leman Akoglu, Mohit Kumar, Disha Makhija, Christos Faloutsos
    • [Paper]
  • Understanding the Detection of View Fraud in Video Content Portals (WWW 2016)

    • Miriam Marciel, RubΓ©n Cuevas, Albert Banchs, Roberto Gonzalez, Stefano Traverso, Mohamed Ahmed, Arturo Azcorra
    • [Paper]

2015

  • Toward An Intelligent Agent for Fraud Detection β€” The CFE Agent (AAAI 2015)

  • Graph Analysis for Detecting Fraud, Waste, and Abuse in Healthcare Data (AAAI 2015)

    • Juan Liu, Eric Bier, Aaron Wilson, Tomonori Honda, Kumar Sricharan, Leilani Gilpin, John Alexis Guerra GΓ³mez, Daniel Davies
    • [Paper]
  • Robust System for Identifying Procurement Fraud (AAAI 2015)

    • Amit Dhurandhar, Rajesh Kumar Ravi, Bruce Graves, Gopikrishnan Maniachari, Markus Ettl
    • [Paper]
  • Fraud Transaction Recognition: A Money Flow Network Approach (CIKM 2015)

    • Renxin Mao, Zhao Li, Jinhua Fu
    • [Paper]
  • Towards Collusive Fraud Detection in Online Reviews (ICDM 2015)

  • Catch the Black Sheep: Unified Framework for Shilling Attack Detection Based on Fraudulent Action Propagation (IJCAI 2015)

    • Yongfeng Zhang, Yunzhi Tan, Min Zhang, Yiqun Liu, Tat-Seng Chua, Shaoping Ma
    • [Paper]
  • Collective Opinion Spam Detection: Bridging Review Networks and Metadata (KDD 2015)

  • Graph-Based User Behavior Modeling: From Prediction to Fraud Detection (KDD 2015)

    • Alex Beutel, Leman Akoglu, Christos Faloutsos
    • [Paper]
  • FrauDetector: A Graph-Mining-based Framework for Fraudulent Phone Call Detection (KDD 2015)

    • Vincent S. Tseng, Jia-Ching Ying, Che-Wei Huang, Yimin Kao, Kuan-Ta Chen
    • [Paper]
  • A Framework for Intrusion Detection Based on Frequent Subgraph Mining (SDM 2015)

    • Vitali Herrera-Semenets, Niusvel Acosta-Mendoza, Andres Gago-Alonso
    • [Paper]
  • Crowd Fraud Detection in Internet Advertising (WWW 2015)

    • Tian Tian, Jun Zhu, Fen Xia, Xin Zhuang, Tong Zhang
    • [Paper]

2014

  • Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective (ICDM 2014)

    • Neil Shah, Alex Beutel, Brian Gallagher, Christos Faloutsos
    • [Paper]
    • [Code]
  • Fraudulent Support Telephone Number Identification Based on Co-Occurrence Information on the Web (AAAI 2014)

    • Xin Li, Yiqun Liu, Min Zhang, Shaoping Ma
    • [Paper]
  • Corporate Residence Fraud Detection (KDD 2014)

    • Enric JunquΓ© de Fortuny, Marija Stankova, Julie Moeyersoms, Bart Minnaert, Foster J. Provost, David Martens
    • [Paper]
  • Graphical Models for Identifying Fraud and Waste in Healthcare Claims (SDM 2014)

    • Peder A. Olsen, Ramesh Natarajan, Sholom M. Weiss
    • [Paper]
  • Improving Credit Card Fraud Detection with Calibrated Probabilities (SDM 2014)

    • Alejandro Correa Bahnsen, Aleksandar Stojanovic, Djamila Aouada, BjΓΆrn E. Ottersten
    • [Paper]
  • Large Graph Mining: Patterns, Cascades, Fraud Detection, and Algorithms (WWW 2014)

2013

  • Opinion Fraud Detection in Online Reviews by Network Effects (AAAI 2013)

    • Leman Akoglu, Rishi Chandy, Christos Faloutsos
    • [Paper]
  • Using Social Network Knowledge for Detecting Spider Constructions in Social Security Fraud (ASONAM 2013)

    • VΓ©ronique Van Vlasselaer, Jan Meskens, Dries Van Dromme, Bart Baesens
    • [Paper]
  • Ranking Fraud Detection for Mobile Apps: a Holistic View (CIKM 2013)

    • Hengshu Zhu, Hui Xiong, Yong Ge, Enhong Chen
    • [Paper]
  • Using Co-Visitation Networks for Detecting Large Scale Online Display Advertising Exchange Fraud (KDD 2013)

    • Ori Stitelman, Claudia Perlich, Brian Dalessandro, Rod Hook, Troy Raeder, Foster J. Provost
    • [Paper]
  • Adaptive Adversaries: Building Systems to Fight Fraud and Cyber Intruders (KDD 2013)

  • Anomaly, Event, and Fraud Detection in Large Network Datasets (WSDM 2013)

    • Leman Akoglu, Christos Faloutsos
    • [Paper]

2012

  • Fraud Detection: Methods of Analysis for Hypergraph Data (ASONAM 2012)

    • Anna Leontjeva, Konstantin Tretyakov, Jaak Vilo, and Taavi Tamkivi
    • [Paper]
  • Online Modeling of Proactive Moderation System for Auction Fraud Detection (WWW 2012)

    • Liang Zhang, Jie Yang, Belle L. Tseng
    • [Paper]

2011

  • A Machine-Learned Proactive Moderation System for Auction Fraud Detection (CIKM 2011)

    • Liang Zhang, Jie Yang, Wei Chu, Belle L. Tseng
    • [Paper]
  • A Taxi Driving Fraud Detection System (ICDM 2011)

    • Yong Ge, Hui Xiong, Chuanren Liu, Zhi-Hua Zhou
    • [Paper]
  • Utility-Based Fraud Detection (IJCAI 2011)

    • LuΓ­s Torgo, Elsa Lopes
    • [Paper]
  • A Pattern Discovery Approach to Retail Fraud Detection (KDD 2011)

    • Prasad Gabbur, Sharath Pankanti, Quanfu Fan, Hoang Trinh
    • [Paper]

2010

  • Hunting for the Black Swan: Risk Mining from Text (ACL 2010)

  • Fraud Detection by Generating Positive Samples for Classification from Unlabeled Data (ACL 2010)

    • Levente Kocsis, Andras George
    • [Paper]

2009

  • SVM-based Credit Card Fraud Detection with Reject Cost and Class-Dependent Error Cost (PAKDD 2009)

    • En-hui Zheng,Chao Zou,Jian Sun, Le Chen
    • [Paper]
  • An Approach for Automatic Fraud Detection in the Insurance Domain (AAAI 2009)

    • Alexander Widder, Rainer v. Ammon, Gerit Hagemann, Dirk SchΓΆnfeld
    • [Paper]

2007

  • Relational Data Pre-Processing Techniques for Improved Securities Fraud Detection (KDD 2007)

    • Andrew S. Fast, Lisa Friedland, Marc E. Maier, Brian J. Taylor, David D. Jensen, Henry G. Goldberg, John Komoroske
    • [Paper]
  • Uncovering Fraud in Direct Marketing Data with a Fraud Auditing Case Builder (PKDD 2007)

  • Netprobe: A Fast and Scalable System for Fraud Detection in Online Auction Networks (WWW 2007)

    • Shashank Pandit, Duen Horng Chau, Samuel Wang, Christos Faloutsos
    • [Paper]

2006

  • Data Mining Approaches to Criminal Career Analysis (ICDM 2006)

    • Jeroen S. De Bruin, Tim K. Cocx, Walter A. Kosters, Jeroen F. J. Laros, Joost N. Kok
    • [Paper]
  • Large Scale Detection of Irregularities in Accounting Data (ICDM 2006)

    • Stephen Bay, Krishna Kumaraswamy, Markus G. Anderle, Rohit Kumar, David M. Steier
    • [Paper]
  • Camouflaged Fraud Detection in Domains with Complex Relationships (KDD 2006)

    • Sankar Virdhagriswaran, Gordon Dakin
    • [Paper]
  • Detecting Fraudulent Personalities in Networks of Online Auctioneers (PKDD 2006)

    • Duen Horng Chau, Shashank Pandit, Christos Faloutsos
    • [Paper]

2005

  • Technologies to Defeat Fraudulent Schemes Related to Email Requests (AAAI 2005)

    • Edoardo Airoldi, Bradley Malin, and Latanya Sweeney
    • [Paper]
  • AI Technologies to Defeat Identity Theft Vulnerabilities (AAAI 2005)

  • Detecting Fraud in Health Insurance Data: Learning to Model Incomplete Benford's Law Distributions (ECML 2005)

    • Fletcher Lu, J. Efrim Boritz
    • [Paper]
  • Using Relational Knowledge Discovery to Prevent Securities Fraud (KDD 2005)

    • Jennifer Neville, Γ–zgΓΌr Simsek, David D. Jensen, John Komoroske, Kelly Palmer, Henry G. Goldberg
    • [Paper]

2003

  • Applying Data Mining in Investigating Money Laundering Crimes (KDD 2003)
    • Zhongfei (Mark) Zhang, John J. Salerno, Philip S. Yu
    • [Paper]

2000

  • Document Classification and Visualisation to Support the Investigation of Suspected Fraud (PKDD 2000)
    • Johan Hagman, Domenico Perrotta, Ralf Steinberger, and Aristi de Varfis
    • [Paper]

1999

  • Statistical Challenges to Inductive Inference in Linked Data. (AISTATS 1999)

1998

  • Toward Scalable Learning with Non-Uniform Class and Cost Distributions: A Case Study in Credit Card Fraud Detection (KDD 1998)

    • Phillip K Chan, Salvatore J Stolfo
    • [Paper]
  • Call-Based Fraud Detection in Mobile Communication Networks Using a Hierarchical Regime-Switching Model (NIPS 1998)

    • Jaakko HollmΓ©n, Volker Tresp
    • [Paper]

1997

  • Detection of Mobile Phone Fraud Using Supervised Neural Networks: A First Prototype (ICANN 1997)

    • Yves Moreau, Herman Verrelst, Joos Vandewalle
    • [Paper]
  • Prospective Assessment of AI Technologies for Fraud Detection: A Case Study (AAAI 1997)

  • Credit Card Fraud Detection Using Meta-Learning: Issues and Initial Results (AAAI 1997)

    • Salvatore J. Stolfo, David W. Fan, Wenke Lee and Andreas L. Prodromidis
    • [Paper]

1995

  • Fraud: Uncollectible Debt Detection Using a Bayesian Network Based Learning System: A Rare Binary Outcome with Mixed Data Structures (UAI 1995)
    • Kazuo J. Ezawa, Til Schuermann
    • [Paper]

License

More Repositories

1

awesome-graph-classification

A collection of important graph embedding, classification and representation learning papers with implementations.
Python
4,666
star
2

pytorch_geometric_temporal

PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models (CIKM 2021)
Python
2,621
star
3

awesome-decision-tree-papers

A collection of research papers on decision, classification and regression trees with implementations.
Python
2,248
star
4

awesome-community-detection

A curated list of community detection research papers with implementations.
Python
2,224
star
5

karateclub

Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Python
2,065
star
6

CapsGNN

A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).
Python
1,216
star
7

awesome-gradient-boosting-papers

A curated list of gradient boosting research papers with implementations.
Python
966
star
8

graph2vec

A parallel implementation of "graph2vec: Learning Distributed Representations of Graphs" (MLGWorkshop 2017).
Python
860
star
9

ClusterGCN

A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).
Python
757
star
10

littleballoffur

Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)
Python
676
star
11

SimGNN

A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).
Python
657
star
12

awesome-monte-carlo-tree-search-papers

A curated list of Monte Carlo tree search papers with implementations.
Python
565
star
13

datasets

A repository of pretty cool datasets that I collected for network science and machine learning research.
551
star
14

GraphWaveletNeuralNetwork

A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)
Python
548
star
15

MixHop-and-N-GCN

An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).
Python
395
star
16

APPNP

A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).
Python
351
star
17

AttentionWalk

A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).
Python
309
star
18

SGCN

A PyTorch implementation of "Signed Graph Convolutional Network" (ICDM 2018).
Python
262
star
19

GAM

A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).
Python
261
star
20

GEMSEC

The TensorFlow reference implementation of 'GEMSEC: Graph Embedding with Self Clustering' (ASONAM 2019).
Python
244
star
21

SEAL-CI

A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)
Python
204
star
22

shapley

The official implementation of "The Shapley Value of Classifiers in Ensemble Games" (CIKM 2021).
Python
203
star
23

Splitter

A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).
Python
203
star
24

DANMF

A sparsity aware implementation of "Deep Autoencoder-like Nonnegative Matrix Factorization for Community Detection" (CIKM 2018).
Python
194
star
25

GraphWaveMachine

A scalable implementation of "Learning Structural Node Embeddings Via Diffusion Wavelets (KDD 2018)".
Python
176
star
26

role2vec

A scalable Gensim implementation of "Learning Role-based Graph Embeddings" (IJCAI 2018).
Python
158
star
27

MUSAE

The reference implementation of "Multi-scale Attributed Node Embedding". (Journal of Complex Networks 2021)
Python
136
star
28

EdMot

An implementation of "EdMot: An Edge Enhancement Approach for Motif-aware Community Detection" (KDD 2019)
Python
128
star
29

M-NMF

An implementation of "Community Preserving Network Embedding" (AAAI 2017)
Python
119
star
30

diff2vec

Reference implementation of Diffusion2Vec (Complenet 2018) built on Gensim and NetworkX.
Python
117
star
31

LabelPropagation

A NetworkX implementation of Label Propagation from a "Near Linear Time Algorithm to Detect Community Structures in Large-Scale Networks" (Physical Review E 2008).
Python
111
star
32

walklets

A lightweight implementation of Walklets from "Don't Walk Skip! Online Learning of Multi-scale Network Embeddings" (ASONAM 2017).
Python
98
star
33

tigerlily

TigerLily: Finding drug interactions in silico with the Graph.
Jupyter Notebook
95
star
34

BANE

A sparsity aware implementation of "Binarized Attributed Network Embedding" (ICDM 2018).
Python
85
star
35

EgoSplitting

A NetworkX implementation of "Ego-splitting Framework: from Non-Overlapping to Overlapping Clusters" (KDD 2017).
Python
80
star
36

ASNE

A sparsity aware and memory efficient implementation of "Attributed Social Network Embedding" (TKDE 2018).
Python
77
star
37

TENE

A sparsity aware implementation of "Enhanced Network Embedding with Text Information" (ICPR 2018).
Python
71
star
38

SINE

A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).
Python
69
star
39

RolX

An alternative implementation of Recursive Feature and Role Extraction (KDD11 & KDD12)
Python
58
star
40

GraRep

A SciPy implementation of "GraRep: Learning Graph Representations with Global Structural Information" (WWW 2015).
Python
58
star
41

PDN

The official PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf '21)
Python
55
star
42

TADW

An implementation of "Network Representation Learning with Rich Text Information" (IJCAI '15).
Python
54
star
43

spatiotemporal_datasets

Spatiotemporal datasets collected for network science, deep learning and general machine learning research.
43
star
44

NMFADMM

A sparsity aware implementation of "Alternating Direction Method of Multipliers for Non-Negative Matrix Factorization with the Beta-Divergence" (ICASSP 2014).
Python
40
star
45

FEATHER

The reference implementation of FEATHER from the CIKM '20 paper "Characteristic Functions on Graphs: Birds of a Feather, from Statistical Descriptors to Parametric Models".
Python
40
star
46

BoostedFactorization

An implementation of "Multi-Level Network Embedding with Boosted Low-Rank Matrix Approximation" (ASONAM 2019).
Python
33
star
47

resolutions-2019

A list of data mining and machine learning papers that I implemented in 2019.
20
star
48

OrbitalFeatures

A sparsity aware implementation of "Biological Network Comparison Using Graphlet Degree Distribution" (Bioinformatics 2007)
Python
19
star
49

FSCNMF

An implementation of "Fusing Structure and Content via Non-negative Matrix Factorization for Embedding Information Networks".
Python
18
star
50

GRAF

Inner product natural graph factorization machine used in 'GEMSEC: Graph Embedding with Self Clustering' .
Python
10
star
51

HullCoverConditionedUnitDiskGraph

A generator for unit disk graphs conditioned on concave hull cover.
Python
8
star
52

AV_Ultimate_Student_Hunt

Solution for the Ultimate Student Hunt Challenge (1st place).
R
8
star
53

NestedSubtreeHash

A distributed implementation of "Nested Subtree Hash Kernels for Large-Scale Graph Classification Over Streams" (ICDM 2012).
Python
7
star
54

Societe-General

Solution for ENS - Societe Generale Challenge (1st place).
R
5
star
55

resolutions-2020

4
star
56

graphmining.ai

Benedek Rozemberczki Personal Webpage
4
star
57

benedekrozemberczki

3
star