• Stars
    star
    565
  • Rank 78,889 (Top 2 %)
  • Language
    Python
  • License
    Creative Commons ...
  • Created about 5 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A curated list of Monte Carlo tree search papers with implementations.

Awesome Monte Carlo Tree Search Papers.

Awesome PRs Welcomerepo size License benedekrozemberczki


A curated list of Monte Carlo tree search papers with implementations from the following conferences/journals:

Similar collections about graph classification, gradient boosting, classification/regression trees, fraud detection, and community detection papers with implementations.

2023

  • Symbolic Physics Learner: Discovering governing equations via Monte Carlo tree search (ICLR 2023)
    • Fangzheng Sun, Yang Liu, Jian-Xun Wang, Hao Sun
    • [Paper]

2022

  • Finding Backdoors to Integer Programs: A Monte Carlo Tree Search Framework (AAAI 2022)

    • Elias B. Khalil, Pashootan Vaezipoor, Bistra Dilkina
    • [Paper]
  • NSGZero: Efficiently Learning Non-exploitable Policy in Large-Scale Network Security Games with Neural Monte Carlo Tree Search (AAAI 2022)

    • Wanqi Xue, Bo An, Chai Kiat Yeo
    • [Paper]
  • Solving Disjunctive Temporal Networks with Uncertainty under Restricted Time-Based Controllability Using Tree Search and Graph Neural Networks (AAAI 2022)

    • Kevin Osanlou, Jeremy Frank, Andrei Bursuc, Tristan Cazenave, Eric Jacopin, Christophe Guettier, J. Benton
    • [Paper]
  • Qubit Routing Using Graph Neural Network Aided Monte Carlo Tree Search (AAAI 2022)

    • Animesh Sinha, Utkarsh Azad, Harjinder Singh
    • [Paper]
  • Split Moves for Monte-Carlo Tree Search (AAAI 2022)

    • Jakub Kowalski, Maksymilian Mika, Wojciech Pawlik, Jakub Sutowicz, Marek Szykula, Mark H. M. Winands
    • [Paper]
  • Procrastinated Tree Search: Black-Box Optimization with Delayed%2C Noisy and Multi-Fidelity Feedback (AAAI 2022)

    • Junxiong Wang, Debabrota Basu, Immanuel Trummer
    • [Paper]
  • Enabling Arbitrary Translation Objectives with Adaptive Tree Search (ICLR 2022)

    • Wang Ling, Wojciech Stokowiec, Domenic Donato, Chris Dyer, Lei Yu, Laurent Sartran, Austin Matthews
    • [Paper]
  • What's Wrong with Deep Learning in Tree Search for Combinatorial Optimization (ICLR 2022)

    • Maximili1an Bรถther, Otto KiรŸig, Martin Taraz, Sarel Cohen, Karen Seidel, Tobias Friedrich
    • [Paper]
  • Anytime Capacity Expansion in Medical Residency Match by Monte Carlo Tree Search (IJCAI 2022)

    • Kenshi Abe, Junpei Komiyama, Atsushi Iwasaki
    • [Paper]
  • Fast and Accurate User Cold-Start Learning Using Monte Carlo Tree Search (RECSYS 2022)

    • Dilina Chandika Rajapakse, Douglas Leith
    • [Paper]

2021

  • Learning to Stop: Dynamic Simulation Monte-Carlo Tree Search (AAAI 2021)

    • Li-Cheng Lan, Ti-Rong Wu, I-Chen Wu, Cho-Jui Hsieh
    • [Paper]
  • Dec-SGTS: Decentralized Sub-Goal Tree Search for Multi-Agent Coordination (AAAI 2021)

    • Minglong Li, Zhongxuan Cai, Wenjing Yang, Lixia Wu, Yinghui Xu, Ji Wang
    • [Paper]
  • Improved POMDP Tree Search Planning with Prioritized Action Branching (AAAI 2021)

    • John Mern, Anil Yildiz, Lawrence Bush, Tapan Mukerji, Mykel J. Kochenderfer
    • [Paper]
  • Dynamic Automaton-Guided Reward Shaping for Monte Carlo Tree Search (AAAI 2021)

    • Alvaro Velasquez, Brett Bissey, Lior Barak, Andre Beckus, Ismail Alkhouri, Daniel Melcer, George K. Atia
    • [Paper]
  • Single Player Monte-Carlo Tree Search Based on the Plackett-Luce Model (AAAI 2021)

    • Felix Mohr, Viktor Bengs, Eyke Hรผllermeier
    • [Paper]
  • Learning to Pack: A Data-Driven Tree Search Algorithm for Large-Scale 3D Bin Packing Problem (CIKM 2021)

    • Qianwen Zhu, Xihan Li, Zihan Zhang, Zhixing Luo, Xialiang Tong, Mingxuan Yuan, Jia Zeng
    • [Paper]
  • Practical Massively Parallel Monte-Carlo Tree Search Applied to Molecular Design (ICLR 2021)

    • Xiufeng Yang, Tanuj Kr Aasawat, Kazuki Yoshizoe
    • [Paper]
  • Convex Regularization in Monte-Carlo Tree Search (ICML 2021)

    • Tuan Dam, Carlo D'Eramo, Jan Peters, Joni Pajarinen
    • [Paper]
  • Combining Tree Search and Action Prediction for State-of-the-Art Performance in DouDiZhu (IJCAI 2021)

    • Yunsheng Zhang, Dong Yan, Bei Shi, Haobo Fu, Qiang Fu, Hang Su, Jun Zhu, Ning Chen
    • [Paper]

2020

  • Monte Carlo Tree Search in Continuous Spaces Using Voronoi Optimistic Optimization with Regret Bounds (AAAI 2020)

    • Beomjoon Kim, Kyungjae Lee, Sungbin Lim, Leslie Pack Kaelbling, Tomรกs Lozano-Pรฉrez
    • [Paper]
  • Neural Architecture Search Using Deep Neural Networks and Monte Carlo Tree Search (AAAI 2020)

    • Linnan Wang, Yiyang Zhao, Yuu Jinnai, Yuandong Tian, Rodrigo Fonseca
    • [Paper]
    • [Code]
  • Monte-Carlo Tree Search in Continuous Action Spaces with Value Gradients (AAAI 2020)

    • Jongmin Lee, Wonseok Jeon, Geon-Hyeong Kim, Kee-Eung Kim
    • [Paper]
    • [Code]
  • Approximate Inference in Discrete Distributions with Monte Carlo Tree Search and Value Functions (AISTATS 2020)

    • Lars Buesing, Nicolas Heess, Theophane Weber
    • [Paper]
  • Watch the Unobserved: A Simple Approach to Parallelizing Monte Carlo Tree Search (ICLR 2020)

    • Anji Liu, Jianshu Chen, Mingze Yu, Yu Zhai, Xuewen Zhou, Ji Liu
    • [Paper]
    • [Code]
  • Information Particle Filter Tree: An Online Algorithm for POMDPs with Belief-Based Rewards on Continuous Domains (ICML 2020)

  • Sub-Goal Trees a Framework for Goal-Based Reinforcement Learning (ICML 2020)

    • Tom Jurgenson, Or Avner, Edward Groshev, Aviv Tamar
    • [Paper]
  • Monte-Carlo Tree Search for Scalable Coalition Formation (IJCAI 2020)

    • Feng Wu, Sarvapali D. Ramchurn
    • [Paper]
  • Generalized Mean Estimation in Monte-Carlo Tree Search (IJCAI 2020)

    • Tuan Dam, Pascal Klink, Carlo D'Eramo, Jan Peters, Joni Pajarinen
    • [Paper]
  • Sparse Tree Search Optimality Guarantees in POMDPs with Continuous Observation Spaces (IJCAI 2020)

    • Michael H. Lim, Claire Tomlin, Zachary N. Sunberg
    • [Paper]
  • Mix and Match: An Optimistic Tree-Search Approach for Learning Models from Mixture Distributions (NeurIPS 2020)

    • Matthew Faw, Rajat Sen, Karthikeyan Shanmugam, Constantine Caramanis, Sanjay Shakkottai
    • [Paper]
  • Extracting Knowledge from Web Text with Monte Carlo Tree Search (WWW 2020)

    • Guiliang Liu, Xu Li, Jiakang Wang, Mingming Sun, Ping Li
    • [Paper]

2019

  • ACE: An Actor Ensemble Algorithm for Continuous Control with Tree Search (AAAI 2019)

  • A Monte Carlo Tree Search Player for Birds of a Feather Solitaire (AAAI 2019)

  • Vine Copula Structure Learning via Monte Carlo Tree Search (AISTATS 2019)

  • Noisy Blackbox Optimization using Multi-fidelity Queries: A Tree Search Approach (AISTATS 2019)

    • Rajat Sen, Kirthevasan Kandasamy, Sanjay Shakkottai
    • [Paper]
    • [Code]
  • Reinforcement Learning Based Monte Carlo Tree Search for Temporal Path Discovery (ICDM 2019)

    • Pengfei Ding, Guanfeng Liu, Pengpeng Zhao, An Liu, Zhixu Li, Kai Zheng
    • [Paper]
  • Monte Carlo Tree Search for Policy Optimization (IJCAI 2019)

    • Xiaobai Ma, Katherine Rose Driggs-Campbell, Zongzhang Zhang, Mykel J. Kochenderfer
    • [Paper]
  • Subgoal-Based Temporal Abstraction in Monte-Carlo Tree Search (IJCAI 2019)

    • Thomas Gabor, Jan Peter, Thomy Phan, Christian Meyer, Claudia Linnhoff-Popien
    • [Paper]
    • [Code]
  • Automated Machine Learning with Monte-Carlo Tree Search (IJCAI 2019)

    • Herilalaina Rakotoarison, Marc Schoenauer, Michรจle Sebag
    • [Paper]
    • [Code]
  • Multiple Policy Value Monte Carlo Tree Search (IJCAI 2019)

    • Li-Cheng Lan, Wei Li, Ting-Han Wei, I-Chen Wu
    • [Paper]
  • Learning Compositional Neural Programs with Recursive Tree Search and Planning (NeurIPS 2019)

    • Thomas Pierrot, Guillaume Ligner, Scott E. Reed, Olivier Sigaud, Nicolas Perrin, Alexandre Laterre, David Kas, Karim Beguir, Nando de Freitas
    • [Paper]

2018

  • Monte Carlo Methods for the Game Kingdomino (CIG 2018)

  • Reset-free Trial-and-Error Learning for Robot Damage Recovery (RAS 2018)

  • Memory-Augmented Monte Carlo Tree Search (AAAI 2018)

    • Chenjun Xiao, Jincheng Mei, Martin Mรผller
    • [Paper]
  • Feedback-Based Tree Search for Reinforcement Learning (ICML 2018)

    • Daniel R. Jiang, Emmanuel Ekwedike, Han Liu
    • [Paper]
  • Extended Increasing Cost Tree Search for Non-Unit Cost Domains (IJCAI 2018)

    • Thayne T. Walker, Nathan R. Sturtevant, Ariel Felner
    • [Paper]
  • Three-Head Neural Network Architecture for Monte Carlo Tree Search (IJCAI 2018)

    • Chao Gao, Martin Mรผller, Ryan Hayward
    • [Paper]
  • Bidding in Periodic Double Auctions Using Heuristics and Dynamic Monte Carlo Tree Search (IJCAI 2018)

    • Moinul Morshed Porag Chowdhury, Christopher Kiekintveld, Son Tran, William Yeoh
    • [Paper]
  • Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search (NIPS 2018)

    • Zhuwen Li, Qifeng Chen, Vladlen Koltun
    • [Paper]
  • M-Walk: Learning to Walk over Graphs using Monte Carlo Tree Search (NIPS 2018)

    • Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, Jianfeng Gao
    • [Paper]
  • Single-Agent Policy Tree Search With Guarantees (NIPS 2018)

    • Laurent Orseau, Levi Lelis, Tor Lattimore, Theophane Weber
    • [Paper]
  • Monte-Carlo Tree Search for Constrained POMDPs (NIPS 2018)

    • Jongmin Lee, Geon-hyeong Kim, Pascal Poupart, Kee-Eung Kim
    • [Paper]

2017

  • An Analysis of Monte Carlo Tree Search (AAAI 2017)

    • Steven James, George Dimitri Konidaris, Benjamin Rosman
    • [Paper]
  • Beyond Monte Carlo Tree Search: Playing Go with Deep Alternative Neural Network and Long-Term Evaluation (AAAI 2017)

    • Jinzhuo Wang, Wenmin Wang, Ronggang Wang, Wen Gao
    • [Paper]
  • Designing Better Playlists with Monte Carlo Tree Search (AAAI 2017)

    • Elad Liebman, Piyush Khandelwal, Maytal Saar-Tsechansky, Peter Stone
    • [Paper]
  • Learning in POMDPs with Monte Carlo Tree Search (ICML 2017)

    • Sammie Katt, Frans A. Oliehoek, Christopher Amato
    • [Paper]
  • Learning to Run Heuristics in Tree Search (IJCAI 2017)

    • Elias B. Khalil, Bistra Dilkina, George L. Nemhauser, Shabbir Ahmed, Yufen Shao
    • [Paper]
  • Estimating the Size of Search Trees by Sampling with Domain Knowledge (IJCAI 2017)

    • Gleb Belov, Samuel Esler, Dylan Fernando, Pierre Le Bodic, George L. Nemhauser
    • [Paper]
  • A Monte Carlo Tree Search Approach to Active Malware Analysis (IJCAI 2017)

    • Riccardo Sartea, Alessandro Farinelli
    • [Paper]
  • Monte-Carlo Tree Search by Best Arm Identification (NIPS 2017)

    • Emilie Kaufmann, Wouter M. Koolen
    • [Paper]
  • Thinking Fast and Slow with Deep Learning and Tree Search (NIPS 2017)

    • Thomas Anthony, Zheng Tian, David Barber
    • [Paper]
  • Monte-Carlo Tree Search using Batch Value of Perfect Information (UAI 2017)

    • Shahaf S. Shperberg, Solomon Eyal Shimony, Ariel Felner
    • [Paper]

2016

  • Using Domain Knowledge to Improve Monte-Carlo Tree Search Performance in Parameterized Poker Squares (AAAI 2016)

    • Robert Arrington, Clay Langley, Steven Bogaerts
    • [Paper]
  • Monte Carlo Tree Search for Multi-Robot Task Allocation (AAAI 2016)

    • Bilal Kartal, Ernesto Nunes, Julio Godoy, Maria L. Gini
    • [Paper]
  • Large Scale Hard Sample Mining with Monte Carlo Tree Search (CVPR 2016)

    • Olivier Canรฉvet, Franรงois Fleuret
    • [Paper]
  • On the Analysis of Complex Backup Strategies in Monte Carlo Tree Search (ICML 2016)

    • Piyush Khandelwal, Elad Liebman, Scott Niekum, Peter Stone
    • [Paper]
  • Deep Learning for Reward Design to Improve Monte Carlo Tree Search in ATARI Games (IJCAI 2016)

    • Xiaoxiao Guo, Satinder P. Singh, Richard L. Lewis, Honglak Lee
    • [Paper]
  • Monte Carlo Tree Search in Continuous Action Spaces with Execution Uncertainty (IJCAI 2016)

    • Timothy Yee, Viliam Lisรฝ, Michael H. Bowling
    • [Paper]
  • Learning Predictive State Representations via Monte-Carlo Tree Search (IJCAI 2016)

    • Yunlong Liu, Hexing Zhu, Yifeng Zeng, Zongxiong Dai
    • [Paper]

2015

  • Efficient Globally Optimal Consensus Maximisation with Tree Search (CVPR 2015)

    • Tat-Jun Chin, Pulak Purkait, Anders P. Eriksson, David Suter
    • [Paper]
  • Interplanetary Trajectory Planning with Monte Carlo Tree Search (IJCAI 2015)

    • Daniel Hennes, Dario Izzo
    • [Paper]

2014

  • State Aggregation in Monte Carlo Tree Search (AAAI 2014)

    • Jesse Hostetler, Alan Fern, Tom Dietterich
    • [Paper]
  • Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning (NIPS 2014)

    • Xiaoxiao Guo, Satinder P. Singh, Honglak Lee, Richard L. Lewis, Xiaoshi Wang
    • [Paper]
  • Learning Partial Policies to Speedup MDP Tree Search (UAI 2014)

2013

  • Monte Carlo Tree Search for Scheduling Activity Recognition (ICCV 2013)

    • Mohamed R. Amer, Sinisa Todorovic, Alan Fern, Song-Chun Zhu
    • [Paper]
  • Convergence of Monte Carlo Tree Search in Simultaneous Move Games (NIPS 2013)

    • Viliam Lisรฝ, Vojtech Kovarรญk, Marc Lanctot, Branislav Bosanskรฝ
    • [Paper]
  • Bayesian Mixture Modelling and Inference based Thompson Sampling in Monte-Carlo Tree Search (NIPS 2013)

    • Aijun Bai, Feng Wu, Xiaoping Chen
    • [Paper]

2012

  • Generalized Monte-Carlo Tree Search Extensions for General Game Playing (AAAI 2012)

2011

  • A Local Monte Carlo Tree Search Approach in Deterministic Planning (AAAI 2011)

    • Fan Xie, Hootan Nakhost, Martin Mรผller
    • [Paper]
  • Real-Time Solving of Quantified CSPs Based on Monte-Carlo Game Tree Search (IJCAI 2011)

    • Satomi Baba, Yongjoon Joe, Atsushi Iwasaki, Makoto Yokoo
    • [Paper]
  • Nested Rollout Policy Adaptation for Monte Carlo Tree Search (IJCAI 2011)

  • Variance Reduction in Monte-Carlo Tree Search (NIPS 2011)

    • Joel Veness, Marc Lanctot, Michael H. Bowling
    • [Paper]
  • Learning Is Planning: Near Bayes-Optimal Reinforcement Learning via Monte-Carlo Tree Search (UAI 2011)

    • John Asmuth, Michael L. Littman
    • [Paper]

2010

  • Understanding the Success of Perfect Information Monte Carlo Sampling in Game Tree Search (AAAI 2010)

    • Jeffrey Richard Long, Nathan R. Sturtevant, Michael Buro, Timothy Furtak
    • [Paper]
  • Bayesian Inference in Monte-Carlo Tree Search (UAI 2010)

    • Gerald Tesauro, V. T. Rajan, Richard Segal
    • [Paper]

2009

  • Monte Carlo Tree Search Techniques in the Game of Kriegspiel (IJCAI 2009)

    • Paolo Ciancarini, Gian Piero Favini
    • [Paper]
  • Bootstrapping from Game Tree Search (NIPS 2009)

    • Joel Veness, David Silver, William T. B. Uther, Alan Blair
    • [Paper]

2008

  • Direct Mining of Discriminative and Essential Frequent Patterns via Model-Based Search Tree (KDD 2008)
    • Wei Fan, Kun Zhang, Hong Cheng, Jing Gao, Xifeng Yan, Jiawei Han, Philip S. Yu, Olivier Verscheure
    • [Paper]

2007

  • Bandit Algorithms for Tree Search (UAI 2007)
    • Pierre-Arnaud Coquelin, Rรฉmi Munos
    • [Paper]

2006

  • Properties of Forward Pruning in Game-Tree Search (AAAI 2006)

  • Graph Branch Algorithm: An Optimum Tree Search Method for Scored Dependency Graph with Arc Co-Occurrence Constraints (ACL 2006)

2005

  • Game-Tree Search with Combinatorially Large Belief States (IJCAI 2005)
    • Austin Parker, Dana S. Nau, V. S. Subrahmanian
    • [Paper]

2003

  • Solving Finite Domain Constraint Hierarchies by Local Consistency and Tree Search (IJCAI 2003)
    • Stefano Bistarelli, Philippe Codognet, Kin Chuen Hui, Jimmy Ho-Man Lee
    • [Paper]

2001

  • Incomplete Tree Search using Adaptive Probing (IJCAI 2001)

1998

  • KnightCap: A Chess Programm That Learns by Combining TD with Game-Tree Search (ICML 1998)
    • Jonathan Baxter, Andrew Tridgell, Lex Weaver
    • [Paper]

1988

  • A Tree Search Algorithm for Target Detection in Image Sequences (CVPR 1988)
    • Steven D. Blostein, Thomas S. Huang
    • [Paper]

License


More Repositories

1

awesome-graph-classification

A collection of important graph embedding, classification and representation learning papers with implementations.
Python
4,666
star
2

pytorch_geometric_temporal

PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models (CIKM 2021)
Python
2,621
star
3

awesome-decision-tree-papers

A collection of research papers on decision, classification and regression trees with implementations.
Python
2,248
star
4

awesome-community-detection

A curated list of community detection research papers with implementations.
Python
2,224
star
5

karateclub

Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Python
2,065
star
6

awesome-fraud-detection-papers

A curated list of data mining papers about fraud detection.
Python
1,481
star
7

CapsGNN

A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).
Python
1,216
star
8

awesome-gradient-boosting-papers

A curated list of gradient boosting research papers with implementations.
Python
966
star
9

graph2vec

A parallel implementation of "graph2vec: Learning Distributed Representations of Graphs" (MLGWorkshop 2017).
Python
860
star
10

ClusterGCN

A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).
Python
757
star
11

littleballoffur

Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)
Python
676
star
12

SimGNN

A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).
Python
657
star
13

datasets

A repository of pretty cool datasets that I collected for network science and machine learning research.
551
star
14

GraphWaveletNeuralNetwork

A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)
Python
548
star
15

MixHop-and-N-GCN

An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).
Python
395
star
16

APPNP

A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).
Python
351
star
17

AttentionWalk

A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).
Python
309
star
18

SGCN

A PyTorch implementation of "Signed Graph Convolutional Network" (ICDM 2018).
Python
262
star
19

GAM

A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).
Python
261
star
20

GEMSEC

The TensorFlow reference implementation of 'GEMSEC: Graph Embedding with Self Clustering' (ASONAM 2019).
Python
244
star
21

SEAL-CI

A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)
Python
204
star
22

shapley

The official implementation of "The Shapley Value of Classifiers in Ensemble Games" (CIKM 2021).
Python
203
star
23

Splitter

A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).
Python
203
star
24

DANMF

A sparsity aware implementation of "Deep Autoencoder-like Nonnegative Matrix Factorization for Community Detection" (CIKM 2018).
Python
194
star
25

GraphWaveMachine

A scalable implementation of "Learning Structural Node Embeddings Via Diffusion Wavelets (KDD 2018)".
Python
176
star
26

role2vec

A scalable Gensim implementation of "Learning Role-based Graph Embeddings" (IJCAI 2018).
Python
158
star
27

MUSAE

The reference implementation of "Multi-scale Attributed Node Embedding". (Journal of Complex Networks 2021)
Python
136
star
28

EdMot

An implementation of "EdMot: An Edge Enhancement Approach for Motif-aware Community Detection" (KDD 2019)
Python
128
star
29

M-NMF

An implementation of "Community Preserving Network Embedding" (AAAI 2017)
Python
119
star
30

diff2vec

Reference implementation of Diffusion2Vec (Complenet 2018) built on Gensim and NetworkX.
Python
117
star
31

LabelPropagation

A NetworkX implementation of Label Propagation from a "Near Linear Time Algorithm to Detect Community Structures in Large-Scale Networks" (Physical Review E 2008).
Python
111
star
32

walklets

A lightweight implementation of Walklets from "Don't Walk Skip! Online Learning of Multi-scale Network Embeddings" (ASONAM 2017).
Python
98
star
33

tigerlily

TigerLily: Finding drug interactions in silico with the Graph.
Jupyter Notebook
95
star
34

BANE

A sparsity aware implementation of "Binarized Attributed Network Embedding" (ICDM 2018).
Python
85
star
35

EgoSplitting

A NetworkX implementation of "Ego-splitting Framework: from Non-Overlapping to Overlapping Clusters" (KDD 2017).
Python
80
star
36

ASNE

A sparsity aware and memory efficient implementation of "Attributed Social Network Embedding" (TKDE 2018).
Python
77
star
37

TENE

A sparsity aware implementation of "Enhanced Network Embedding with Text Information" (ICPR 2018).
Python
71
star
38

SINE

A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).
Python
69
star
39

RolX

An alternative implementation of Recursive Feature and Role Extraction (KDD11 & KDD12)
Python
58
star
40

GraRep

A SciPy implementation of "GraRep: Learning Graph Representations with Global Structural Information" (WWW 2015).
Python
58
star
41

PDN

The official PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf '21)
Python
55
star
42

TADW

An implementation of "Network Representation Learning with Rich Text Information" (IJCAI '15).
Python
54
star
43

spatiotemporal_datasets

Spatiotemporal datasets collected for network science, deep learning and general machine learning research.
43
star
44

NMFADMM

A sparsity aware implementation of "Alternating Direction Method of Multipliers for Non-Negative Matrix Factorization with the Beta-Divergence" (ICASSP 2014).
Python
40
star
45

FEATHER

The reference implementation of FEATHER from the CIKM '20 paper "Characteristic Functions on Graphs: Birds of a Feather, from Statistical Descriptors to Parametric Models".
Python
40
star
46

BoostedFactorization

An implementation of "Multi-Level Network Embedding with Boosted Low-Rank Matrix Approximation" (ASONAM 2019).
Python
33
star
47

resolutions-2019

A list of data mining and machine learning papers that I implemented in 2019.
20
star
48

OrbitalFeatures

A sparsity aware implementation of "Biological Network Comparison Using Graphlet Degree Distribution" (Bioinformatics 2007)
Python
19
star
49

FSCNMF

An implementation of "Fusing Structure and Content via Non-negative Matrix Factorization for Embedding Information Networks".
Python
18
star
50

GRAF

Inner product natural graph factorization machine used in 'GEMSEC: Graph Embedding with Self Clustering' .
Python
10
star
51

HullCoverConditionedUnitDiskGraph

A generator for unit disk graphs conditioned on concave hull cover.
Python
8
star
52

AV_Ultimate_Student_Hunt

Solution for the Ultimate Student Hunt Challenge (1st place).
R
8
star
53

NestedSubtreeHash

A distributed implementation of "Nested Subtree Hash Kernels for Large-Scale Graph Classification Over Streams" (ICDM 2012).
Python
7
star
54

Societe-General

Solution for ENS - Societe Generale Challenge (1st place).
R
5
star
55

resolutions-2020

4
star
56

graphmining.ai

Benedek Rozemberczki Personal Webpage
4
star
57

benedekrozemberczki

3
star