• Stars
    star
    551
  • Rank 80,726 (Top 2 %)
  • Language
  • License
    MIT License
  • Created over 5 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A repository of pretty cool datasets that I collected for network science and machine learning research.

Datasets License repo size benedekrozemberczki

Datasets collected for network science, graph mining, deep learning and general machine learning research.

Contents
  1. Twitch Gamers
  2. LastFM Asia Social Network
  3. Deezer Europe Social Network
  4. GitHub StarGazer Graphs
  5. Twitch Ego Nets
  6. Reddit Thread Graphs
  7. Deezer Ego Nets
  8. GitHub Social Network
  9. Deezer Social Networks
  10. Facebook Page-Page Networks
  11. Wikipedia Article Networks
  12. Twitch Social Networks
  13. Facebook Large Page-Page Network

Twitch Gamers

Description

A social network of Twitch users collected from the public API in Spring 2018. Nodes are Twitch users and edges are mutual follower relationships between them. The graph forms a single strongly connected component without missing attributes. The machine learning tasks related to the graph are count data regression and node classification. There are 6 specific tasks:

  • Explicit content streamer identification.
  • Broadcaster language prediction.
  • User lifetime estimation.
  • Churn prediction.
  • Affiliate status identification.
  • View count estimation.

Links

Properties

  • Directed: No.
  • Node features: No.
  • Edge features: No.
  • Node labels: Yes.
  • Temporal: No.
Twitch Gamers
Nodes 168,114
Edges 6,797,557
Density 0.0005
Transitvity 0.0184

Possible tasks

  • Binary node classification
  • Multi-class node classification
  • Count data regression
  • Link prediction
  • Community detection
  • Community detection with ground truth
  • Network visualization

Citing

>@misc{rozemberczki2021twitch,
       title = {Twitch Gamers: a Dataset for Evaluating Proximity Preserving and Structural Role-based Node Embeddings}, 
       author = {Benedek Rozemberczki and Rik Sarkar},
       year = {2021},
       eprint = {2101.03091},
       archivePrefix = {arXiv},
       primaryClass = {cs.SI}
       }

LastFM Asia Social Network

Description

A social network of LastFM users which was collected from the public API in March 2020. Nodes are LastFM users from Asian countries and edges are mutual follower relationships between them. The vertex features are extracted based on the artists liked by the users. The task related to the graph is multinomial node classification - one has to predict the location of users. This target feature was derived from the country field for each user.

Links

Properties

  • Directed: No.
  • Node features: Yes.
  • Edge features: No.
  • Node labels: Yes. Multinomial.
  • Temporal: No.
LastFM
Nodes 7,624
Edges 27,806
Density 0.001
Transitvity 0.179

Possible tasks

  • Multi-class node classification
  • Link prediction
  • Community detection
  • Network visualization

Citing

@inproceedings{feather,
               title={{Characteristic Functions on Graphs: Birds of a Feather, from Statistical Descriptors to Parametric Models}},
               author={Benedek Rozemberczki and Rik Sarkar},
               year={2020},
	       pages={1325–1334},
	       booktitle={Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM '20)},
	       organization={ACM},
}

Deezer Europe Social Network

Description

A social network of Deezer users which was collected from the public API in March 2020. Nodes are Deezer users from European countries and edges are mutual follower relationships between them. The vertex features are extracted based on the artists liked by the users. The task related to the graph is binary node classification - one has to predict the gender of users. This target feature was derived from the name field for each user.

Links

Properties

  • Directed: No.
  • Node features: Yes.
  • Edge features: No.
  • Node labels: Yes. Binary.
  • Temporal: No.
Deezer
Nodes 28,281
Edges 92,752
Density 0.0002
Transitvity 0.0959

Possible tasks

  • Binary node classification
  • Link prediction
  • Community detection
  • Network visualization

Citing

@inproceedings{feather,
               title={{Characteristic Functions on Graphs: Birds of a Feather, from Statistical Descriptors to Parametric Models}},
               author={Benedek Rozemberczki and Rik Sarkar},
               year={2020},
	       pages={1325–1334},
	       booktitle={Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM '20)},
	       organization={ACM},
}

GitHub StarGazer Graphs

Description

The social networks of developers who starred popular machine learning and web development repositories (with at least 10 stars) until 2019 August. Nodes are users and links are follower relationships. The task is to decide whether a social network belongs to a web or machine learning repository. We only included the largest component (at least with 10 users) of graphs.

Link

Properties

  • Number of graphs: 12,725
  • Directed: No.
  • Node features: No.
  • Edge features: No.
  • Graph labels: Yes. Binary-labeled.
  • Temporal: No.
Min Max
Nodes 10 957
Density 0.003 0.561
Diameter 2 18

Possible Tasks

  • Graph classification

Citing

@inproceedings{karateclub,
       title = {{Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs}},
       author = {Benedek Rozemberczki and Oliver Kiss and Rik Sarkar},
       year = {2020},
       pages = {3125–3132},
       booktitle = {Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM '20)},
       organization = {ACM},
}

Twitch Ego Nets

Description

The ego-nets of Twitch users who participated in the partnership program in April 2018. Nodes are users and links are friendships. The binary classification task is to predict using the ego-net whether the ego user plays a single or multple games. Players who play a single game usually have a more dense ego-net.

Link

Properties

  • Number of graphs: 127,094
  • Directed: No.
  • Node features: No.
  • Edge features: No.
  • Graph labels: Yes. Binary-labeled.
  • Temporal: No.
Min Max
Nodes 14 52
Density 0.038 0.967
Diameter 1 2

Possible Tasks

  • Graph classification

Citing

@inproceedings{karateclub,
       title = {{Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs}},
       author = {Benedek Rozemberczki and Oliver Kiss and Rik Sarkar},
       year = {2020},
       pages = {3125–3132},
       booktitle = {Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM '20)},
       organization = {ACM},
}

Reddit Thread Graphs

Description

Discussion and non-discussion based threads from Reddit which we collected in May 2018. Nodes are Reddit users who participate in a discussion and links are replies between them. The task is to predict whether a thread is discussion based or not (binary classification).

Link

Properties

  • Number of graphs: 203,088
  • Directed: No.
  • Node features: No.
  • Edge features: No.
  • Graph labels: Yes. Binary-labeled.
  • Temporal: No.
Min Max
Nodes 11 97
Density 0.021 0.382
Diameter 2 27

Possible Tasks

  • Graph classification

Citing

@inproceedings{karateclub,
       title = {{Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs}},
       author = {Benedek Rozemberczki and Oliver Kiss and Rik Sarkar},
       year = {2020},
       pages = {3125–3132},
       booktitle = {Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM '20)},
       organization = {ACM},
}

Deezer Ego Nets

Description

The ego-nets of Eastern European users collected from the music streaming service Deezer in February 2020. Nodes are users and edges are mutual follower relationships. The related task is the prediction of gender for the ego node in the graph.

Link

Properties

  • Number of graphs: 9,629
  • Directed: No.
  • Node features: No.
  • Edge features: No.
  • Graph labels: Yes. Binary-labeled.
  • Temporal: No.
Min Max
Nodes 11 363
Density 0.015 0.909
Diameter 2 2

Possible Tasks

  • Graph classification

Citing

@inproceedings{karateclub,
       title = {{Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs}},
       author = {Benedek Rozemberczki and Oliver Kiss and Rik Sarkar},
       year = {2020},
       pages = {3125–3132},
       booktitle = {Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM '20)},
       organization = {ACM},
}

GitHub Social Network

Description

A large social network of GitHub developers which was collected from the public API in June 2019. Nodes are developers who have starred at least 10 repositories and edges are mutual follower relationships between them. The vertex features are extracted based on the location, repositories starred, employer and e-mail address. The task related to the graph is binary node classification - one has to predict whether the GitHub user is a web or a machine learning developer. This target feature was derived from the job title of each user.

Link

Properties

  • Directed: No.
  • Node features: Yes.
  • Edge features: No.
  • Node labels: Yes. Binary-labeled.
  • Temporal: No.
GitHub
Nodes 37,700
Edges 289,003
Density 0.001
Transitvity 0.013

Possible Tasks

  • Binary node classification
  • Link prediction
  • Community detection
  • Network visualization

Citing

>@article{musae,
          author = {Rozemberczki, Benedek and Allen, Carl and Sarkar, Rik},
          title = {{Multi-Scale Attributed Node Embedding}},
          journal = {Journal of Complex Networks},
          volume = {9},
          number = {2},
          year = {2021},
}

Deezer Social Networks

Description

The data was collected from the music streaming service Deezer (November 2017). These datasets represent friendship networks of users from 3 European countries. Nodes represent the users and edges are the mutual friendships. We reindexed the nodes in order to achieve a certain level of anonimity. The csv files contain the edges - nodes are indexed from 0. The json files contain the genre preferences of users - each key is a user id, the genres loved are given as lists. Genre notations are consistent across users. In each dataset users could like 84 distinct genres. Liked genre lists were compiled based on the liked song lists. The countries included are Romania, Croatia and Hungary. For each dataset we listed the number of nodes an edges.

Links

Properties

  • Directed: No.
  • Node features: No.
  • Edge features: No.
  • Node labels: Yes. Multi-labeled.
  • Temporal: No.
RO HR HU
Nodes 41,773 54,573 47,538
Edges 125,826 498,202 222,887
Density 0.0001 0.0004 0.0002
Transitvity 0.0752 0.1146 0.0929

Possible Tasks

  • Node classification
  • Link prediction
  • Community detection
  • Network visualization

Citing

If you find these datasets useful in your research, please cite the following paper:

>@inproceedings{rozemberczki2019gemsec,    
                title={GEMSEC: Graph Embedding with Self Clustering},    
                author={Rozemberczki, Benedek and Davies, Ryan and Sarkar, Rik and Sutton, Charles},    
                booktitle={Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2019},    
                pages={65-72},    
                year={2019},    
                organization={ACM}    
                }

Facebook Page-Page Networks

Description

We collected data about Facebook pages (November 2017). These datasets represent blue verified Facebook page networks of different categories. Nodes represent the pages and edges are mutual likes among them. The csv files contain the edges - nodes are indexed from 0. We included 8 different distinct types of pages. These are listed below. For each dataset we listed the number of nodes an edges.

Links

Properties

  • Directed: No.
  • Node features: No.
  • Edge features: No.
  • Node labels: No.
  • Temporal: No.
Nodes Edges Density Transitvity
Politicians 5,908 41,729 0.0024 0.3011
Companies 14,113 52,310 0.0005 0.1532
Athletes 13,866 86,858 0.0009 0.1292
News Sites 27,917 206,259 0.0005 0.1140
Public Figures 11,565 67,114 0.0010 0.1666
Artists 50,515 819,306 0.0006 0.1140
Government 7,057 89,455 0.0036 0.2238
TV Shows 3,892 17,262 0.0023 0.5906

Possible Tasks

  • Link prediction
  • Community detection
  • Network visualization

Citing

If you find these datasets useful in your research, please cite the following paper:

>@inproceedings{rozemberczki2019gemsec,    
                title={GEMSEC: Graph Embedding with Self Clustering},    
                author={Rozemberczki, Benedek and Davies, Ryan and Sarkar, Rik and Sutton, Charles},    
                booktitle={Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2019},    
                pages={65-72},    
                year={2019},    
                organization={ACM}    
                }

Wikipedia Article Networks

Description

The data was collected from the English Wikipedia (December 2018). These datasets represent page-page networks on specific topics (chameleons, crocodiles and squirrels). Nodes represent articles and edges are mutual links between them. The edges csv files contain the edges - nodes are indexed from 0. The features json files contain the features of articles - each key is a page id, and node features are given as lists. The presence of a feature in the feature list means that an informative noun appeared in the text of the Wikipedia article. The target csv contains the node identifiers and the average monthly traffic between October 2017 and November 2018 for each page. For each page-page network we listed the number of nodes an edges with some other descriptive statistics.

Links

Properties

  • Directed: No.
  • Node features: Yes.
  • Edge features: No.
  • Node labels: Yes. Continuous target.
  • Temporal: No.
Chameleon Crocodile Squirrel
Nodes 2,277 11,631 5,201
Edges 31,421 170,918 198,493
Density 0.012 0.003 0.015
Transitvity 0.314 0.026 0.348

Possible Tasks

  • Regression
  • Link prediction
  • Community detection
  • Network visualization

Citing

If you find these datasets useful in your research, please cite the following paper:

>@article{musae,
          author = {Rozemberczki, Benedek and Allen, Carl and Sarkar, Rik},
          title = {{Multi-Scale Attributed Node Embedding}},
          journal = {Journal of Complex Networks},
          volume = {9},
          number = {2},
          year = {2021},
}

Twitch Social Networks

Description

These datasets used for node classification and transfer learning are Twitch user-user networks of gamers who stream in a certain language. Nodes are the users themselves and the links are mutual friendships between them. Vertex features are extracted based on the games played and liked, location and streaming habits. Datasets share the same set of node features, this makes transfer learning across networks possible. These social networks were collected in May 2018. The supervised task related to these networks is binary node classification - one has to predict whether a streamer uses explicit language.

Links

Properties

  • Directed: No.
  • Node features: Yes.
  • Edge features: No.
  • Node labels: Yes. Binary-labeled.
  • Temporal: No.
DE EN ES FR PT RU TW
Nodes 9,498 7,126 4,648 6,549 1,912 4,385 2,772
Edges 153,138 35,324 59,382 112,666 31,299 37,304 63,462
Density 0.003 0.002 0.006 0.005 0.017 0.004 0.017
Transitvity 0.047 0.042 0.084 0.054 0.131 0.049 0.120

Possible tasks

  • Binary node classification
  • Link prediction
  • Community detection
  • Network visualization

Citing

>@article{musae,
          author = {Rozemberczki, Benedek and Allen, Carl and Sarkar, Rik},
          title = {{Multi-Scale Attributed Node Embedding}},
          journal = {Journal of Complex Networks},
          volume = {9},
          number = {2},
          year = {2021},
}

Facebook Large Page-Page Network

Description

This webgraph is a page-page graph of verified Facebook sites. Nodes represent official Facebook pages while the links are mutual likes between sites. Node features are extracted from the site descriptions that the page owners created to summarize the purpose of the site. This graph was collected through the Facebook Graph API in November 2017 and restricted to pages from 4 categories which are defined by Facebook. These categories are: politicians, governmental organizations, television shows and companies. The task related to this dataset is multi-class node classification for the 4 site categories.

Links

Properties

  • Directed: No.
  • Node features: Yes.
  • Edge features: No.
  • Node labels: Yes. Multinomial.
  • Temporal: No.
Facebook
Nodes 22,470
Edges 171,002
Density 0.001
Transitvity 0.232

Possible tasks

  • Multi-class node classification
  • Link prediction
  • Community detection
  • Network visualization

Citing

>@article{musae,
          author = {Rozemberczki, Benedek and Allen, Carl and Sarkar, Rik},
          title = {{Multi-Scale Attributed Node Embedding}},
          journal = {Journal of Complex Networks},
          volume = {9},
          number = {2},
          year = {2021},
}

More Repositories

1

awesome-graph-classification

A collection of important graph embedding, classification and representation learning papers with implementations.
Python
4,666
star
2

pytorch_geometric_temporal

PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models (CIKM 2021)
Python
2,621
star
3

awesome-decision-tree-papers

A collection of research papers on decision, classification and regression trees with implementations.
Python
2,248
star
4

awesome-community-detection

A curated list of community detection research papers with implementations.
Python
2,224
star
5

karateclub

Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Python
2,065
star
6

awesome-fraud-detection-papers

A curated list of data mining papers about fraud detection.
Python
1,481
star
7

CapsGNN

A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).
Python
1,216
star
8

awesome-gradient-boosting-papers

A curated list of gradient boosting research papers with implementations.
Python
966
star
9

graph2vec

A parallel implementation of "graph2vec: Learning Distributed Representations of Graphs" (MLGWorkshop 2017).
Python
860
star
10

ClusterGCN

A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).
Python
757
star
11

littleballoffur

Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)
Python
676
star
12

SimGNN

A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).
Python
657
star
13

awesome-monte-carlo-tree-search-papers

A curated list of Monte Carlo tree search papers with implementations.
Python
565
star
14

GraphWaveletNeuralNetwork

A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)
Python
548
star
15

MixHop-and-N-GCN

An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).
Python
395
star
16

APPNP

A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).
Python
351
star
17

AttentionWalk

A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).
Python
309
star
18

SGCN

A PyTorch implementation of "Signed Graph Convolutional Network" (ICDM 2018).
Python
262
star
19

GAM

A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).
Python
261
star
20

GEMSEC

The TensorFlow reference implementation of 'GEMSEC: Graph Embedding with Self Clustering' (ASONAM 2019).
Python
244
star
21

SEAL-CI

A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)
Python
204
star
22

shapley

The official implementation of "The Shapley Value of Classifiers in Ensemble Games" (CIKM 2021).
Python
203
star
23

Splitter

A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).
Python
203
star
24

DANMF

A sparsity aware implementation of "Deep Autoencoder-like Nonnegative Matrix Factorization for Community Detection" (CIKM 2018).
Python
194
star
25

GraphWaveMachine

A scalable implementation of "Learning Structural Node Embeddings Via Diffusion Wavelets (KDD 2018)".
Python
176
star
26

role2vec

A scalable Gensim implementation of "Learning Role-based Graph Embeddings" (IJCAI 2018).
Python
158
star
27

MUSAE

The reference implementation of "Multi-scale Attributed Node Embedding". (Journal of Complex Networks 2021)
Python
136
star
28

EdMot

An implementation of "EdMot: An Edge Enhancement Approach for Motif-aware Community Detection" (KDD 2019)
Python
128
star
29

M-NMF

An implementation of "Community Preserving Network Embedding" (AAAI 2017)
Python
119
star
30

diff2vec

Reference implementation of Diffusion2Vec (Complenet 2018) built on Gensim and NetworkX.
Python
117
star
31

LabelPropagation

A NetworkX implementation of Label Propagation from a "Near Linear Time Algorithm to Detect Community Structures in Large-Scale Networks" (Physical Review E 2008).
Python
111
star
32

walklets

A lightweight implementation of Walklets from "Don't Walk Skip! Online Learning of Multi-scale Network Embeddings" (ASONAM 2017).
Python
98
star
33

tigerlily

TigerLily: Finding drug interactions in silico with the Graph.
Jupyter Notebook
95
star
34

BANE

A sparsity aware implementation of "Binarized Attributed Network Embedding" (ICDM 2018).
Python
85
star
35

EgoSplitting

A NetworkX implementation of "Ego-splitting Framework: from Non-Overlapping to Overlapping Clusters" (KDD 2017).
Python
80
star
36

ASNE

A sparsity aware and memory efficient implementation of "Attributed Social Network Embedding" (TKDE 2018).
Python
77
star
37

TENE

A sparsity aware implementation of "Enhanced Network Embedding with Text Information" (ICPR 2018).
Python
71
star
38

SINE

A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).
Python
69
star
39

RolX

An alternative implementation of Recursive Feature and Role Extraction (KDD11 & KDD12)
Python
58
star
40

GraRep

A SciPy implementation of "GraRep: Learning Graph Representations with Global Structural Information" (WWW 2015).
Python
58
star
41

PDN

The official PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf '21)
Python
55
star
42

TADW

An implementation of "Network Representation Learning with Rich Text Information" (IJCAI '15).
Python
54
star
43

spatiotemporal_datasets

Spatiotemporal datasets collected for network science, deep learning and general machine learning research.
43
star
44

NMFADMM

A sparsity aware implementation of "Alternating Direction Method of Multipliers for Non-Negative Matrix Factorization with the Beta-Divergence" (ICASSP 2014).
Python
40
star
45

FEATHER

The reference implementation of FEATHER from the CIKM '20 paper "Characteristic Functions on Graphs: Birds of a Feather, from Statistical Descriptors to Parametric Models".
Python
40
star
46

BoostedFactorization

An implementation of "Multi-Level Network Embedding with Boosted Low-Rank Matrix Approximation" (ASONAM 2019).
Python
33
star
47

resolutions-2019

A list of data mining and machine learning papers that I implemented in 2019.
20
star
48

OrbitalFeatures

A sparsity aware implementation of "Biological Network Comparison Using Graphlet Degree Distribution" (Bioinformatics 2007)
Python
19
star
49

FSCNMF

An implementation of "Fusing Structure and Content via Non-negative Matrix Factorization for Embedding Information Networks".
Python
18
star
50

GRAF

Inner product natural graph factorization machine used in 'GEMSEC: Graph Embedding with Self Clustering' .
Python
10
star
51

HullCoverConditionedUnitDiskGraph

A generator for unit disk graphs conditioned on concave hull cover.
Python
8
star
52

AV_Ultimate_Student_Hunt

Solution for the Ultimate Student Hunt Challenge (1st place).
R
8
star
53

NestedSubtreeHash

A distributed implementation of "Nested Subtree Hash Kernels for Large-Scale Graph Classification Over Streams" (ICDM 2012).
Python
7
star
54

Societe-General

Solution for ENS - Societe Generale Challenge (1st place).
R
5
star
55

resolutions-2020

4
star
56

graphmining.ai

Benedek Rozemberczki Personal Webpage
4
star
57

benedekrozemberczki

3
star